

12 Group actions

12.1. Consider action of the group $(\mathbb{R}, +, -, 0)$ on the plane \mathbb{R}^2 such that for any $u \in \mathbb{R}$

- (a) $(a, b) \rightarrow (a + u, b)$
- (b) The plane is rotated by u degrees counterclockwise.

Prove that this is a group action and for $(a, b) \in \mathbb{R}^2$ describe its orbit and stabiliser.

12.2. Calculate, how many different bracelets can be made with six red and three white beads, using all nine beads.

12.3. Suppose you have 8 red and 8 blue equilateral triangles. Count the number of ways one can build an equilateral triangle with edges of quadruple sizes

- (a) up to rotations,
- (b) up to rotations and reflections.

12.4. Consider the action of the group $G = \mathbb{S}_n$ on the set $X = \{(a, b) : 1 \leq a, b \leq n\}$, with the permutation π acting on the components, i.e. $\pi((a, b)) = (\pi(a), \pi(b))$. Determine

- (a) $|X/\sim|$, the number of cosets of the equivalence \sim ,
- (b) the number of elements of $[(1, 1)]_\sim$ and $[(1, 2)]_\sim$,
- (c) indexes $[G : G_{(1,1)}]$ and $[G : G_{(1,2)}]$.

12.5. Determine how many ways the faces of the regular tetrahedron can be coloured by n colours up to rotations.