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CHAPTER 1

Introduction

These notes were made as lecture notes for the course in Advanced
Universal Algebra I taught at the Charles University in Prague in
Spring 2008. They mey be freely used for teaching and reference pur-
poses. In my opinion a course based on these notes should be taught
only to audience of graduate students who have already seen at least
one semester of Universal Algebra.

The main objective of this course is McKenzie’s result that there is
no algorithm deciding if a finite algebra of finite type has a finite base
of equations. Therefore, the results displayed are almost a beeline to-
wards this theorem, often skipping otherwise important results related
to finite basis, or proving them in a weaker form (like Willard’s theo-
rem). The one notable deviation from this beeline is Baker’s theorem,
which is proved fully.

The organization of the text is as follows: Chapter III deals with
the background Universal Algebra and Lattice Theory facts which the
students ought to be familiar with prior to taking the course. I omit-
ted quite a lot of proofs there, proving only the results which I con-
sider more difficult, particularly significant to the main line of the text
or likely to be omitted in a basic universal algebra course (these are
mostly in Section III.3). Chapter IV proves Baker’s finite basis theo-
rem. Chapter V proves a weakened version of the Willard’s finite basis
theorem. Chapter VI exhibits a construction used for proving inher-
ently non-finitely based results, due to Baker, McNulty and Werner.
Chapter VII proves McKenzie’s result that finite algebras of finite type
which have a finite basis are recursively inseparable from those which
don’t.

The main source book for the text in Chapters III and IV was [6],
Chapter V is based on the papers [37] and [36], Chapter VI on paper [3]
and Chapter VII on papers [37], [21] and [22]. Notation is meant to
be consistent with [24].

It is quite natural that any text of this form has a large number
of errors in its early stages. This one may contain even more than
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2 1. INTRODUCTION

its fair share, since I was mostly typing it on an unfamiliar keyboard,
using an unfamiliar editor. I would be obliged to any readers who
electronically report any errors which they find to my email address
pera@im.ns.ac.yu.

Petar Marković



CHAPTER 2

History

The questions concerning finite basis of equations are historically
one of the most researched topics in universal algebra. The origins can
be traced to G. Birkhoff who proved that all equations true in a finite
algebra in at most n variables are all corollary of a finite set of such
equations. Another possible starting point for history of finite basis
was the problem posed by B. H. Neumann [27] in 1937: Does every
finite group have a finite base of equations? We give a brief histori-
cal overview of the major results divided into three parts: non-finitely
based algebras and varieties, finitely based algebras and varieties, re-
sults concerning both. Note that questions of finite basis of equations
are meaningful only in a finite similarity type, so we make this assump-
tion for the remainder of this overview.

The first finite nonfinitely based algebra was discovered by R. C.
Lyndon [15] in 1954. It was a seven element groupoid with a con-
stant. This was improved by V. V. Vǐsin [35] to a four-element al-
gebra and further improved by V. L. Murskii [26] in 1963 to a three-
element groupoid. J. Ježek [10] found three more three-element non-
finitely based groupoids in 1985. Concerning more ’natural’ examples
of this sort, R. Park [29] found a commutative idempotent four-element
groupoid which is non-finitely based in 1980. A most important exam-
ple of this sort was discovered by P. Perkins [31] in 1969, who proved
that the monoid consisting of the matrices of dimension 2x2, five of
which have at most one entry equal to 1 while remaining entries are
equal to 0, the sixth element being the identity matrix, equipped with
the multiplication operation, is inherently nonfinitely based. M. V.
Sapir [34] proved that Perkins’ example is the quintessential exam-
ple of a inherently nonfinitely based finite semigroup, so that all other
such finite semigroups contain it, in a way (it is the only minimal INFB
finitely generated variety of semigroups not containing groups). An-
other paper by Sapir [33] characterized INFB varieties of semigroups
in terms of avoidable words, an extremely useful approach for various
problems. Recently, I. Dolinka [7] (using M. V. Sapir’s result [33])
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4 2. HISTORY

proved that the semiring of binary relations on any finite set with at
least two elements is non-finitely based. Another general method for
proving INFB using graph algebras and a spiral-like construction was
invented by K. A. Baker, G. McNulty and H. Werner [4] in 1989. A very
surprising example of a non-finitely based finite algebra was discovered
by R. Bryant [5] in 1982: it is a finite group with just one more constant
operation. This sharply contrasts with the result [28] and foreshadows
that finitely based and nonfinitely based algebras would be hard to
distinguish, as we’ll see later.

The finite based results start with R. C. Lyndon [14], as well. In
1951 he proved that the algebras on a two-element universe are always
finitely based. Murskii’s result [26] can be viewed as a statement that
this result can’t be improved. S. Oates and M. B. Powell [28] solved
the original question by Neumann by proving that all finite groups are
finitely based. The same result for finite rings was discovered inde-
pendently by L’vov [13] and Kruse [12] in 1973. Perkins has proved
(in the same paper [31] where he found an example of an INFB finite
semigroup) that all varieties of commutative semigroups and also all
uniformly periodic semigroups satisfying a permutation identity. R.
Mckenzie [18] in 1970 proved that every finite lattice is finitely based,
and generalizing this result, K. A. Baker [1] proved in 1976 that ev-
ery finite algebra generating a congruence-distributive variety is finitely
based. There are two major directions in which Baker’s theorem was
generalized: In congruence-modular direction there was a series of re-
sults by Freese and McKenzie, the final result by McKenzie [20] pub-
lished in 1987 states that every finite algebra generating a congruence-
modular residually finite variety is finitely based. In congruence meet-
semidistributive direction, R. Willard [38] proved in 2000 that every
finite algebra generating a congruence meet-semidistributive residually
strictly finite variety is finitely based. The result by K. Kearnes and
R. Willard [11] improves on this by proving that every residually fi-
nite locally finite congruence meet-semidistributive variety is residually
strictly finite, so now in both cases we can say that residual finiteness
implies finite basis. New results by Baker, McNulty and Wang [2] and
by Maróti and McKenzie [17] generalize these results to certain locally
finite varieties and certain quasivarieties, respectively.

The final class of results and conjectures are concerning simultane-
ously finitely based and nonfinitely based varieties. In early 1960s A.
Tarski posed a famous problem if there is a characterization of all finite
finitely based algebras. This problem was partially solved, along with
some others, (all in the negative) by R. McKenzie in 1996 in a series
of three papers [21], [22] and [23]. There it is proved that given any
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Turing machine T , there is a finite algebra of finite type A(T ) such
that A(T ) is finitely based (and residually finite) when T halts, while
it is INFB (and residually infinite) when T doesn’t halt. This means
that we can’t distinguish finitely based and nonfinitely based finite al-
gebras with any recursive property. A subproblem of Tarski’s Finite
basis problem is still open, though. As early as 1976, Park [30] conjec-
tured that all residually finite finite algebras of finite type are finitely
based. Though there was scant evidence for this conjecture at the time
(primarily Baker’s theorem), the later results all confirmed this specu-
lation, so that the general feeling among experts today (though by no
means unanimous) is that this conjecture ’ought to’ be true.





CHAPTER 3

Background

1. Semantics

An algebraic language, similarity type, or just type is any set of
symbols F (these symbols are usually called operation symbols). It is
always equipped with the arity function ar : F → ω. The ar-preimage
of number i ∈ ω is denoted by Fi, and in the special cases when
i = 0, 1, 2, 3, Fi is called the set of constant, unary, binary and ternary
[operation] symbols, respectively.

An F -algebra, or just algebra if F is understood, is a structure
A = 〈A;FA〉, where FA = {fA : f ∈ F} and fA : Aar(f) → A. Note
that formally A0 = {∅}, so nullary operations in fact select an element
of A (a constant).

Define subalgebra, homomorphism, congruence, lattice, distribu-
tive, modular, complete lattice, compact element and algebraic lattice,
closure operator and algebraic closure operator. Notation: If 〈P ;≤〉
is a partially ordered set, a ↑ will denote the set {b ∈ P : a ≤ b}.
Dually, a↓ will denote {b ∈ P : b ≤ a}. For X ⊆ P , X ↑=

⋃
x∈X

x↑ and

X ↓=
⋃
x∈X

x↓.

Theorem 1.1 (Birkhoff and Frink). Subuniverses of an algebra
form an algebraic lattice under inclusion order and every algebraic lat-
tice can be realized in this way.

Proof. �

Theorem 1.2 (Gr atzer and Schmidt). Congruences of an alge-
bra form an algebraic lattice under inclusion order and every algebraic
lattice can be realized in this way.

Proof. �

Definition 1.3. An element a of the lattice L is strictly ∧-irre-
ducible if for any Y ⊆ a ↑ \{a}, if

∧
Y exists, then

∧
Y > a. ∧-

irreducible elements are those where this requirement is made only for

7



8 3. BACKGROUND

finite Y , while the dual concepts are called strictly ∨-irreducible and
∨-irreducible.

Theorem 1.4 (Birkhoff). Every element of an algebraic lattice is
the infimum of strictly ∧-irreducible elements above it.

Proof. By contradiction. Let a be an element of the algebraic
lattice L and let a′ =

∧
{x ∈ L : x is strictly ∧-irreducible and x ≥ a}.

Assume that a < a′. By the definition of an algebraic lattice, this
means that there must exist a compact element c ≤ a′ such that c 6≤ a.

Let S = {x ∈ L : x ≥ aand x 6≥ c} = a ↑ \c ↑. We see that S 6= ∅,
as a ∈ S. We use Zorn’s Lemma to prove S has a maximal element
b. So, let C ⊆ S be a chain. If

∨
C > c, then for some finite subset

C ′ ⊆ C it holds that
∨
C ′ > c, as c is compact. The supremum of

the finite chain C ′ must be one of its elements, all of which are in S,
and therefore not greater than or equal to c. Therefore,

∨
C /∈ c ↑,

and since C ⊆ S ⊆ a ↑, then
∨
C ∈ a ↑, so

∨
C ∈ S. The conditions

of Zorn’s Lemma being fulfilled for S, we know that S has a maximal
element b.

Now we prove that b is strictly ∧-irreducible. Indeed, take any
Y ⊆ b ↑ \{b}. As b ≥ a, Y ⊆ a ↑. But since b is a maximal element of
S, Y ∩S = ∅ (each element of Y is strictly greater than b, so outside S).
Therefore, Y ⊆ c ↑, and this means that c ≤

∧
Y . Hence, b 6=

∧
Y , as

b 6≥ c.
This means that b is strictly ∧-irreducible element of L, is greater

than a, and so b ≥ a′ ≥ c. Contradiction. �

Define subdirectly irreducible algebras and subdirect product.

Proposition 1.5. If a family of congruences {θi : i ∈ I} of an
algebra A satisfies that

⋂
i∈I
θi = 0A, then A can be subdirectly embedded

into
∏
i∈I

A/θi.

Proof. �

Corollary 1.6 (Birkhoff’s Subdirect Represntation Theorem).
Every algebra is subdirect product of subdirectly irreducible algebras.

Proof. If A is an algebra and θ ∈ Con A is a strictly ∧-irreducible
element of the lattice Con A, then the factor algebra A/θ is subdi-
rectly irreducible. As Con A is an algebraic lattice, then by Theorem
1.4, 0A is an intersection of strictly ∧-irreducible elements of Con A.
Therefore, by Proposition 1.5, the Corollary follows. �

For a class of (similar) algebras K, define operators H(K), S(K) and
P(K).
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Proposition 1.7. SH(K) ⊆ HS(K), PH(K) ⊆ HP(K) and PS(K) ⊆
SP(K).

Proof. �

Definition 1.8. A class K of algebras closed under operators H,
S and P is called a variety. For a class of algebras K we will call the
class HSP(K) the variety generated by K (it is a variety according to
Proposition 1.7) and sometimes denote HSP(K) by V(K).

2. Syntax

Let X be a set, elements of which will be called variables. Let F be
an algebraic language disjoint from X. Define the set of terms T (X)
in the language F and the F -algebra T(X). We fix the language F
for the remainder of this Chapter. The term algebra on a countably
infinite set of variables X will be denoted by just T.

Proposition 2.1. Let A be an algebra and S ⊆ A. Then the subal-
gebra generated by S, SgA(S) is equal to {tA(s1, . . . , sn) : t(x1, . . . , xn)
∈ T and si ∈ X for all i}

Proof. �

Define for an algebra A and a mapping τ : X 7→ A (an evaluation
of variables) the homomorphism vτ : T(X) 7→ A. This is an example
of the universal mapping property.

Definition 2.2. Let K be a class of algebras, U(X) an algebra gen-
erated by its subset X. We say that U(X) has the universal mapping
property for the class K over the set X if for any algebra A ∈ K and
any mapping ϕ : X 7→ A, there exists a homomorphism ϕ : U 7→ A
(clearly, since SgU(X) = U, ϕ is unique).

From the observation above T(X) has the universal mapping prop-
erty for any class K of algebras.

Proposition 2.3. If U(X) and V(Y ) have the universal mapping
property for K, |X| = |Y | and U,V ∈ K, then U ∼= V.

Proof. �

Such algebras are called [|X|-generated] free algebras in K. They
are denoted by FK(n), where n = |X| is the cardinal.

Lemma 2.4. If |X| > 0 or |F0| > 0, K contains a nontrivial algebra
and SP(K) = K then FK(|X|) exists.
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Proof. Let ΘK(X) =
⋂
{θ ∈ Con T(X) : (∃A ∈ K)(∃τ : X 7→

A)(θ = ker(vτ ))}. Clearly, for each θ in the above family, T(X)/θ ∈
S(K). Therefore, T(X)/ΘK(X) ∈ SPS(K) = K. It has the universal
mapping property for K over x = {x/ΘK(X) : x ∈ X}. Since K
contains a nontrivial algebra, for all x, y ∈ X, x/ΘK(X) 6= y/ΘK(X).

�

Note that any algebra A ∈ K is a homomorphic image of FK(|A|),
if it exists.

Define identities, A |= p ≈ q, K |= p ≈ q and Σ |= p ≈ q.

Proposition 2.5. Id(K) = Id(H(K)) = Id(S(K)) = Id(P(K)) =
Id(V(K)). For some p, q ∈ T (X), K |= p ≈ q iff (p, q) ∈ ΘK(X)
iff T(X)/ΘK(X) |= p ≈ q If FK(|X|) exists, then K |= p ≈ q iff
F |= p ≈ q.

Proof. The last equivalence: let F = T(X)/ΘK(X), and let p, q ∈
T (X), p = p(x1, . . . , xn) and q = q(x1, . . . , xn). If F |= p ≈ q, then
pF(x1/ΘK(X), . . . , xn/ΘK(X)) = qF(x1/ΘK(X),
. . . , xn/ΘK(X)), so (p, q) ∈ ΘK(X). On the other hand, FK(|X|) ∈
SP(K) and K |= p ≈ q implies SP(K) |= p ≈ q. The rest is obvious. �

Corollary 2.6. Given a class of algebras K, terms p, q ∈ T (X)
and |Y | ≥ |X|, K |= p ≈ q iff T(Y )/ΘK(Y ) |= p ≈ q.

Proof. Clearly, if K |= p ≈ q, then SP(K) |= p ≈ q and from
Lemma 2.4, T(Y )/ΘK(Y ) ∈ SP(K). Now assume T(Y )/ΘK(Y ) |=
p ≈ q. Let |X ′| = |Y | and X ⊆ X ′. Then T(X ′) ∼= T(Y ) and
T(X ′)/ΘK(X ′) ∼= T(Y )/ΘK(Y ), so T(X ′)/ΘK(X ′) |= p ≈ q. As
p, q ∈ T (X ′), T(X ′)/ΘK(X ′) |= p ≈ q iff K |= p ≈ q. �

Corollary 2.7. Let |X| = ℵ0, K be a class of algebras and p, q ∈
T (Y ). Then K |= p ≈ q iff T(X)/ΘK(X) |= p ≈ q.

Proof. There is a finite set Y ′ ⊆ Y such that p, q ∈ T (Y ′). Now
it follows from Proposition 2.5 and Corollary 2.6. �

Theorem 2.8. Let |X| = ℵ0. K = HSP(K) iff K = Mod(IdX(K)).

Proof. Let K = HSP(K), A |=IdX(K)) and |Y | = |A|. Then
(p, q) ∈ ΘK(Y ) implies that FK(X) |= p ≈ q. Let p′, q′ ∈ T (X) be
obtained from p, q by renaming of variables, respectively. Clearly, for
any algebra B, B |= p ≈ q iff B |= p′ ≈ q′. Now, FK(X) |= p ≈ q
implies FK(X) |= p′ ≈ q′ implies p′ ≈ q′ ∈IdX(K)) implies A |= p′ ≈ q′

implies A |= p ≈ q implies (p, q) ∈ ΘA(Y ). Therefore, ΘK(Y ) ⊆
ΘA(Y ) and since A ∈ H(T(Y)/ΘA(Y)), then A ∈ H(T(Y)/ΘK(Y)) ⊆
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H(SP(K)) = K. Therefore, Mod(IdX(K)) ⊆ K and K ⊆ Mod(IdX(K))
is trivial.

Let K = Mod(IdX(K)). Then HSP(K) ⊆ Mod(IdX(K)) = K. �

Corollary 2.9 (Birkhoff’s HSP Theorem). There exists X and
Σ ⊆ T (X)2 such that K = Mod(Σ) iff K = HSP(K).

Proof. If K = HSP(K) we can make Σ = IdX(K) for some count-
ably infinite set X, according to Theorem 2.8. On the other hand,
if K = Mod(Σ) for some Σ, then K |= Σ implies HSP(K) |= Σ, so
HSP(K) ⊆ Mod(Σ) = K. �

Definition 2.10. Let A be an algebra and θ ∈ Con A. We say
that θ is fully invariant if for every endomorphism α ∈ End A and all
(a, b) ∈ θ, (α(a), α(b)) ∈ θ. The set of all fully invariant congruences
of A will be denoted by ConFI A. The least fully invariant congruence
on A containing X ⊆ A2 will be denoted by CgA

FI(X).

Note that ConFI A = Con A∗, where A∗ is tha algebra A with each
endomorphism of A added as an unary operation. Therefore ConFI A
is an algebraic lattice.

Lemma 2.11. Let T(X) be a term algebra and θ ∈ Con T(X) a
congruence. There exists a class of algebras K such that θ = ΘK(X) iff
θ ∈ ConFI T(X).

Proof. (⇒) We need to show that ΘK(X) is fully invariant. Let
(p, q) ∈ ΘK(X), p, q ∈ T ({x1, x2, . . . , xn}) and let ϕ ∈ End T(X).
Let ti = α(xi) and pick arbitrary A ∈ K and evaluation τ : X →
A. This evaluation extends to a homomorphism vτ : T(X) → A
in the unique way. Let vτ (ti) = ai for all i ≤ n. We know that
pA(a1, . . . , an) = qA(a1, . . . , an), since (p, q) ∈ ΘK(X), so vτ (ϕ(p)) =
pA(vτ (t1), . . . , vτ (tn)) = pA(a1, . . . , an) = qA(a1, . . . , an) = qA(vτ (t1),
. . . , vτ (tn)) = vτ (ϕ(q)). Therefore, (ϕ(p), ϕ(q)) ∈ ΘK(X).

(⇐) Assume θ ∈ ConFIT(X) and we desire to prove that T(X)/θ |=
p ≈ q iff p θ q. This would mean that for K = {T(X)/θ}, θ = ΘK(X).
If T(X)/θ |= p ≈ q, then p(x1, . . . , xn)/θ = pT(X)/θ(x1/θ, . . . , xn/θ) =
qT(X)/θ(x1/θ, . . . , xn/θ) = q(x1, . . . , xn)/θ. On the other hand, if p θ q,
then for any evaluation τ : X → T (X)/θ, such that τ(xi) = ti/θ, select
ϕ ∈ End T(X) such that ϕ(xi) = ti. Now, for p, q ∈ T (x1, . . . , xn),
p θ q implies ϕ(p)θϕ(q), so pT(X)/θ(τ(x1), . . . , τ(xn)) = p(t1, . . . , tn)/θ =
ϕ(p)/θ and qT(X)/θ(τ(x1), . . . , τ(xn)) = q(t1, . . . , tn)/θ = ϕ(q)/θ imply
vτ (p) = vτ (q). �
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We define a closure operator D on T (X)2 such that for Σ ⊆ T (X)2,
D(Σ) is the smallest equivalence θ containing Σ and such that the
following two properties hold:

(Rep): If (p, q) ∈ θ and p is a subterm of t, then (t, t′) ∈ θ,
where t′ is obtained from t by replacing the subterm p by q.

(Sub): If (pi, qi) ∈ θ for 1 ≤ i ≤ n and f ∈ Fn, then (f(p1, . . . ,
pn), f(q1, . . . , qn)) ∈ θ.

Lemma 2.12. The following are equivalent:

(i) Σ |= p ≈ q,

(ii) (p, q) ∈ Cg
T(X)
FI (Σ),

(iii) p ≈ q ∈ D(Σ).

Proof. (i) ⇒ (ii) Let θ = Cg
T(X)
FI (Σ). Since θ ∈ ConFI T(X), as

in Lemma 2.11 we get T(X)/θ |= Σ, and therefore T(X)/θ |= p ≈ q

and (p, q) ∈ θ = Cg
T(X)
FI (Σ).

(ii)⇒ (i) Assume A |= Σ. Then Σ ⊆ Θ(A)(X) ∈ ConFI(T(X)), so

(p, q) ∈ Cg
T(X)
FI (Σ) ⊆ ΘA(X). Therefore, A |= p ≈ q.

(ii)⇔ (iii) Cg
T(X)
FI (Σ) is an equivalence relation on T(X) and since

it is a congruence, by induction on depth of the occurrence of p in t we
can conclude that it satisfies (Rep). On the other hand, if f ∈ Fk, by k
applications of (Rep) we get that (f(p1, . . . , pk), f(q1, . . . , qn) ∈ D(Σ) if
(pi, qi) ∈ D(Σ) foa all i ≤ k. It is clear that (Sub) is equivalent to being
fully invariant, as endomorphisms of T(X) are uniquely characterized
by their action on X. �

We define formal theory of equational logic by putting all p ≈ p as
axioms, and derivation rules are:

(Sym): p ≈ q ` q ≈ p,
(Tr): p ≈ q, q ≈ r ` p ≈ r,
(Rep): p ≈ q ` t ≈ t′ when p a subterm of t and t′ is obtained

from t by replacing the subterm p by q,
(Sub): p1 ≈ q1, . . . , pk ≈ qk ` f(p1, . . . , pn) ≈ f(q1, . . . , qn),

where f ∈ Fk.

Lemma 2.13. Σ ` p ≈ q iff p ≈ q ∈ D(Σ).

Proof. Clearly, D(Σ) is closed inder all derivation rules of equa-
tional logic, by definition. Therefore, we only need to show that {p ≈
q : Σ ` p ≈ q} is D-closed. This is done by induction on the length of
proof. In case of transitivity we glue proofs together, in case of proving
symmetry we prove ’reverse’ identity for every step in the proof, and
replacement and substutiom are obvious. �
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Theorem 2.14 (Completeness of equational logic). Σ |= p ≈ q iff
Σ ` p ≈ q.

Proof. It follows from Lemmas 2.12 and 2.13. �

Theorem 2.15 (Compactness for equational logic). If V is a variety
and V = Mod(Σ) for some finite Σ, then for any Σ1 such that V =
Mod(Σ1) there exists a finite Σ′1 ⊆ Σ1 such that V = ModΣ′1.

Proof. Σ1 |= Σ, so some finite subset Σ′1 |= Σ (by Completeness).
Therefore, V = ModΣ′1. �

Remark 2.1. Note that we could have proved Compactness already

when we proved that Σ |= p ≈ q iff (p, q) ∈ Cg
T(X)
FI (Σ), as Cg

T(X)
FI is

an algebraic closure operator. We will call any set of identties Σ such
that V = Mod(Σ) an equational base, or just base of V . Also, note that
Compactness allows us to say that having a finite base is a property of
a variety, not depending on our choice of base identities. Such varieties
will be called finitely based.

3. Basic universal algebra

Definition 3.1. The variety V is locally finite if for all A ∈ V and
finite X ⊆ A, SgA(X) is finite.

Lemma 3.2. V is locally finite iff for all n ∈ ω, FV(n) is finite.

Proof. (⇒) is trivial. For (⇐), let X ⊆ A be finite and A ∈ V .

Then the subalgebra SgA(X) is a homomorphic image of FV(|X|), and
is therefore finite. �

Proposition 3.3. If A is a finite algebra, then HSP(A) is locally
finite.

Proof. Let X be finite. Then p, q ∈ ΘA(X) iff the functions

pA and qA from AX to A are equal. As there are at most |A||A||X|

many of these, ΘA(X) = ΘHSP(A)(X) has finitely many blocks, so
F

HSP(A)
(X) is finite. This implies that HSP(A) is locally finite, ac-

cording to Lemma 3.2. �

Definition 3.4. Let V be a variety. By Vn we denote the variety
Mod(Id{x1,...,xn}(V)).

Definition 3.5. Let V be a locally finite variety. We will say that
V is inherently nonfinitely based when no locally finite variety W such
that V ⊆ W is finitely based.
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We are already in the situation to prove first, easy results about
finite basis.

Lemma 3.6. Let V be a locally finite variety in a finite similarity
type F . Then Vn is finitely based for all n.

Proof. Let X = {x1, . . . , xn}, F = FV(X) and θ = ΘV(X). |F |
is finite since V is locally finite. We may assume that no two constant
symbols are equal in θ, otherwise just remove the copies from the lan-
guage of V (and add to our finite basis the equations making them
equal to original after we are done). We also assume that no two mem-
bers of X are θ-equal (and consequently, none is θ-equal to a member
of F0), or x1 ≈ x2 is a basis. We make a representative set R for the
partition of T (X) induced by θ so that X ∪ F0 ⊆ R. For t ∈ T (X),
let t∗ ∈ R be such that t/θ = t∗/θ. Now, for every operation f ∈ Fk
and (p1, . . . , pk) ∈ Rk put the identity f(p1, . . . , pk) ≈ (f(p1, . . . , pk))

∗

into our set Σ. This is a set of identities in T (X)2, and since |R| = |F |
is finite and F is also finite, then Σ is finite. Moreover, each of these
equations is of the form t = t∗, where we know (t, t∗) ∈ θ = Θvrv(X)
and therefore V |= Σ.

Now we claim that for all t ∈ T (X), Σ |= t ≈ t∗. We prove this
by induction on complexity of t. If t ∈ X ∪ F0, then the claim follows
since t ∈ R, so t = t∗. If t = f(p1, . . . , pk) for some pi ∈ T (X)
and f ∈ Fk, then we know by inductive assumption that Σ |= pi ≈
p∗i for all i. Therefore by k applications of Replacement we get that
Σ |= t ≈ f(p∗1, . . . , p

∗
k). As f(p∗1, . . . , p

∗
k) ≈ (f(p∗1, . . . , p

∗
k))
∗ ∈ Σ, we get

Σ |= t ≈ (f(p∗1, . . . , p
∗
k))
∗. Since θ is a congruence, (t, f(p∗1, . . . , p

∗
k)) ∈ θ,

so t∗ = (f(p∗1, . . . , p
∗
k))
∗, and we have that Σ |= t ≈ t∗.

Now let t1 ≈ t2 ∈ IdX(V). Therefore, t1/θ = t2/θ, so t∗1 = t∗2. As we
have proved that Σ |= ti ≈ t∗i for i = 1, 2, by symmetry and transitivity
we get Σ |= t1 ≈ t2. �

Theorem 3.7 (Birkhoff). Let V be a locally finite variety in a finite
similarity type. V is finitely based iff there exists n such that V = Vn.
V is inherently nonfinitely based iff for all n ∈ ω, Vn is not locally
finite.

Proof. The direction (⇐) of the first statement is a consequence
of Lemma 3.6. If V is finitely based, then there exists a finite set of vari-
ables X such that all identities used in the finite basis Σ. Clearly, Σ ⊆
IdV(X) and V ⊆ Mod(IdV(X) ⊆ Mod(Σ) = V , so V ⊆ Mod(IdV(X).
If |X| = n, this means that V = Vn.

For the second statement, the direction (⇒) trivially follows from
Lemma 3.6. On the other hand if V ⊆ W and W is locally finite and
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finitely based, then according to the first statement of this theorem,
W =Wn, for some n, soWn is locally finite. As Vn ⊆ Wn, then for all
m, FVn(m) ∈ H(FWn(m)), so FVn(m) is finite. Therefore, Vn is locally
finite. �

Define polynomials, unary polynomials.

Theorem 3.8 (Mal’cev chains). Let A be an algebra and X ⊆ A2.

Then CgA(X) is equal to

{(x, y) ∈ A2 : (∃x1, . . . , xn, y1, . . . , yn, z0, z1, . . . , zn ∈ A)(∃p1, . . . , pn ∈
Pol1A)(xi, yi) ∈ X &x = z0 & y = zn &{zi−1, zi} = {pi(xi), pi(yi)}}.

Proof. Unary polynomials preserve congruences (since terms do
and congruences are reflexive), so we only need to prove that the ex-
pression in the statement defines a congruence. The case n = 0 insures
reflexivity, and the set of pairs is clearly defined to be symmetric and
transitive. Let there exist a chain z0, z1, . . . , z` for (ai, bi). Then there
exists a chain of the form fA(b1, . . . , bi−1, zj, ai+1, . . . , ak) for any k-ary
operation f . Linking these chains we get a chain from fA(a1, . . . , ak)
to fA(b1, . . . , bk). �

Theorem 3.9 (Quackenbush’s Lemma). If V is locally finite and
contains an infinite subdirectly irreducible S, then for any n ∈ ω, V
contains a finite subdirectly irreducible Sn such that |Sn| ≥ n.

Proof. Let (a, b) ∈ µ, where µ is the monolith of S and c1, . . . , cn ∈
S with ci 6= cj for i 6= j. Then (a, b) ∈ CgS(ci, cj) for all i 6= j. Let
d1, . . . , dm contain all links in the Mal’cev chains used to prove (a, b) ∈
CgS(ci, cj) and all constants used to construct the unary polynomials

in these Mal’cev chains for all i 6= j. Then let A = SgS({a, b} ∪
{c1, . . . , cn, d1, . . . , dm}). A is finite since V is locally finite and (a, b) ∈
CgA(ci, cj) for all i 6= j. Let θ be a maximal congruence in Con A such

that (a, b) /∈ θ. From (a, b) ∈ CgA(ci, cj), we get ci/θ 6= cj/θ for all
i 6= j. Moreover, if α > θ, then (a, b) ∈ α, so (a, b) ∈

∧
{α ∈ Con A :

α > θ}\θ. Therefore, θ is strictly meet irreducible, and |A/θ| ≥ n. �

Definition 3.10. We define the residual bound of a variety V , de-
noted by resb(V), to be the smallest cardinal n such that all subdirectly
irreducible algebras in V have size smaller than n. If A is an algebra,
resb(A) is defined to be resb(V(A)). We say that a variety (or algebra)
is residually finite if resb(V) = ℵ0 (resb(A) = ℵ0).

The following theorem is due to Mal’cev in [16] and the term whose
existence is proved is called the Mal’cev term. In general, properties of
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varieties which are equivalent to existence of terms in a variety which
satisfy a system of equations are called Mal’cev properties, and the
equations these terms satisfy Mal’cev conditions. If there is a single
term of known arity whose existence is equivalent to a property, then
this property is called a strong Mal’cev property (strong Mal’cev con-
dition).

Theorem 3.11 (Mal’cev term). Let V be a variety. V is congruence
permutable iff there exists a ternary term m such that V |= m(x, y, y) ≈
m(y, y, x) ≈ x.

Proof. Assume that V is congruence permutable and let F =
FV(x, y). Denote the elements of F2 by vector columns and let

G = SgF2

([
x
y

]
,

[
y
y

]
,

[
y
x

])
.

Then denote by pii : F2 → F the projection homomorphisms, for

i = 1, 2 and by ηi = ker(π1) ∩ G2. Clearly, ηi ∈ Con G and

[
x
y

]
η2 ◦

η1

[
y
x

]
. By congruence permutability, there exists

[
u
v

]
∈ G such

that

[
x
y

]
η1

[
u
v

]
η2

[
x
y

]
. This implies u = v = x and

[
x
x

]
∈ G.

So, there exists a ternary term m such that

mF2

([
x
y

]
,

[
y
y

]
,

[
y
x

])
=

[
x
x

]
.

So, mF(x, y, y) = mF(y, y, x) = x, and this implies V |= m(x, y, y) ≈
m(y, y, x) ≈ x, according to Proposition 2.5.

Now assume the existence of Mal’cev term. Let A ∈ V , α, β ∈
Con A and aα ◦ β b. Then there exists c ∈ A such that aα c and c β b.
The first condition implies that mA(a, c, b)αmA(a, a, b) = b and the
second condition implies that a = mA(a, b, b) β mA(a, c, b). Therefore,
(a, b) ∈ β ◦ α. �

Theorem 3.12 (Jónsson terms). Let V be a variety. V is congru-
ence distributive iff there exist ternary terms p0, p1, . . . , pn such that V
satisfies the following identities

p0(x, y, z) ≈ x,
pn(x, y, z) ≈ z,
pi(x, y, x) ≈ x for all i,
pi(x, x, y) ≈ pi+1(x, x, y) for all even i,
pi(x, y, y) ≈ pi+1(x, y, y) for all odd i.
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Proof. Let V be congruence distributive and let F = FV(x, y).
Denote the elements of F3 by vector columns and let

G = SgF2

 x
x
x

 ,
 y
x
y

 ,
 x
y
y

 .

Then denote by pii : F2 → F the projection homomorphisms, for

i = 1, 2, 3 and by ηi = ker(π1)∩G2. Clearly, ηi ∈ Con G and

 x
x
x

 η1∧

(η2 ◦ η3)

 x
y
y

. By congruence distributivity,

 x
x
x

 (η1 ∧ η2) ∨ (η1 ∧

η3)

 x
y
y

. Hence, there exist ternary terms p0, p1, . . . , pn such that

pGi

 x
x
x

 ,
 y
x
y

 ,
 x
y
y

 =

 ui
vi
wi

 ∈ G, for 0 ≤ i ≤ n, u0 = v0 =

w0 = un = x, vn = wn = y and for all i, when i is even

 ui
vi
wi

 η1 ∧

η2

 ui+1

vi+1

wi+1

, while when i is odd,

 ui
vi
wi

 η1 ∧ η3

 ui+1

vi+1

wi+1

. Then the

desired equations for pi follow as in Theorem 3.11.
Now, let V have Jónsson terms. Assume that α, β, γ ∈ Con A,

A ∈ V and that (a, b) ∈ α ∧ (β ∨ γ). Therefore, there exist a =
c0, c1, . . . , ck = b ∈ A such that ci α ci+1 if i is even and ci β ci+1 if i is
odd. We wish to prove that for all i, (pAi (a, a, b), pAi (a, b, b)) ∈ (α ∧
β)∨ (α∧ γ). Indeed, for all j, pAi (a, cj, b)α p

A
i (a, cj, a) = a, for even j,

pAi (a, cj, b) β p
A
i (a, cj+1, b), while for odd j, pAi (a, cj, b) β p

A
i (a, cj+1, b).

Hence, pAi (a, a, b) = pAi (a, c0, b) (α ∧ β) pAi (a, c1, b) (α ∧ γ) pAi (a, c2, b)
(α ∧ β) . . . pAi (a, ck, b) = pAi (a, b, b). Finally,

a = pA1 (a, a, b) (α ∧ β) ∨ (α ∧ γ) pA1 (a, b, b) =

pA2 (a, b, b) (α ∧ β) ∨ (α ∧ γ) pA2 (a, a, b) = · · · = pAn (a, b, b) = b.

�

A more standard way of proving existence of terms from congruence
conditions is via the following Lemma:
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Lemma 3.13. Let V be a variety, X = {x1, x2, . . . , xn, xn+1} and

let F = FV(X) be the free algebra. Denote by θ = CgF(xn, xn+1). If
(pF(x1, x2, . . . , xn, xn+1), qF (x1, x2, . . . , xn, xn+1)) ∈ θ, then

V |= pF(x1, x2, . . . , xn, xn) ≈ qF(x1, x2, . . . , xn, xn).

Proof. Let G = FV(x1, x2, . . . , xn) be the free algebra and α ∈
hom(f, g) be the homomorphism extending the mapping α(xi) = xi
for 1 ≤ i ≤ n and α(xn+1) = xn. Then θ ⊆ kerα, so α(p/ΘV(X)) =

α(q/ΘV(X)). This implies the desired identity in V . �

We have used the other proof in Theorems 3.11 and 3.12 since
it is less well-known, and it also has wide applicability. However, in
some kinds of Mal’cev properties it is easier to use the approach via
Lemma 3.13 for proving this direction, so we proved here it for future
applications.



CHAPTER 4

Baker’s finite basis theorem

1. Ultrafilters

We begin by defining some notions in a nontrivial Boolean algebra
B. A lot of the results in this section have more general versions (in
distributive lattices, for instance), but for the purposes of our course,
we use the Boolean case only. We will mean by B a Boolean algebra
B = 〈B;∧,∨,′ , 0, 1〉 with 0 6= 1 throughout this section.

Definition 1.1. Let B be a Boolean algebra. ∅ 6= I ⊆ B is an
ideal if I = I ↓ and for all x, y ∈ I, x ∨ y ∈ I. Dually, ∅ 6= F ⊆ B is a
filter if F = F ↑ and for all x, y ∈ F , x ∧ y ∈ I.

Clearly, I is an ideal iff I ′ = {a′ : a ∈ I} is a filter, and F is a filter
iff F ′ = {a′ : a ∈ F} is an ideal.

We define the operation of symmetric difference in Boolean algebra
by x+ y = (x′ ∧ y) ∨ (x ∧ y′) (the notation + suggests that this is the
addition of the associated Boolean ring).

Theorem 1.2. Let θ be a binary relation on B. θ is a congruence
iff there exists an ideal I of B such that x+ y ∈ I iff (x, y) ∈ θ.

Proof. Standard. �

Definition 1.3. A filter F on B is called an ultrafilter when 0 /∈ F
and for any filter G on B such that F ( G, G = B. The dual notion
is maximal ideal.

Theorem 1.4. A filter F of B is ultrafilter iff for all a ∈ B precisely
one of a, a′ is in F .

Proof. (⇒) Let F be an ultrafilter. Clearly it is impossible for
any a ∈ B that both a and a′ are in F , as then 0 = a∧a′ ∈ F , and this
means F = B. On the other hand, assume that for some a ∈ B neither
a nor a′ are in F . Then let G−{x ∈ B : (∃y ∈ F )(a∧y ≤ x)}. We have
that G ↑= G, since x1 ≥ x for some x ∈ g implies that x1 ≥ x ≥ y ∧ a
for some y ∈ F , so x1 ∈ G. Moreover, if x1, x2 ∈ G, then there exist
y1, y2 ∈ F such that xi ≥ yi ∧ a. Therefore, x1 ∧ x2 ≥ (y1 ∧ y2)∧ a and
y1 ∧ y2 ∈ F since F is a filter. Hence, G is a filter. Clearly, F ⊆ G and

19



20 4. BAKER’S FINITE BASIS THEOREM

a ∈ G, so F ( G. To get a contradiction, we need to show that 0 /∈ G.
So, assume that 0 ∈ G. Then there exists y ∈ F such that a ∧ y ≤ 0,
which is equivalent to y ≤ a′. Therefore, a′ ∈ F , a contradiction.

(⇐) We have that F is a filter and it is not all of B since at least
one of a, a′ /∈ F for any a ∈ B, so assume that a filter G is such that
F ( G. This means that for at least one pair {a, a′}, both a and a′ are
in G. Then 0 = a ∧ a′ ∈ G, and so B = 0 ↑= G. Therefore, F is an
ultrafilter. �

Definition 1.5. A filter F is prime if for all a, b ∈ B, if a∨ b ∈ F ,
then a ∈ F or b ∈ F . Prime ideals are defined dually.

Corollary 1.6. A filter is prime iff it is an ultrafilter. Dually, an
ideal is prime iff it is a maximal ideal.

Proof. (⇒) Let F be a prime filter. Since for any a ∈ B, a∨ a′ =
1 ∈ F , then a ∈ F or a′ ∈ F . Then it follows by Theorem 1.4 that F
is an ultrafilter.

(⇐) Let F be an ultrafilter and assume that a ∨ b ∈ F . By The-
orem 1.4, (a ∨ b)′ = a′ ∧ b′ /∈ F . Since F is a filter, this implies that
a′ /∈ F , or b′ /∈ F and then using Theorem 1.4 again, we get that a ∈ F
or b ∈ F . �

Theorem 1.7. Let F be a filter on B and F 6= B. Then there
exists an ultrafilter U on B such that F ⊆ U .

Proof. Let S = {G ⊆ B : G is a filter on B, G 6= B and F ⊆ G}.
Clearly, S is nonempty as F ∈ S. If we can prove that S contains a
maximal element under the order ⊆, then this will also be a maximal
proper filter on B, i. e. an ultrafilter, containing F . We need to prove
that for any chain C ⊆ S of filters,

⋃
C is a filter in S and then Zorn’s

Lemma will finish the proof. Clearly, F ⊆
⋃
C and 0 /∈

⋃
C. Assume

a ∈
⋃
C and a ≤ b. Then a ∈ G ∈ C for some G, so since G is a filter,

b ∈ G ⊆
⋃
C. Hence, (

⋃
C) ↑=

⋃
C. Moreover, if a, b ∈

⋃
C then there

exist G,H ∈ C such that a ∈ G and b ∈ H. Since C is a chain, G ⊆ H
or H ⊆ G. In either case, a filter in C contains both a and b, so it
contains a ∧ b. Therefore, a ∧ b ∈

⋃
C, so

⋃
C is a filter, finishing our

proof. �

2. Two theorems of Model Theory

In this section we prove two basic and fundamental results of Model
Theory. Though they hold for arbitrary structures (or models), having
relations and operations in their language, we just prove them in case
of algebras. The more general results are proved analogously. First we
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define a construction used for building new algebras (structures) from
a class of algebras (structures) K which preserves more than just the
identities (atomic formulae) of K.

Definition 2.1. Let {Ai : i ∈ I} be a family of algebras and
A =

∏
i∈I

Ai. Then for a1, a2 ∈ A, we denote [[a1 = a2]] = {i ∈

I : a1(i) = a2(i)}. In general, if Φ(x1, . . . , xn) is a first-order for-
mula and a1, . . . , an ∈ A, then [[ΦA(a1, . . . , an)]] = {i ∈ I : Ai |=
ΦAi(a1(i), dots, an(i)}.

Definition 2.2. Let {Ai : i ∈ I} be a family of algebras, A =∏
i∈I

Ai and F a filter on P(I). θF ∈ Con A by (a1, a2) ∈ θF iff

[[a1 = a2]] ∈ F . We call the factor algebra A/θF a reduced product
of Ai (modulo F ). If F happens to be an ultrafilter, we call A/θF an
ultraproduct of Ai (modulo F ).

If K is a class of algebras, denote by PR(K) and PU(K) the classes
of all algebras which are isomorphic to reduced products and to ul-
traproducts of algebras in K, respectively. We abuse the terminology
slightly by saying F is a filter (ultrafilter) on I, meaning that it is a
filter (ultrafilter) on P(I). Also, sometimes we will write just F (where
F is a filter) instead of θF , when there is no possibility of confusion.
For example, we will write a/F ,

∏
i∈I

Ai/F and so on.

Theorem 2.3 ( Loś). Let {Ai : i ∈ I} be a family of algebras,
A =

∏
i∈I

Ai and let U be an ultrafilter on P(I). Then for all formulas

Φ(x1, . . . , xn) and a1, . . . , an ∈ A, A/U |= ΦA/U(a1/U, . . . , an/U) iff
[[ΦA(a1, . . . , an)]] ∈ U .

Proof. We prove this by an induction on the complexity of Φ.
Assume that Φ(x1, . . . , xn) is an identity p(x1, . . . , xn) ≈ q(x1, . . . , xn).
A/U |= pA/U(a1/U, . . . , an/U) ≈ qA/U(a1/U, . . . , an/U) iff (pA(a1, . . . ,
an), qA(a1, . . . , an)) ∈ θU iff [[pA(a1, . . . , an) = qA(a1, . . . , an)]] ∈ U . It
is sufficient to prove the induction step for connectives ∧ and ¬ and
for the quantifier ∀, as other connectives and the quantifier ∃ can be
expressed by some composition of these.

Let Φ(x1, . . . , xn) = Φ1(x1, . . . , xn) ∧ Φ2(x1, . . . , xn). Then A/U |=
ΦA/U(a1/U, . . . , an/U) iff A/U |= Φ

A/U
1 (a1/U, . . . , an/U) and A/U |=

Φ
A/U
2 (a1/U, . . . , an/U) iff (by inductive assumption) [[ΦA

1 (a1, . . . , an)]] ∈
U and [[ΦA

2 (a1, . . . , an)]] ∈ U iff (since U is a filter) [[ΦA
1 (a1, . . . , an)]] ∩

[[ΦA
2 (a1, . . . , an)]] = [[ΦA

1 (a1, . . . , an) ∧ ΦA
2 (a1, . . . , an)]] ∈ U .
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Let Φ(x1, . . . , xn) = ¬Ψ(x1, . . . , xn). Then A/U |= ΦA/U(a1/U, . . . ,
an/U) iff A/U 6|= ΨA/U(a1/U, . . . , an/U) iff [[ΨA(a1, . . . , an)]] /∈ U iff
(since U is an ultrafilter) [[ΦA(a1, . . . , an)]] ∈ U .

Let Φ(x1, . . . , xn) = (∀x)Ψ(x, x1, . . . , xn). Then A/U |= ΦA/U

(a1/U, . . . , an/U) iff for all a ∈ A, A/U |= ΨA/U(a/U, a1/U, . . . , an/U)
iff for all a ∈ A, [[ΨA(a, a1, . . . , an)]] ∈ U . This is clearly implied by
[[ΦA(a1, . . . , an)]] ∈ U , as [[ΦA(a1, . . . , an)]] ⊆ [[ΨA(a, a1, . . . , an)]] for all
a ∈ A. On the other hand, for each i ∈ I such that ΦAi(a1(i), . . . , an(i))
fails in Ai, pick a c(i) ∈ Ai such that ΨAi(c(i), a1(i), . . . , an(i)) fails in
Ai. Complete the other coordinates of c to a member of A in an arbi-
trary way, and we found an element c ∈ A such that [[ΨA(c, a1, . . . , an)]]
= [[ΦA(a1, . . . , an)]]. Therefore, if for all a ∈ A, [[ΨA(c, a1, . . . , an)]] ∈ U ,
then [[ΦA(a1, . . . , an)]] ∈ U . �

The following corollary is a most applicable consequence of Theo-
rem 2.3.

Corollary 2.4. If K is a class of algebras and Φ is a first-order
sentence, then K |= Φ implies PU(K) |= Φ.

Proof. Obvious. �

Note that in the above proof we used the property of being an ul-
trafilter only in closure under negation. If we wrote it out, we would
have had to use it also for closure under ∨ and ∃. So, any reduced
product would satisfy the statement of Theorem 2.3 for all formulae
Φ using only ∀ and ∧. Indeed, a slightly stronger result is not hard
to prove, that the reduced products preserve quasiidentities, or Horn

formulas, which are expressions of the form (
n∧
i=1

(εi))⇒ ε, where ε and

all εi are identities. We do not need this result, though, as quasiidenti-
ties are not a topic of this text, but we may mention that there exists
a significant body of results concerning classes of algebras which are
models of some set of quasiidentities, so-called quasivarieties, and that
Willard’s finite basis theorem has been successfully extended in their
setting by Maróti and McKenzie [17].

Definition 2.5. We call a class K of algebras (structures) an ele-
mentary class if there exists a set Σ of sentences such that K = Mod(Σ).
We say that K is a strictly elementary class if there exists a sentence
Φ such that K = Mod(Φ).

Note that varieties are strictly elementary classes, as we can con-
sider each identity as an universally closed atomic formula, while a
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finitely based variety is a strictly elementary class, since we can write
Φ to be the universal closure of conjunction of the basis equations.

Theorem 2.6 (Compactness Theorem). Let Σ be a set of first-
order sentences such that for every finite Σ0 ⊆ Σ there exists a model
of Σ0. Then there exists a model of Σ.

Proof. Let I be the set of all finite subsets of Σ and for each i ∈ I,
let Ai |= i. Let Ji = {j ∈ I : i ⊆ j}. Define F = {J ⊆ I : Ji ⊆ J} =⋃
i∈I
Ji ↑.

We wish to prove that F is a proper filter on I. Clearly, F ↑= F .
If J,K ∈ F , then there exist i, j ∈ I such that Ji ⊆ J and Jj ⊆ K.
Since Ji ∩ Jj = Ji∪j, then Ji∪j ⊆ J ∩K and JcapK /∈ J . Since i ∈ Ji
for all i ∈ I, then all Ji are nonempty, and every J ∈ F is therefore
also nonempty.

So, according to Theorem 1.7, there exists an ultrafilter U on I
such that F ⊆ U . Now, let A =

∏
i∈I

Ai/U . We claim that for all

Φ ∈ Σ, A |= Φ. Let Φ ∈ Σ be arbitrary and let {Φ} = i0 ∈ I. For all
j ∈ I such that i0 ⊆ j, Aj |= Φ (as Φ ∈ j). Therefore, Ji0 ⊆ [[Φ]], so
[[Φ]] ∈ F ⊆ U . Therefore, according to Theorem 2.3, A |= Φ. �

The following corollary is used so often that some authors call it
the Compactness Theorem. In a way it is justified, as it ’sounds’ more
like the topological notion of compactness.

Corollary 2.7. Let Σ be a set of sentences and Φ another sen-
tence. If Σ |= Φ, then for some finite Σ0 ⊆ Σ, Σ0 |= Φ.

Proof. Assume that for every finite Σ0 ⊆ Σ, Σ0 ∪ {¬Φ} has a
model. Then every finite Σ1 ⊆ (Σ ∪ {¬Φ}) has a model (any model
of Σ1 ∪ {¬Φ} is a model of Σ1). Therefore, according to Theorem 2.6,
Σ ∪ {¬Φ} has a model A, which contradicts Σ |= Φ. �

3. Definable principal congruences

Before proving Baker’s result, we take a short detour to prove an-
other finite basis result due to McKenzie in [19].

Definition 3.1. A principal congruence formula of similarity type
F is any formula π(x, y, u, v) which describes a Mal’cev chain implying

that (x, y) ∈ CgA(u, v) when π(x, y, u, v) holds in A. Formally, π is of
the form

(∃w)

(
x = p1(z1, w) ∧ y = pn(z′n, w) ∧

∧
1≤i≤n

pi(z
′
i, w) = pi+1(zi+1, w)

)
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where w = (w1, . . . , wk) is a tuple of variables, pi are terms in k + 1
variables and {zi, z′i} = {u, v} for all i, 1 ≤ i ≤ n.

Note that we avoid stating that we have to use different parameters
by enlarging the variable set over which pi are defined. We denote the
set of all principal congruence formulas of the similarity type F by Π.

Theorem 3.2. Let A be an F-algebra and a, b, c, d ∈ A. Then
(a, b) ∈ CgA(c, d) iff there exists π ∈ Π such that π(a, b, c, d) holds in
A.

Proof. This is the same theorem as Theorem III.3.8. �

Definition 3.3. A class of algebras K has definable principal con-
gruences if there exists a first-order formula φ(x, y, z, u) such that for

all A ∈ K and a, b, c, d ∈ a, A |= φ(a, b, c, d) iff (a, b) ∈ CgA(c, d).

Proposition 3.4. A variety V has definable principal congruences
iff there exists a finite Π0 ⊆ Π such that for all A ∈ V and a, b, c, d ∈ A,
(a, b) ∈ CgA(c, d) iff there exists π ∈ Π0 such that π(a, b, c, d) holds in
A.

Proof. The direction (⇐) is trivial, as we just take φ(x, y, z, u) to
be

∨
π∈Π0

π(x, y, z, u).

On the other hand, assume that V has definable principal con-
gruences realized by a first-order formula φ(x, y, z, u). Let F ′ be the
similarity type obtained from F (the similarity type of algebras in V)
by adding four new constant symbols a, b, c, d into the similarity type
F and let V ′ be the class of F ′-algebras defined by V ′ = {A : F -reduct
of A is in V}. In fact, for any system of identities Σ axiomatizing
V , it is also the equational base of V ′, just in the expanded similarity
type F ′. (Here by identities we mean the sentences which are uni-
versally quantified atomic formulas of equational logic. In this sense,
a set of identities which is an equational base of V axiomatizes V .)
Now take φ′ to be the F ′-sentence ¬φ(a, b, c, d) and let Π′ be the set
of F ′-sentences {¬π(a, b, c, d) : π(x, y, z, u) ∈ Π}. For any A ∈ V ′
such that A |= Π′, we know that (aA, bA) /∈ CgA(cA, dA). Therefore,
A |= φ′. By Corollary 2.7, there exists a finite Π0 ⊆ Π such that, where
π′0 =

∧
π(x,y,z,u)∈Π0

¬π(a, b, c, d),

Σ ∪ π′0 |= φ′.

Hence, by deduction theorem and taking the contrapositive,

Σ |= φ(a, b, c, d)⇒
∨

π(x,y,z,u)∈Π0

π(a, b, c, d).
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We claim that if A ∈ V and a′, b′, c′, d′ ∈ A, (a′, b′) ∈ CgA(c′, d′) iff
there exists π ∈ Π0 such that π(a′, b′, c′, d′) holds in A. The direction
(⇐) trivially holds. On the other hand, take B to be the F ′-algebra
obtained from A by interpreting aB = a′ and similarly for the other
three constants. Since (a′, b′) ∈ CgA(c′, d′), then B |= φ(a, b, c, d), and
also B |= Σ, since A ∈ V . Therefore, B |=

∨
π(x,y,z,u)∈Π0

π(a, b, c, d), and

this means that for some π(x, y, z, u) ∈ Π0, B |= π(a, b, c, d). This is
the same as saying that π(a′, b′, c′, d′) holds in A, as desired. �

Remark 3.1. Note that we didn’t really need to suppose that V
is a variety in the previous proof, just that it is an elementary class.
Moreover, note that we actually proved above that if V has definable
principal congruences, then for some finitely based variety V ′ such that
V ⊆ V ′, only finitely many principal congruence formulas are needed
to establish (a, b) ∈ CgA(c, d), for all A ∈ V ′ and a, b, c, d ∈ A.

Theorem 3.5 (McKenzie). Let V be a variety of finite similarity
type, having a finite residual bound and definable principal congruences.
Then V is finitely based.

Proof. Let Π0 = {π1, . . . , πn} be the finite set of principal congru-
ence formulas from Definition 3.1 which witness that V has definable
principal congruences, according to Lemma 3.4, and let Φ(x, y, u, v) =
π1(x, y, u, v)∨ . . .∨ πn(x, y, u, v). We can express by a sentence Ψ1 the
fact that the principal congruence generated by (u, v) consists precisely
of pairs (x, y) such that Φ(x, y, u, v). The idea is to write that for all
u, v, the binary relation induced by Φ(−,−, u, v) is a congruence con-
taining (u, v) (in other words, write that it is an equivalence relation
compatible with each of the finitely many operations in the similarity
type and containing the pair (u, v)). Since Φ(−,−, u, v) is always con-
tained in the congruence generated by (u, v), it must be equal to it.
Therefore, V |= Ψ1.

Then, since V has a finite residual bound and F is finite, V contains
only finitely many subdirectly irreducibles S1, . . . ,Sk, all of them finite.
So, express by a sentence Ψ2 the fact that the algebra is isomorphic to
one of Si.

Let Ψ3 = (∃x, y)[x 6= y ∧ (∀u, v)(u 6= v ⇒ Φ(x, y, u, v))]. Then
we claim that V |= Ψ3 ⇒ Ψ2. Indeed, if A ∈ V and A |= Ψ3, then
there exist a, b ∈ A such that a 6= b and they are in every congruence
generated by a pair of different elements c, d of A. So, CgA(a, b) is the
monolith and A is subdirectly irreducible. Therefore A |= Ψ2, as well.

Now, let Σ be the set of all identities of V on a countably infinite
set of variables. According to Theorem III.2.9, Σ axiomatizes V . Since
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V |= Ψ1∧ (Ψ3 ⇒ Ψ2), then Σ |= Ψ1∧ (Ψ3 ⇒ Ψ2). Therefore, according
to Corollary 2.7, there exists a finite set Σ0 ⊆ Σ such that Σ0 |=
Ψ1 ∧ (Ψ3 ⇒ Ψ2). We claim that V = Mod(Σ0).

Let A be any subdirectly irreducible algebra of the same similarity
type as F such that A |= Σ0. Then A |= Ψ1 ∧ (Ψ3 ⇒ Ψ2). Since
A |= Ψ1, we know that for all a, b, c, d ∈ A, Φ(a, b, c, d) is true in A iff

(a, b) ∈ CgA(c, d). Since A is subdirectly irreducible, it has a monolith
congruence µ and A |= Ψ2 with any pair of elements (a, b) ∈ µ \ 0A
taken as (x, y). Therefore, we get that A |= Ψ3, so A ∈ V .

We conclude that any F -algebra B such that B |= Σ0 is isomorphic
to a subdirect product of its subdirectly irreducible factors, which are
all in V . So, B ∈ V . �

4. Jónsson’s Lemma

Jónsson’s Lemma is one of the most often-used tools in the setting
of congruence distributive varieties. Before stating Jónsson’s Lemma,
we need to prove two easy results.

Lemma 4.1. Let {B1, . . . ,Bk} be a finite set of finite algebras in
finite language and let {Ai : i ∈ I} be a family of algebras such that
for all i ∈ I there exists some j, 1 ≤ j ≤ k, so that Ai

∼= Bj. Let
A =

∏
i∈I

Ai/U for some ultrafilter U on I. Then A ∼= Bj for some

1 ≤ j ≤ k.

Proof. For each finite algebra Bi we can find a sentence Φi such
that A |= Φi iff A ∼= Bi. Then make the sentence Ψj = Φ1∨Φ2∨. . .∨Φj,
for j ≤ k. Clearly, [[Ψk]] = I ∈ U . Let j be minimal such that
[[Ψj]] ∈ U . We want to prove [[Φj]] ∈ U , which would finish the proof,
according to Theorem2.3. If j = 1, then [[Φ1]] ∈ U , otherwise, from
[[Ψj]] = [[Ψj−1 ∨Φj]] = [[Ψj−1]]∪ [[Φj]] and Theorem 1.6 we get [[Φj]] ∈ U ,
since [[Ψj−1]] /∈ U . �

Lemma 4.2. Let W ⊆ P (I) be such that

(i) I ∈ W
(ii) W ↑=W

(iii) For all J,K ⊆ I, if J ∪K ∈ W, then J ∈ W or K ∈ W.

Then there exists an ultrafilter U ⊆ W.

Proof. If W = P (I), then any ultrafilter will satisfy the Lemma.
Otherwise, let I = P (I) \ W . Then I is an ideal on I and by the
dual of Theorem 1.7, there exists a maximal idealM⊆ P (I) such that
I ⊆M. Then U = P (I) \M is the desired ultrafilter. �
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Definition 4.3. An algebra A is finitely subdirectly irreducible if
0A is a ∧-irreducible element of Con A. The subclass of all finitely
subdirectly irreducible members of a class of algebras K is denoted by
KFSI .

The following theorem is a slightly strengthened version of the
Jónsson’s Lemma.

Theorem 4.4 (Jónsson’s Lemma). Let K be a class of algebras
such that V = V(K) is a congruence distributive variety. Then VSI ⊆
VFSI ⊆ HSPU(K). In particular, V = PSHSPU(K).

Proof. Let A ∈ VFSI . Therefore, there exist algebras Ai ∈ K,
i ∈ I, an algebra B ≤

∏
i∈I

Ai and a ∧-irreducible congruence θ ∈ Con B

such that A ∼= B/θ. For J ⊆ I, let πJ :
∏
i∈I

Ai →
∏
i∈J

Ai be the

projection homomorphism and αJ = {(a1, a2) ∈
∏
i∈I
Ai : [[a1 = a2]] ∈

J} = kerπJ . Denote by ηJ = αJ ∩B2.
Define W to be {J ⊆ I : ηJ ⊆ θ}. We desire to prove that W

contains an ultrafilter U on I. We know that I ∈ W , as αI is the
equality relation, so ηI = 0B ⊆ θ. Also, if J ⊆ K, then ηK ⊆ ηJ , so
W ↑=W . Finally, if J∪K ∈ W , then ηJ∪K ⊆ θ. Now, θJ∪K = θJ ∩θK ,
so ηJ∪K = θJ∪K∩B2 = (θJ∩B2)∩(θK∩B2) = ηJ∩ηK . Therefore, from
θ = θ∨ηJ∪K we get θ = θ∨(ηJ∧ηK) = (θ∨ηJ)∧(θ∨ηK) by congruence
distributivity. Since θ is ∧-irreducible, we get that θ = θ ∨ ηJ or
θ = θ ∨ ηK , so J ∈ W or K ∈ W . According to Lemma 4.2, we can
select an ultrafilter U on I such that U ⊆ W .

Now, (b1, b2) ∈ θU ∩B2 implies that for J = [[b1 = b2]], J ∈ U ⊆ W ,
so ηJ ⊆ θ and (b1, b2) ∈ θ. Therefore, A ∈ H(B/(θU ∩ B2)) and as
B/(θU ∩ B2) ⊆

∏
i∈I
/θU ∈ PU(K), the result follows. The last sentence

follows from Theorem III.1.6. �

Corollary 4.5. Let K be a finite class of finite algebras in a finite
language such that V = V(K) is a congruence distributive variety. Then
VSI ⊆ VFSI ⊆ HS(K).

Proof. By application of Lemma 4.1 to the conclsion of Jónsson’s
Lemma. �

5. Baker’s Theorem

“Though it lacks profundity, it is an interesting fact about finite
lattices that each has a finite base. In this section we establish that

fact.”



28 4. BAKER’S FINITE BASIS THEOREM

This is a quote from McKenzie’s paper [19]. The fact which ‘lacks
profundity’ was the starting point for all finite basis research in univer-
sal algebra in the following 35 years, and almost all results which were
proved were generalizations of it. The first one was Baker’s finite basis
theorem.

We assume throughout this section that V is a congruence distribu-
tive variety with Jónsson terms p0, p1, . . . , pn and that the language F
of V is finite. We need an easy corollary of Theorem III.3.12, which
gives, in fact, another equivalent condition for congruence distributivity
(we will not prove it in this text):

Lemma 5.1. There exist terms p1 . . . , pn−1 such that the following
hold in V:

(1) pi(x, u, x) ≈ pi(x, v, x) for all pi and
(2) If x 6= y then there exists an i, 0 < i < n, so that pi(x, x, y) 6=

pi(x, y, y).

Proof. We use the Jónsson terms with the same indices. (1) is an
immediate corollary of pi(x, y, x) ≈ x, while (2) is proved by assuming
the opposite: if for all i, 0 < i < n, pi(x, x, y) = pi(x, y, y), then
x = p1(x, x, y) = p1(x, y, y) = p2(x, y, y) = ... = y. �

We will denote by Φ1 the sentence

(∀x, u, v)

( ∧
0<i<n

pi(x, u, x) = pi(x, v, x)

)
∧

(∀x, y)

(
x 6= y ⇔

∨
0<i<n

pi(x, x, y) 6= pi(x, y, y)

)
.

We now also assume that the language F contains all pi, 0 < i < n,
as ternary operation symbols. This assumption is not necessary, but
it does make the proof easier to write. The reader can remove this
assumption and in the remainder of the section replace every word
’translation’ by ’unary polynomial which would have been a translation
if pi were basic operations’ and similarly with ’slender term’, ’linear
term’ and other such syntactic notions, and the proof would work just
fine. Alternatively, like in [6], one can add new ternary operation
symbols ti to the language of V and equations ti ≈ pi and prove that
if the new variety has a finite basis, then so does V .

Definition 5.2. A term is slender if it is a variable, or if there exist
a k-ary operation symbol f , a slender term p and variables x1, . . . , xk−1

such that t = f(x1, . . . , xi−1, p, xi, . . . , xk−1). A term is linear if there
is no variable with more than one occurrence in t.
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Definition 5.3. Let p(x) ∈ Pol1A be a polynomial. p(x) is a basic
translation of an algebra A if p(x) = fA(x, a1, . . . , ak) for some k + 1-
ary operation of the language. p(x) is a translation of A if p(x) =
(q1 ◦ · · · ◦ qm)(x), for some basic translations qi of A. The set of all
translations of A will be denoted by Tr A.

Remark 5.1. From Definition 5.3 it follows that p(x) ∈ Tr A
iff there exists a slender linear term t(x, y1, . . . , yk) such that p(x) =
tA(x, a1, . . . , ak) and the (only) occurrence of x in t is at the maximal
depth among variables of t. It is not hard to show that if a polynomial
p(x) = tA(x, a1, . . . , ak) and t is a linear term, we can find a slender
linear term t1 = (x, z1, . . . , zl) such that the only occurrence of x is at
maximal depth among the variables in t1 and p(x) = tA1 (x, b1, . . . , bl)
- just write t = t1(x, q1, . . . , ql), where qi(y1, . . . , yk) are subterms of t
and let bi = qAi (a1, . . . , ak).

Lemma 5.4. We can replace Pol1A by Tr A in the statement of
Theorem III.3.8.

Proof. We need to connect p(a) and p(b) with a chain of im-
ages of {a, b} under translations. First, we pick a term t(x, y1, . . . , yk)
such that p(x) = tA(x, a1, . . . , ak). Then let t`(x1, . . . , xr, z1, . . . , zm)
be the linear term with the same term tree as t such that t = α(t`)
in the term algebra T, where α is the substitution which maps all xi
to x while for all zi, α(zi) = yj(i). Now, for all i, 1 ≤ i ≤ m0, let

ci = tA` (a, . . . , a︸ ︷︷ ︸
i

, b, . . . , b︸ ︷︷ ︸
r−i

, aj(1), . . . , aj(m)). Now, a = c0, b = cr and

{ci−1, ci} = {qi(a), qi(b)}, where qi(xi) is the unary polynomial ob-
tained by substituting all variables of the linear term t` except for x`
as in the definition of ci (and ci−1). Now, according to Remark 5.1,
qi ∈ Tr A for all 1 ≤ i ≤ r. �

Lemma 5.5. Let A be any algebra of similarity type F satisfying
Φ1 and let a, b, c, d ∈ A. Then CgA(a, b) ∩ CgA(c, d) 6= 0A iff there
exist p, q ∈ Tr A and i, 0 < i < n such that pAi (p(a), q(c), p(b)) 6=
pA(p(a), q(d), p(b)).

Proof. (⇒) Let (e, f) ∈ CgA(a, b) ∩ CgA(c, d) and e 6= f . Then
according to Φ1, there exist j, 1 < j < n such that pAj (e, e, f) 6=
pAj (e, f, f). As (e, f) ∈ CgA(a, b), this implies that there exists p̂ ∈
Tr A such that e′ := pAj (e, p̂(a), f) 6= pAj (e, p̂(b), f) =:f ′, by Lemma 5.4.

Notice that (e′, f ′) ∈ CgA(e, f), since (pAj (e, p̂(a), f), pAj (e, p̂(a), e)) ∈
CgA(e, f), then pAj (e, p̂(a), e) = pAj (e, p̂(b), e), according to Φ1, and
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(pAj (e, p̂(b), e), pAj (e, p̂(b), f)) ∈ CgA(e, f). Therefore, as e′ 6= f ′ and

(e′, f ′) ∈ CgA(e, f) ⊆ CgA(c, d), we can repeat the argument from
the beginning of this proof with c, d, e′, f ′ replacing a, b, e, f , respec-
tively. We get that there exists q(x) ∈ Tr A and i, 0 < i < n so
that pAi (e′, q(c), f ′) 6= pAi (e′, q(d), f ′). Define p(x) = pAj (e, p̂(x), f), so
p(x) ∈ Tr A, e′ = p(a) and f ′ = p(b). This completes the proof of (⇒).

(⇐) According to Φ1, (pAi (p(a), q(c), p(b)), pAi (p(a), q(d), p(b))) ∈
CgA(a, b), similarly as in the previous paragraph. Obviously, we always

have (pAi (p(a), q(c), p(b)), pAi (p(a), q(d), p(b))) ∈ CgA(c, d). Therefore,

since pAi (p(a), q(c), p(b)) 6= pAi (p(a), q(d), p(b)), CgA(a, b)∩CgA(c, d) 6=
0A follows. �

We define for m ∈ ω the set T ∗m ⊆ T ({x, y1, y2, . . . , ym(r−1)}) of F -
terms, where r is the maximal arity of an operation symbol in F to be
all slender and linear F -terms t in variables {x, y1, y2, . . . , ym(r−1)} such
that the depth of any occurrence of a variable in t is at most m and
the occurrence of x is at the maximal depth in t among the variables
occurring in t. For all m ∈ ω, T ∗m is finite,

Definition 5.6. Let δm(x, y, u, v) be the first-order formula∨
0<i<n
p,q∈T ∗m

(∃z, w)pi(p(x, z), q(u,w), p(y, z)) 6= pi(p(x, z), q(v, w), p(y, z)).

Lemma 5.7. Let A be any algebra of similarity type F satisfying
Φ1 and let a, b, c, d ∈ A. Then CgA(a, b) ∩ CgA(c, d) 6= 0A iff there
exist m ∈ ω such that A |= δm(a, b, c, d).

Proof. Since each p(x) ∈ Tr A can be obtained from some term
t ∈ T ∗m for some m ∈ ω by evaluation of all variables except x, according
to Remark 5.1, this is just a restatement of Lemma 5.5. �

Definition 5.8. Let γm be the sentence (∀x, y, u, v)(δm+1(x, y, u, v)
⇒ δm(x, y, u, v)).

Lemma 5.9. Let A be any algebra of similarity type F . Then A |=
γm implies A |= γm+1. Also if A |= γm and for a, b, c, d ∈ A and k ∈ ω,
δk(a, b, c, d) holds in A, then δm(a, b, c, d) holds in A.

Proof. Assume that A |= γm and that for some a, b, c, d ∈ A,
δm+2(a, b, c, d) holds. Then let the terms p, q ∈ T ∗m+2 witnessing δm+2

be such that p = p′(f(yi1 , . . . , yil−1
, x, yil , . . . , yik−1

), y1, . . . , y(m+1)(r−1)),
q = q′(g(yi′1 , . . . , yi′j′−1

, x, yi′
j′
, . . . , yi′

r′−1
), y1, . . . , y(m+1)(r−1)) for some f,

g ∈ F , {i1, . . . , ik−1}, {i′1, . . . , i′k′−1} ⊆ {y(m+1)(r−1)+1, . . . , y(m+2)(r−1)}
and p′, q′ ∈ T ∗m+1. We know that pAi (pA(a, z), qA(c, w), pA(b, z)) 6=
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pAi (pA(a, z), qA(d, w), pA(b, z)) for some z, w ∈ A(m+2)(r−1). Let a′ =
fA(zi1 , . . . , zil−1

, a, zil , . . . , zik−1
), b′ = fA(zi1 , . . . , zil−1

, b, zil , . . . , zik−1
),

c′ = gA(wi′1 , . . . , wi′j′−1
, c, wi′

j′
, . . . , wi′

r′−1
) and d′ = gA(wi′1 , . . . , wi′j′−1

, d,

wi′
j′
, . . . , wi′

r′−1
). Then δm+1(a′, b′, c′, d′) holds in A, so since A |= γm,

δm(a′, b′, c′, d′) holds in A. By returning the substitutions for a′, b′, c′, d′

we get that δm+1(a, b, c, d) holds in A
We see that the tautology p⇒ p∨q implies (∀x, y, z, u) δk(x, y, z, u)

⇒ δm(x, y, z, u) whenever k ≤ m. If k > m, according to the first part
of this Lemma, from A |= γm we get A |= γi for all i > m. Therefore, if
δk(a, b, c, d) holds in A, then γk−1, γk−2, . . . , γm imply that δm(a, b, c, d)
holds in A. �

Lemma 5.10. If VFSI is a strictly elementary class, then there exists
n0 ∈ ω such that

(1) VFSI |= (∀x, y, u, v)(x 6= y ∧ u 6= v)⇒ δn0(x, y, u, v)
(2) V |= γn0

(3) If Φ2 is the formula axiomatizing VFSI and Φ3 = (∀x, y, u, v)
(x 6= y ∧ u 6= v)⇒ δn0(x, y, u, v), then V |= Φ3 ⇒ Φ2.

Proof. (1) : Let F∗ be the similarity type F ∪ {a, b, c, d} where
a, b, c and d are new constant symbols. Let Φ2 be the F -sentence such
that Mod(Φ2) = VFSI . Let φm be the F∗-sentence Φ2 ∧ a 6= b ∧ c 6=
d ∧ ¬δm(a, b, c, d). We claim that the set of sentences {φm : m ∈ ω}
has no model.

Indeed, for an F∗-algebra A∗, A∗ |= Φ2 means that the F -reduct of
A∗, A ∈ VFSI . As congruence generation is completely independent of
having some constant symbols in the similarity type, from A∗ |= a 6=
b∧ c 6= d we get that CgA∗(a, b)∩CgA∗(c, d) > 0A∗ (we denote aA

∗
by

a and so on, for the sake of brevity). Since A ∈ V , A∗ |= Φ1, according
to Lemma 5.1 (as Φ1 is an universal sentence, adding new constants
can’t make it untrue), so for some m, δm(a, b, c, d) holds in A, and that
is the same m for which φm must fail in A∗.

Therefore, according to Compactness theorem, there is a finite sub-
set of S ⊆ {φm : m ∈ ω} such that no F∗-algebra is a model of S.
We may as well assume that S = {φm : m ≤ n0} and by taking con-
junctions, we get that Φ2 ∧ a 6= b ∧ c 6= d ∧

∧
m≤n0

¬δm(a, b, c, d) has

no model. As ¬δn0(a, b, c, d) ⇒ ¬δm(a, b, c, d) for all m ≤ n0, we get
that Φ2 ∧ a 6= b ∧ c 6= d ∧ ¬δn0(a, b, c, d) has no model among F∗-
algebras. Therefore, for any F -algebra A such that A |= Φ2, it holds
that A |= (x 6= y ∧ u 6= v) ⇒ δn0(x, y, u, v), otherwise the F∗-algebra
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obtained from A by evaluating a, b, c, d as values of x, y, u, v which fal-
sify the implication would be a model for Φ2 (as the sentence Φ2 is a
F -sentence true in A) and also for a 6= b∧ c 6= b∧¬δn0(a, b, c, d), which
is impossible. This proves the first claim in the Lemma statement.

(2) : For the second claim, we need to prove first that VFSI |= γn0 .
So, let A ∈ VFSI and a, b, c, d ∈ A are such that δn0+1(a, b, c, d) holds
in A. According to Lemma 5.1, this means that a 6= b and c 6= d (the
second is trivially true). From the first part of this Lemma, it implies
that δn0(a, b, c, d) holds in A, so we have VFSI |= γn0 .

Now assume that A ∈ V . We can assume that A ≤
∏
i∈I

Ai is a

subdirect product, for some Ai ∈ VSI ⊆ VFSI , according to Theo-
rem III.1.6. Let a,b, c,d ∈ A be such that δn0+1(a,b, c,d) holds in A.
Therefore, for some j, 0 < j < n, p, q ∈ T ∗n0+1 and e, f ∈ A(n0+1)(r−1),

pAj (pA(a, e), qA(c, f), pA(b, e)) 6= pAi (pA(a, e), qA(d, f), pA(b, e)). So,

for some i ∈ I, pAi
j (pAi(a(i), e(i)), qAi(c(i), f(i)), pAi(b(i), e(i))) 6=

pAi
j (pAi(a(i), e(i)), qAi(d(i), f(i)), pAi(b(i), e(i))). Therefore, Ai satis-

fies δn0+1(a(i),b(i), c(i),d(i)), and as Ai |= γn0 , since Ai ∈ VFSI , then
δn0(a(i),b(i), c(i),d(i)) also holds in Ai.

Therefore, there exist pj′ , 0 < j′ < n, p′, q′ ∈ T ∗n0
, e′f

′ ∈ An0(r−1)
i

such that they witness δn0(a(i),b(i), c(i),d(i)). We can pick the tuples

e′, f
′ ∈ An0(r−1) so that e′s(i) = es and f ′r = f ′r for all s, r, since A is

subdirect. Now pj′ , p
′, q′, e′mf

′ ∈ An0(r−1)
i will witness δn0(a,b, c,d),

since the appropriate expressions will evaluate differently at least at
the ith coordinate.

(3) : If A ∈ V is such that A |= Φ3, that means that for all
a, b, c, d ∈ A, if a 6= b and c 6= d, then (according to Lemma 5.7)

CgA(a, b)∩CgA(c, d) 6= 0A. Therefore, A is a finitely subdirectly irre-
ducible algebra, so A |= Φ2. �

Theorem 5.11. Let V be a congruence distributive variety in a
finite similarity type, and let VFSI be a strictly elementary class. Then
V is finitely based.

Proof. Let as fix n0 as in Lemma 5.10 and let Σ be the set of
identities of V on a countably infinite set of variables. According to
Theorem III.2.9, Σ axiomatizes V . According to Lemmas 5.1 and 5.10,
V |= γn0 ∧ Φ1 ∧ (Φ3 ⇒ Φ2). Therefore, Σ |= γn0 ∧ Φ1 ∧ (Φ3 ⇒ Φ2) and
we know by Corollary 2.7 that there exists a finite set Σ0 ⊆ Σ such
that Σ0 |= γn0 ∧ Φ1 ∧ (Φ3 ⇒ Φ2). We claim that V = Mod(Σ0).

So, let A be any finitely subdirectly irreducible F -algebra such that
A |= Σ0. We know that A |= Φ1, A |= γn0 and A |= Φ3 ⇒ Φ2. Pick
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any a, b, c, d ∈ A with a 6= b and c 6= d. As A is finitely subdirectly
irreducible, CgA(a, b) ∩ CgA(c, d) 6= 0A. Since A |= Φ1, we can apply
Lemma 5.7 to get that δm(a, b, c, d) holds in A for some m. According
to Lemma 5.9, since A |= γn0 , δn0(a, b, c, d).

We have just proved that A |= Φ3, so since A |= Φ3 ⇒ Φ2, A |= Φ2

and therefore A ∈ VFSI . Therefore, any F -algebra B such that B |=
Σ0 is isomorphic to a subdirect product of its subdirectly irreducible
factors, which are all in V . So, B ∈ V . �

Corollary 5.12 (Baker’s Theorem). Let V be a finitely generated
congruence distributive variety in a finite similarity type. Then V is
finitely based.

Proof. Let V = V({A1, . . . ,Ak}), such that all Ai are finite. Ac-
cording to Corollary 4.5, VFSI ⊆ HS({A1, . . . ,Ak}). As there are only
finitely many isomorphism types among HS(A1, . . . ,Ak), all of which
are finite, and since the similarity type F is finite, there is a sentence
axiomatizing VFSI (it is the disjunction of sentences axiomatizing each
class of the form I({A}), where A is a finitely subdirectly irreducible
factor of a subalgebra of one of Bi). Therefore, VFSI is a strictly ele-
mentary class and Theorem IV.5.11 implies that V is finitely based, �





CHAPTER 5

Willard’s finite basis theorem

In this Chapter we prove the Willard’s Finite Basis Theorem. In
the course of the proof, we first develop the Mal’cev characterization
of congruence meet-semidistributivity, though we need only one of its
consequences for the proof of Willard’s Theorem. We base our descrip-
tion of Willard terms on the one in [2], rather than on [38] (it is easy
to see that the difference is only in notation), as we feel that this is a
more intuitive description than the one given by Willard in [38]. On
the other hand, we prefer to give an exposition of Willard’s original re-
sult than the stronger theorem proved in [2], as we feel that Willard’s
proof is prettier.

1. Prerequisites

Here we prove a few results of independent interest which will be
useful in main proof of Willard’s Theorem.

Proposition 1.1. Let V be a variety in a finite similarity type
F . V is not finitely based iff for all k ∈ ω, there exists a subdirectly
irreducible algebra Ak /∈ V which satisfies all identities p ≈ q true in V
such that the lengths of terms p and q is at most k.

Proof. If V is finitely based, there is a maximal length of terms k
among all terms used in the identities which form a finite basis, so Ak

can’t exist. On the other hand, assume that V is not finitely based.
Let us fix k ∈ ω and denote the set of F -terms in a countably infinite
set of variables X with length at most k by T(k)(X). Let n be the
maximal arity of a fundamental operation in F . Where m = 2nk, we
easily see that any identity p ≈ q in (T(k)(X))2 has at most m variables
occurring in it. So, p ≈ q is equivalent to the identity p′ ≈ q′ obtained
from p ≈ q by injectively mapping all variables occurring in p ≈ q to
{x1, x1, . . . , xm}. Therefore, all identities p ≈ q true in V such that
p, q ∈ T(k)(X) are deductive consequences of identities p ≈ q true in V
such that p, q ∈ T(k)({x1, x1, . . . , xm}). Now, T(k)({x1, x1, . . . , xm}) is
a finite set of terms, so V is not axiomatized by identities of V which
use terms of length at most k. This means that there must exist an

35
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algebra Bk /∈ V which satisfies all identities of V with lengths of terms
at most k. According to the Subdirect Representation Theorem, Bk is
subdirect product of its subdirectly irreducible factor algebras, so (as
V is closed under SP), one of these, Ak is not in V . This finishes the
proof, since Ak satisfies all the identities Bk does. �

Theorem 1.2 (Jónsson’s Finite Basis Theorem). Let V be a variety
of finite similarity type and let V ⊆ H, where H is a strictly elementary
class. Let there exist an elementary class K such that HSI ⊆ K and
such that V ∩ K is strictly elementary. Then V is finitely based.

Proof. We assume that V is not finitely based. According to
Proposition 1.1, there exist algebras Ak /∈ V which satisfy all identities
of V with lengths of terms at most k. Let H = Mod(ψ) for some
sentence ψ and let Σ be a set of identities axiomatizing V . Since V ⊆ H,
we get that Σ |= ψ. According to Corollary IV.2.7, there exists a finite
set of identities Σ0 ⊆ Σ such that Σ0 |= ψ. Let n be the maximal depth
of terms used in identities in Σ0. Now, according to Proposition 1.1,
there exist subdirectly irreducible algebras Ak, k ∈ ω such that Ak /∈ V ,
but Ak satisfies all identities of V with lengths of terms at most k. Let
A = (

∏
k∈ω

Ak)/U , where U is a nonprincipal ultrafilter on ω. Clearly,

for each identity in Σ, almost all Ak satisfy it, so A ∈ V . Also, for all
k ≥ n, Ak ∈ H, and since all Ak are subdirectly irreducible, Ak ∈ K
for k ≥ n. Therefore, each of the sentences axiomatizing K is true in
all Ak such that k ≥ n, so A ∈ K. As A ∈ K ∩ V = Mod(φ) for some
sentence φ, then [[φ]] ∈ U . But that is impossible, since Ak 6|= φ for all
k ∈ ω, so [[φ]] = ∅. Contradiction. �

The following Lemma and Theorem are probably folklore.

Lemma 1.3. Let V be a variety with a finite residual bound n. Then
VFSI = VSI .

Proof. Assume that there is an algebra A ∈ VFSI \ VSI . As the
two notions coincide in case of finite algebras, A must be infinite. Let
{a0, a1, . . . , an} ⊆ A be an n + 1-element set. Since A is finitely sub-

directly irreducible, we have θ =
⋂
i 6=j

CgA(ai, aj) > 0A, so we can select

b 6= c such that (b, c) ∈ θ. Using Zorn’s Lemma it is easy to prove that
there is a maximal congruence in Con A which does not contain (b, c).
Indeed, we have already done this during our proof of Theorem III.1.4,
if we just recall that Con A is an algebraic lattice and that CgA(b, c)
is a compact element of it. Let ηb,c be a maximal congruence in Con A
not containing (b, c). Then ηb,c is a strictly ∧-irreducible element of
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Con A (this is also already seen in the proof of Theorem III.1.4) and if

i 6= j, since (b, c) ∈ CgA(ai, aj), then (ai, aj) /∈ ηb,c. Therefore, A/ηb,c
is a subdirectly irreducible algebra and |A/ηb,c| ≥ n + 1. Contradic-
tion. �

Theorem 1.4. Let V be a variety of a finite signature with a finite
residual bound n. Let H be a strictly elementary class such that V ⊆
H and for which there exists a formula M(x, y, z, u) with four free
variables such that whenever A ∈ H and a, b, c, d ∈ A, M(a, b, c, d)

is true in A iff CgA(a, b) ∩ CgA(c, d) 6= ∅. Then V is finitely based.

Proof. Let ψ be the sentence axiomatizing H and let φ be the
sentence ’A is isomorphic to one of subdirectly irreducible members
of V ’. The second sentence is possible since there are only finitely
many isomorphism types in VFSI , all of them finite. Let H0 be the
strictly elementary class axiomatized by ψ ∧ [(∀x, y, z, u)(x 6= y ∧ z 6=
u ⇒ M(x, y, z, u)) ⇒ φ]. Clearly, H0 = (H \ HFSI) ∪ VSI . Let K
be the strictly elementary class axiomatized by φ. Now, V ⊆ H0 by
Lemma 1.3, K = K ∩ V contains precisely all subdirectly irreducible
algebras inH0, soH0,K and V satisfy the conditions of Jónsson’s Finite
Basis Theorem, so V is finitely based. �

Finally, we need the following well-known combinatorial fact:

Theorem 1.5 (Ramsey). Let G = (V,E) be a graph (undirected,
without loops or multiple edges) and let |V | =

(
m+n
n

)
(where m,n > 0).

Then G contains a clique (induced subgraph which is a complete graph)
of size m+ 1, or an anticlique (induced subgraph with no edges) of size
n+ 1.

Proof. By induction on m + n. If m + n = 2 this is true, as any
graph of 2 vertices is either a 2-clique, or a 2-anticlique. Let the theorem
hold for m+ n < k and assume m+ n = k. We may also assume that
m ≥ n because of symmetricity of our statement (we may exchange
words ’clique’ and ’anticlique’) and because

(
m+n
m

)
=
(
m+n
n

)
. If n = 1,

the statement is true for all m, as the graph on m+ 1 vertices is either
complete (so contains a m + 1-clique), or contains a 2-anticlique. So,

let 1 < n ≤ m. Then
(
m+n
n

)
=
(

(m−1)+n
n

)
+
(
m+(n−1)
n−1

)
. Select any vertex

v ∈ V . By Pigeonhole Principle, v either has
(

(m−1)+n
n

)
neighbors, or

it has
(
m+(n−1)
n−1

)
non-neighbors. Say v has

(
(m−1)+n

n

)
neighbors, as the

other case is analogous. In the induced subgraph on neighbors of V ,
by inductive assumption, there either exists a m-clique, which together
with v forms a desired m + 1-clique in G, or there exists an n + 1-
anticlique, which already satisfies the requirements of the Theorem. �
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2. Characterization of congruence meet-semidistributivity

Definition 2.1. A lattice is meet-semidistributive if it satisfies
the following implication: x ∧ y = x ∧ z ⇒ x ∧ y = x ∧ (y ∨ z).
Lattices satisfying the dual property are called join-semidistributive
and lattices satisfying both implications are just called semidistribu-
tive. Any variety V such that for all A ∈ V , the lattice Con A
is meet-semidistributive (join-semidistributive) is called a congruence
meet-semidistributive (congruence join-semidistributive) variety.

Lemma 2.2. Let α, β, γ ∈ Con A. Define two sequences of con-
gruences {βn : n ∈ ω} and {γn : n ∈ ω} inductively by β0 = β,
βn+1 = β ∨ (α ∧ γn), γ0 = γ and γn+1 = γ ∨ (α ∧ βn). Then the
following hold.

(1) For all i ∈ ω, βi ⊆ βi+1 and γi ⊆ γi+1.
(2) Define β∞ =

⋃
i∈ω

βi and γ∞ =
⋃
i∈ω

γi, then β∞, γ∞ ∈ Con A.

(3) α ∧ β∞ = α ∧ γ∞ and if β′, γ′ ∈ Con A are such that β ⊆ β′,
γ ⊆ γ′ and α ∧ β′ = α ∧ γ′, then β∞ ⊆ β′ and γ∞ ⊆ γ′.

Proof. We prove (1) inductively. Clearly, β0 = β ⊆ β ∨ (α∧ γ) =
β1 and γ0 = γ ⊆ γ ∨ (α ∧ β) = γ1. Assume that βk ⊆ βk+1 and
γk ⊆ γk+1. Then βk+1 = β ∨ (α ∧ γk) ⊆ β ∨ (α ∧ γk+1) = βk+2 and
analogously γk+1 ⊆ γk+2. This immediately implies (2), as union of a
chain of congruences is always a congruence.

Assume that (a, b) ∈ α ∧ β∞. Then (a, b) ∈ α and for some n ∈ ω,
(a, b) ∈ βn. Therefore, (a, b) ∈ α ∧ βn ⊆ γ ∨ (α ∧ βn) = γn+1, so
(a, b) ∈ α ∧ γn+1 ⊆ α ∧ γ∞. α ∧ γ∞ ⊆ α ∧ β∞ is proved analogously.
finally, assume that β ⊆ β′, γ ⊆ γ′ and α∧ β′ = α∧ γ′. Then we prove
inductively that for all n, βn ⊆ β′ and γn ⊆ γ′. The base case n = 0 is
given. If γk ⊆ γ′ then βk+1 = β∨(α∧γk) ⊆ β′∨(α∧γ′) = β′∨(α∧β′) =
β′. The implication βk ⊆ β′ ⇒ γk+1 ⊆ γ′ is analogous. �

Let Σ = {), (} and let P ⊆ Σ∗ be the set of finite words on the
alphabet Σ defined by P = {w ∈ Σ∗ : n((w) = n)(w) and for all u, v
such that w = uv, |u| > 0 and |v| > 0, n((u) > n)(u)}, where n((w)
denotes the number of letters ’(’ in w, n)(w) denotes the number of
letters ’)’ in w and |w| is the length of the word w. An equivalent
way to describe P is to say that it is the smallest set of words over Σ
satisfying that () ∈ P and if u1, u2, . . . , un ∈ P , then (u1u2 . . . un) ∈ P .
We will call words in P the parenthesis terms. The reader may have
seen a different definition of parenthesis terms, one where n ≤ 2 or
n = 2 is assumed in the above situation, so we urge the reader not to
confuse it with our more general definition. It is easy to prove that if
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w = w1w2 . . . w2n is a parenthesis term, where wi ∈ Σ, for each k such
that wk = ( there exists a unique l > k such that wkwk+1 . . . wl ∈ P
(therefore wl =), as is easy to see). Define for a parenthesis term w
a function ∗ : {1, . . . , |w|} → {1, . . . , |w|} so that k∗ = l and l∗ = k,
where k, l are as above.

Definition 2.3. Let w = w1w2 . . . w2n ∈ P be a parenthesis term,
where wi ∈ Σ. The sequence s1, s2, . . . , s2n of ternary terms will be
called Willard terms parametrized by w in some variety V if the follow-
ing equations hold in V :

s1(x, y, z) ≈ x,(1)

s2n(x, y, z) ≈ z,(2)

si(x, x, y) ≈ si+1(x, x, y) when i is odd,(3)

si(x, y, y) ≈ si+1(x, y, y) when i is even,(4)

si(x, y, x) ≈ sj(x, y, x) when j = i∗.(5)

Theorem 2.4. The following are equivalent for a variety V:

(1) V is congruence meet-semidistributive.
(2) For all A ∈ V and α, β, γ ∈ Con A, α ∧ (β ◦ γ) ⊆ β∞.
(3) There exists a parenthesis term w ∈ P such that V has Willard

terms parametrized by w.
(4) There exist a parenthesis term w ∈ P and ternary terms

s1, . . . , s|w| such that the equations si(x, y, x) ≈ si∗(x, y, x) are
satisfied in V for all i ≤ |w|, and for any algebra A ∈ V and
any elements a, b ∈ A,

a = b iff [(∀i ≤ |w|)(si(a, a, b) = si∗(a, a, b) iff si(a, b, b) = si∗(a, b, b))].

(5) for any algebra A ∈ V and any finite sequence a0, a1, . . . , an
of elements of A such that a0 6= an there exists an i < n such
that CgA(a0, an) ∩ CgA(ai, ai+1) 6= 0A.

Proof. (1) ⇒ (2). Let A ∈ V and α, β, γ ∈ Con A. Then α ∧
(β ◦ γ) ⊆ α ∧ (β∞ ∨ γ∞) = α ∧ β∞ ⊆ β∞ according to Lemma 2.2 and
meet-semidistributivity of Con A.

(2)⇒ (3). For w ∈ P , we define alternative Willard terms paramet-
rized by w to be terms satisfying similar equations as Willard terms
parametrized by w, except for the switch of equations (3) and (4) in
Definition 2.3, so equation (3) holds when i is even and equation (4)
holds when i is odd.

Now, assume that (2) holds in V and let F = FV(x, y, z), α =

CgF(x, z), β = CgF(x, z) and γ = CgF(y, z). According to (2), (x, z) ∈
α∧(β◦γ) ⊆ β∞, so for some n ∈ ω, (x, z) ∈ α∧βn. In order to simplify
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notation, we denote elements on F by ternary terms, though we are
aware that they are just representatives of the equivalence blocks of
ΘV({x, y, z}) which contain them. We prove inductively the following
claim:

Claim. If for some k ∈ ω and p, q ∈ F , (p, q) ∈ α ∧ βk, then
there exists a parenthesis term w = w1w2 . . . w2m and terms p =
s1, s2, . . . , s2m = q which satisfy equations (3)-(5) of the definition of
Willard terms parametrized by w. If (p, q) ∈ α ∧ γk, then there exists
a parenthesis term w = w1w2 . . . w2m and terms p = s1, s2, . . . , s2m = q
which satisfy equations (3)-(5) of the definition of alternative Willard
terms parametrized by w.

The base case when k = 0 is clear as then we have (p, q) ∈ α ∧ β
and alternatively (p, q) ∈ α∧ γ, which both mean that the parenthesis
term w = () paramentrizes the sequence p = s1, s2 = q, according to
Lemma III.3.13. Assume that both statements are true for k and let
(p, q) ∈ α ∧ βk+1. Since βk+1 = β ∨ (α ∧ γk), there exists a sequence
of ternary terms p = p1, p2, . . . , p2l = q such that (pi, pi+1) ∈ β for
even i and (pi, pi+1) ∈ α ∧ γk for odd i. The inductive assumption
guarantees us sequences of alternative Willard terms between pi and
pi+1 for all even i, so by defining s1 = p1 = p, s2, . . . , s2n−1 is the
concatenation of these sequences of alternative Willard terms (taking
first the sequence between p2 and p3, and so on) and s2n = p2l = q. We
let w = (v1v2 . . . vl−1), where vi parametrizes the alternative Willard
sequence between p2i and p2i+1. We get that the desired equations
(3) and (4) hold since the adjacent members are either adjacent in
the alternative Willard sequence, or are equal to pi, pi+1 for odd i and
therefore β-related. Also, si and si∗ are either corresponding under ∗

in one of vi, and then (5) holds by inductive assumption, or {si, si∗} =
{s1, s2n} = {p, q}, in which case the equation p(x, y, x) ≈ q(x, y, x)
follows from (p, q) ∈ α and Lemma III.3.13. The inductive step in the
case when (p, q) ∈ α ∧ γk+1 is analogous.

The Claim applied to p = x and q = z proves the existence of
Willard terms.

(3)⇒ (4). We use the same Willard terms and parametrization as
above. Therefore, the equations si(x, y, x) ≈ si∗(x, y, x) follow from (5).
Also, it follows from (5) that if a = b then si(a, a, b) = si∗(a, a, b) and
si(a, b, b) = si∗(a, b, b) for all i. So assume that si(a, a, b) = si∗(a, a, b)
iff si(a, b, b) = si∗(a, b, b) for all i. We prove by induction on |i − i∗|
that si(a, a, b) = si∗(a, a, b) and si(a, b, b) = si∗(a, b, b).

If |i− i∗| = 1, this is clear, since one of these equations follows from
either (3) or (4) and the other is true since our assumption states that
either both hold, or both fail. Let i < i∗ and the sequence i1, i2, . . . , il
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be such that i1 = i + 1, i∗j + 1 = ij+1 and i∗l + 1 = i∗ (this sequence
is constructed from the parenthesis term (u1u2 . . . ul) parametrizing
the subsequence of sj between si and si∗). Now, if i is odd, then so
are all i∗j , while i∗ and all ij are even. The identities (3) for Willard
terms implies that si(a, a, b) = si1(a, a, b), si∗j (a, a, b) = sij+1

(a, a, b)

for all j < l and si∗l (a, a, b) = si∗(a, a, b), while the inductive hypoth-
esis implies that si∗j (a, a, b) = si∗j (a, a, b) for all j ≤ l, so by tran-

sitivity we get si(a, a, b) = si∗(a, a, b). Then si(a, b, b) = si∗(a, b, b)
must also hold by the assumption. If i is even, the proof is analogous,
except that we would use identities (4) for Willard terms and induc-
tive hypothesis to prove that si(a, b, b) = si∗(a, b, b) and then obtain
si(a, a, b) = si∗(a, a, b) from the assumption.

Finally, we apply the proved equality to i = 1. a = s1(a, a, b) =
s1∗(a, a, b) = s2n(a, a, b) = b, as desired.

(4) ⇒ (5). Assume now that V is a variety satisfying (4), A ∈ V ,
a0, a1, . . . , an ∈ A and a0 6= an. By the second condition in (4), we may
assume that there exists si such that si(a0, a0, an) = si∗(a0, a0, an),
while si(a0, an, an) 6= si∗(a0, an, an) (the other case is analogous). Let
j be such that si(a0, aj, an) = si∗(a0, aj, an), while si(a0, aj+1, an) 6=
si∗(a0, aj+1, an). Denote by a = si(a0, aj+1, an), b = si∗(a0, aj+1, an),
c = si(a0, aj, an) and d = si(a0, aj+1, a0) and define unary polynomials

f1(x) = si(a0, x, an)

f2(x) = si∗(a0, x, an)

g1(x) = si(a0, aj+1, x)

g2(x) = si∗(a0, aj+1, x).

Applying the first two polynomials on {aj, aj+1} we get f1({aj, aj+1}) =
{c, a} and f2({aj, aj+1}) = {c, b}, as si(a0, aj, an) = si∗(a0, aj, an), so

(a, b) ∈ CgA(aj, aj+1). Also, applying the other two polynomials on
{a0, an} we get g1({a0, an}) = {d, a} and g2({a0, an}) = {d, b}, as

si(a0, aj+1, a0) = si∗(a0, aj+1, a0), so (a, b) ∈ CgA(a0, an). Finally, note

that a 6= b, by our choice of j, so CgA(a0, an) ∩ CgA(ai, ai+1) 6= 0A.
(5) ⇒ (1). Let V be a variety satisfying (5), A ∈ V and α, β, γ ∈

Con A. We only need to prove meet-semidistributivity in the case when
α ∧ β = α ∧ γ = 0A, according to the Correspondence Theorem. By
the way of contradiction, assume that a 6= b and (a, b) ∈ α ∧ (β ∨ γ).
Then (a, b) ∈ α and there is a chain a = a0, a1, . . . , an = b such that
(ai, ai+1) ∈ β for even i, while (ai, ai+1) ∈ γ for odd i. According to (5),

there exists an i < n such that CgA(a0, an)∩CgA(ai, ai+1) 6= 0A. But,
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this contradicts our assumption as CgA(a0, an)∩CgA(ai, ai+1) ⊆ α∧β
for even i and CgA(a0, an) ∩ CgA(ai, ai+1) ⊆ α ∧ γ for odd i. �

3. Bounding Mal’cev chains

We now turn to proving initial results needed for Willard’s finite
basis theorem. For the next two Sections we fix a congruence meet-
semidistributive variety V in a finite similarity type F . Like in the
proof of Baker’s theorem, we assume that the Willard terms for V are
fundamental operations of F . As in the proof of Baker’s theorem, we
make this assumption purely for ease of notation, it does not funda-
mentally change the generality of the result. As we will be making a
very involved calculation with respect to the length of translations, we
may note now that if the reader prefers not to make this assumption,
the calculation would have to multiply every length of a translation by
N which is the maximum among lengths of Willard terms si in F .

Recall the definition of translation from Section IV 5. A basic
translation of an algebra A ∈ V is a unary polynomial of the form
p(x) = fA(a1, . . . , ai−1, x, aa+1, . . . , an) for some n-ary operation sym-
bol f ∈ F and ai ∈ A. Then the set of translations Tr A is equal
to the monoid generated by the set of basic translations Tr1A under
composition. Also, we define the n-translations, and write TrnA, to be
the set of all translations which can be obtained by a composition of
length at most n of basic translations. The identity map is the only
map in Tr0A.

As in Set Theory, A[2] denotes the set of all subsets of A of size equal
to 2. For {a, b}, {c, d} ⊆ A, A ∈ V , we denote by {a, b} →k {c, d} the
fact that there exists a k-translation f of A such that {f(a), f(b)} =
{c, d}. We denote by {a, b} ⇒k,n {c, d} the fact that there exists a
sequence of elements c = c0, c1, . . . , cn such that for all i < n, ci = ci+1

or {a, b} →k {ci, ci+1}. {a, b} ⇒k {c, d} will denote that there exists
n ∈ ω such that {a, b} ⇒k,n {c, d}. In a finite similarity type, →k and
⇒k,n are expressible by first-order formulas. The following statements
are immediste consequences of the definitions:

Remark 3.1. (1) {a, b} ⇒k,1 {c, d} is the same as {a, b} →k

{c, d}.
(2) If {a, b} ⇒k,m {c, d} ⇒l,n {e, f}, then {a, b} ⇒k+l,mn {e, f}.
(3) If {a, b} →k+l {c, d}, then there exist {u, v} ⊆ A such that
{a, b} →k {u, v} →l {c, d}. Moreover, they can be chosen so
that f(u) = c and f(v) = d for some translation f ∈ TrlA.
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Lemma 3.1 (Single-sequence Lemma). If A ∈ V and a = a0, a1, . . . ,
an = b is a sequence in A with a 6= b, then there exist {c, d} ∈ A[2] and
i < n such that {a, b} ⇒1,2 {c, d} and {ai, ai+1} ⇒1,2 {c, d}.

Proof. This was proved in Theorem 2.4, (4)⇒ (5). �

Lemma 3.2 (Multi-sequence Lemma). If A ∈ V and Si = a
(i)
0 , a

(i)
1 ,

. . . , a
(i)
ni , 1 ≤ i ≤ N are sequences in A with a

(i)
0 = a, a

(i)
ni = b and a 6= b,

then there exist {c, d} ∈ A[2] and ji < ni such that {a, b} ⇒N,2N {c, d}
and {a(i)

ji
, a

(i)
ji+1} ⇒N,2N {c, d}.

The pair {a(i)
ji
, a

(i)
ji+1} will be called the key link of the sequence Si

and it is clear from c 6= d that {aji , aji+1} ∈ A[2].

Proof. We prove the Lemma by induction on N . The case N =
1 is just the Single-sequence Lemma. Assume that the statement is
true for N − 1, that is, that there exist {c′, d′} ∈ A[2] and key links

{a(i)
ji
, a

(i)
ji+1} for 1 ≤ i < N such that {a, b} ⇒N−1,2N−1 {c′, d′} and

{a(i)
ji
, a

(i)
ji+1} ⇒N−1,2N−1 {c′, d′} for 1 ≤ i < N .

Let c′ = u0, u1, . . . , uh = d′ with h ≤ 2N−1 be the chain of elements
of A with ui 6= ui+1 witnessing that {a, b} ⇒N−1,2N−1 {c′, d′}. Let
also fi ∈ TrN−1A be such that {fi(a), fi(b)} = {ui, ui+1}. We make
a sequence c′ = v0, v1, . . . , vM = d′ such that u0, u1, . . . , uh is a subse-
quence of it and such that for all 0 ≤ j < M , there exist i, k ∈ ω with

{fi(a(N)
k ), fi(a

(N)
k+1)} = {vj, vj+1}.

More precisely, M = hnN , vinN
= ui and if j = inN + k for some

0 ≤ k < nN , then

• If fi(a) = ui and fi(b) = ui+1, then vj = fi(a
(N)
k ) and

• If fi(a) = ui+1 and fi(b) = ui, then vj = fi(a
(N)
nN−k).

Now, according to the Single-sequence Lemma, there exist {c, d} ∈
A[2] and 0 ≤ j < M such that {c′, d′} ⇒1,2 {c, d} and {vj, vj+1} ⇒1,2

{c, d}. According to our construction there exist i, k ∈ ω with {fi(a(N)
k ),

fi(a
(N)
k+1)} = {vj, vj+1}. Let us denote k = jN . Now, we have

(1) {a, b} ⇒N−1,2N−1 {c′, d′} ⇒1,2 {c, d}, so from Remark 3.1 (2),
we obtain {a, b} ⇒N,2N {c, d}.

(2) {a(i)
ji
, a

(i)
ji+1} ⇒N−1,2N−1 {c′, d′} ⇒1,2 {c, d}, hence {a(i)

ji
, a

(i)
ji+1}

⇒N,2N {c, d}.
(3) {a(N)

jN
, a

(N)
jN +1} →N−1 {vj, vj+1} ⇒1,2 {c, d}, so again we have

{a(N)
jN
, a

(N)
jN +1} ⇒N,2N {c, d} (since ⇒N,2 implies ⇒N,2N ).

�
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Corollary 3.3. Let A ∈ V, {a1, b1}, . . . , {aN , bN}, {u, v} ∈ A[2]

and let for all i, 1 ≤ i ≤ N , {ai, bi} ⇒ {u, v} hold in A. Then there
exist {u′, v′} ∈ A[2] and for all 1 ≤ i ≤ N , there exist {xi, yi} ∈ A[2],
such that {u, v} ⇒N,2N {u′, v′} and {ai, bi} →n {xi, yi} ⇒N,2N {u′, v′}.

Proof. Let Si be the sequence u = a
(i)
0 , a

(i)
1 , . . . , a

(i)
ni = v witnessing

the fact that {ai, bi} ⇒ {u, v}. Then apply the Multi-sequence Lemma

to {u, v} and the sequences Si and let {xi, yi} = {a(i)
ji
, a

(i)
ji+1} guaranteed

by the Multi-sequence Lemma. �

The Corollary just proved allows us to replace ⇒n with unknown
length of Mal’cev chain with a weaker, but first-order definable property
⇒n+N,2N , which we will habitually do for the remainder of the Chapter.
Note that we used only that V is congruence meet-semidistributive and
that the similarity type is finite. In order to be able to define the
sentence µ(x, y, z, u) required by Theorem 1.4, we also need to put a
bound on n in⇒n, which we refer to as the depth of the Mal’cev chain.
To do this, we will need to use the finite residual bound. Before getting
about it, we need to fix some notation.

Let m ∈ ω, m > 0. We define four functions

• L(m) =
(
m+1

2

)
;

• M(m) =
(

2m
m

)
− 1;

• N(m) = 2
(
M(m)+1

2

)
;

• D(m) = N(m) + 3.

For shortness of notation, with m understood, we will just call them
L, M , N and D.

We denote by Φm the sentence

(∃x0, x1, . . . , xm, y, z)(y 6= z ∧
∧

0≤i<j≤m

{xi, xj} ⇒DM+L,2L {y, z})

and by µm(x1, y1, x2, y2) the first-order formula

(∃v, w, r1, s1, r2, s2)(v 6= w ∧
∧

1≤i≤2

{xi, yi} →DM {ri, si} ⇒2,4 {v, w})

The next result will allow us to effectively bound the depth of
Mal’cev chains in V , when we additionally assume that V has a finite
residual bound.

Theorem 3.4. Let A ∈ V. Then one of the following two state-
ments must hold for A:

(i) A |= Φm.
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(ii) For all a, b, c, d ∈ A, µm(a, b, c, d) holds in A iff CgA(a, b) ∩
CgA(c, d) 6= 0A.

Proof. Let A ∈ V be such that A 6|= Φm. It is always true
that if a, b, c, d ∈ A are such that µm(a, b, c, d) is holds in A, then

CgA(a, b) ∩ CgA(c, d) 6= 0A. The only thing left to check is the other
implication.

So, assume that CgA(a, b) ∩ CgA(c, d) 6= 0A, but µm(a, b, c, d) fails
in A. Since there must exist some {u′, v′} ∈ A[2] and n ∈ ω such
that {a, b} ⇒n {u′, v′} and {c, d} ⇒n {u′, v′}, then according to Corol-
lary 3.3, there exist {r, s}, {r′, s′}, {u, v} ∈ A[2] such that

(∗) {a, b} →n {r, s} ⇒2,4 {u, v} and {c, d} →n {r′, s′} ⇒2,4 {u, v}.

According to our assumption µ(a, b, c, d) fails, so n > DM for any
choice of r, s, r′, s′, u and v. Let r, s, r′, s′, u, v be chosen so that u 6= v,
(∗) holds and n is minimal.

Let t = n − DM . According to Remark 3.1 (3), we can select
{ai, bi} ∈ A[2] and fi ∈ TrD(M−i)A, 0 ≤ i ≤M such that

{a, b} →t {a0, b0} →D {a1, b1} →D · · · →D {aM , bM} = {r, s}

and such that fi(ai) = r and fi(bi) = s. Analogously, {ci, di} ∈ A[2] and
gi ∈ TrD(M−i)A can be selected so that {c, d} →t {c0, d0}, gi(ci) = r′

and gi(di) = s′.
Fix a Mal’cev chain u = u0, u1, . . . , u4 = v such that for 0 ≤ i < 4,

pi({r, s}){ui, ui+1} for some pi ∈ Tr2A. Now for any 0 ≤ i < j ≤M we
have a chain r = fj(aj), fj(ai), fj(bi), fj(bj) = s which induces a chain

Sij : v
(ij)
0 , v

(ij)
1 , . . . , v

(ij)
12 from u to v (which contains C as a subsequence)

in the following way:

• If pk(r) = uk and pk(s) = uk+1, then v
(ij)
3k = pk(fj(aj)) =

pk(r) = uk, v
(ij)
3k+1 = pk(fj(ai)), v

(ij)
3k+2 = pk(fj(bi)) and v

(ij)
3k+3 =

pk(fj(bj)) = pk(s) = uk+1.

• If pk(s) = uk and pk(r) = uk+1, then v
(ij)
3k = pk(fj(bj)) =

pk(s) = uk, v
(ij)
3k+1 = pk(fj(bi)), v

(ij)
3k+2 = pk(fj(ai)) and v

(ij)
3k+3 =

pk(fj(aj)) = pk(r) = uk+1.

The fact we really need about these chains is that for any chain Sij
and 0 ≤ k < 12, one of the following three occurs:

(1) {aj, ai} →D(M−j)+2 {v(ij)
k , v

(ij)
k+1},

(2) {ai, bi} →D(M−j)+2 {v(ij)
k , v

(ij)
k+1}, or

(3) {bi, bj} →D(M−j)+2 {v(ij)
k , v

(ij)
k+1}.
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In the completely analogous way we can define for any 0 ≤ i < j ≤
M , chains Rij : w

(ij)
0 , w

(ij)
1 , . . . , w

(ij)
12 , where u = w

(ij)
0 , v = w

(ij)
12 and for

any k, 0 ≤ k < 12, one of the following three occurs:

(4) {cj, ci} →D(M−j)+2 {w(ij)
k , w

(ij)
k+1},

(5) {ci, di} →D(M−j)+2 {w(ij)
k , w

(ij)
k+1}, or

(6) {di, dj} →D(M−j)+2 {w(ij)
k , w

(ij)
k+1}.

So, we have a total of 2
(
M+1

2

)
= N sequences from u to v. We apply

the Multi-sequence Lemma to these sequences. Therefore, we know
that there exist {u′, v′} ∈ A[2], and for all 0 ≤ i < j ≤ n there exist xij,
yij, x

′
ij and y′ij such that {xij, yij} ⇒N,2N {u′, v′} and {x′ij, y′ij} ⇒N,2N

{u′, v′}, where {xij, yij} is a pair of consecutive members of Sij, while
{x′ij, y′ij} is a pair of consecutive members of Rij. Now, we have two
cases:

Case 1: If there exist 0 ≤ i < j ≤ M such that for {xij, yij} case
(2) occurs and also there exist 0 ≤ k < l ≤ M such that for {x′kl, y′kl}
case (5) occurs, then we will derive a contradiction with minimality of
n. Indeed, (2) implies that

{a, b} →t+Di {ai, bi} →D(M−j)+2 {xij, yij} ⇒N,2N {u′, v′},

so since t+Di+D(M − j) + 2 +N = t+DM +N + 2−D(j − i) ≤
n + N + 2 − D = n − 1, therefore {a, b} ⇒n−1 {u′, v′}. Similarly, we
get from (5) that {c, d} ⇒n−1 {u′, v′}. Applying Corollary 3.3, we get
{u′′, v′′} ∈ A[2] and e, f, g, h ∈ A such that {a, b} →n−1 {e, f} ⇒2,4

{u′′, v′′} and {c, d} →n−1 {g, h} ⇒2,4 {u′′, v′′}. This contradicts the
choice of n.

Case 2: We are left with the case when, without loss of general-
ity, case (2) occurs for no {xij, yij}. So, we may define an associated
undirected graph G = (V,E) on the vertex set V = {0, 1, . . . ,M} such
that ij ∈ E iff case (1) occurs for {xij, yij} (or {xji, yji}, as the case
may be). By Ramsey’s Theorem, since |V | =

(
2m
m

)
, the graph G either

contains a clique or an anticlique of size m+ 1. In case of a clique, we
have 0 ≤ i0 < i1 < · · · < im ≤M such that for any j < k,

{aij , aik} →DM {xijik , yijik} ⇒N,2N {u′, v′},

so Φm holds for xj = aij , y = u′ and z = v′. The case of anticlique
produces the satisfaction of Φm as well, just with bij in place of aij . In
both subcases we get a contradiction. �

4. Willard’s theorem

We are now ready to prove the Willard’s Finite Basis Theorem.
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Theorem 4.1 (Willard’s Finite Basis Theorem). Let V be a con-
gruence meet-semidistributive variety in a finite similarity type F and
having a finite residual bound. Then V is finitely based.

Proof. Let resb(V) = m + 1, that is, for all S ∈ VSI , |S| ≤ m.
Let also A ∈ V be arbitrary. We wish to prove that A 6|= Φm. Assume
A |= Φm which means that there exist a0, a1, . . . , am ∈ A and {b, c} ∈
A[2] such that for all 0 ≤ i < j ≤ m, {ai, aj} ⇒DM+L,2L {b, c}. In

particular, this means that (b, c) ∈ CgA(ai, aj), when 0 ≤ i < j ≤ m.
As we mentioned in the proof of Lemma 1.3, it is easy to prove that
there is a maximal congruence θ in Con A among all congruences which
do not contain (b, c) and that θ is a strictly ∧-irreducuble. Therefore,
A/θ is subdirectly irreducible and since (b, c) /∈ θ implies (ai, aj) /∈ θ
for i 6= j, then |A/θ| ≥ m + 1. This contradicts the assumption that
resb(V) = m+ 1.

So, Φm fails in every algebra A ∈ V . Let W be the (finitely based)
variety in the similarity type F axiomatized by the identities which
say that si are Willard terms in V . Therefore, V ⊆ W . Let ψ be
the sentence which is the conjunction of ¬Φm and all basis equations
for W . If we define the strictly elementary class H to be the class
axiomatized by ψ we get V ⊆ H. Theorem 3.4 applies to W , and
so for any A ∈ H and a, b, c, d ∈ A, CgA(a, b) ∩ CgA(c, d) 6= 0A iff
µm(a, b, c, d) holds in A, according to Theorem 3.4. Therefore, V and
H satisfy the assumptions of Theorem 1.4, so V is finitely based. �
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