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The feasible interpolation theorem for semantic derivations from [J. Kraj́ıček, Interpo-
lation theorems, lower bounds for proof systems, and independence results for bounded
arithmetic, J. Symbolic Logic 62(2) (1997) 457–486] allows to derive from some short
semantic derivations (e.g. in resolution) of the disjointness of two NP sets U and V

a small communication protocol (a general dag-like protocol in the sense of Kraj́ıček
(1997) computing the Karchmer–Wigderson multi-function KW [U,V ] associated with
the sets, and such a protocol further yields a small circuit separating U from V . When
U is closed upwards, the protocol computes the monotone Karchmer–Wigderson multi-
function KW m[U, V ] and the resulting circuit is monotone. Kraj́ıček [Interpolation by
a game, Math. Logic Quart. 44(4) (1998) 450–458] extended the feasible interpolation
theorem to a larger class of semantic derivations using the notion of a real commu-
nication complexity (e.g. to the cutting planes proof system CP). In this paper, we
generalize the method to a still larger class of semantic derivations by allowing random-
ized protocols. We also introduce an extension of the monotone circuit model, monotone
circuits with a local oracle (CLOs), that does correspond to communication protocols
for KW m[U, V ] making errors. The new randomized feasible interpolation thus shows
that a short semantic derivation (from a certain class of derivations larger than in the
original method) of the disjointness of U, V , U closed upwards, yields a small random-
ized protocol for KW m[U, V ] and hence a small monotone CLO separating the two sets.
This research is motivated by the open problem to establish a lower bound for proof
system R(LIN/F2) operating with clauses formed by linear Boolean functions over F2.
The new randomized feasible interpolation applies to this proof system and also to (the
semantic versions of) cutting planes CP, to small width resolution over CP of Kraj́ıček
[Discretely ordered modules as a first-order extension of the cutting planes proof system,
J. Symbolic Logic 63(4) (1998) 1582–1596] (system R(CP)) and to random resolution
RR of Buss, Kolodziejczyk and Thapen [Fragments of approximate counting, J. Sym-
bolic Logic 79(2) (2014) 496–525]. The method does not yield yet lengths-of-proofs lower
bounds; for this it is necessary to establish lower bounds for randomized protocols or for
monotone CLOs.

Keywords: Proof complexity; communication complexity; resolution; feasible interpola-

tion; monotone circuits.
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0. Introduction

Consider a propositional proof system R(LIN/F2) that operates with clauses of
linear equations over F2 and combines the rules of both resolution and linear equa-
tional calculus. A line C in a proof has the form

{f1, . . . , fk}
with fi ∈ F2[x1, . . . , xn] linear polynomials and the intended meaning is that an
assignment x := a ∈ {0, 1}n to variables makes C true if and only if one of fi = 1
becomes true, i.e. the truth value of C is computed by Boolean formula∨

i≤k

fi

in the language with
∨

,⊕, 0, 1. We often leave the outside brackets {, } out when
writing clauses. For L ⊆ C define

∑
L :=

∑
f∈L f .

The rules of R(LIN/F2) are the following four:

h, h + 1
C

C, f

C, 0
C

C, gC, h

C, g + h + 1
.

We shall call the rules F2-axiom, weakening, contraction and the binary rule, respec-
tively. This proof system (albeit defined slightly differently but polynomially equiva-
lently, denoted Res-Lin there) has been considered already by Itsykson and Sokolov
[10] who proved an exponential lower bound for tree-like proofs. They also showed
that the semantic version of the system (in the sense of semantic derivations of [16])
is p-equivalent to the syntactic version, whether tree-like or dag-like. This paper is
motivated by the problem to establish a lower bound for unrestricted (i.e. dag-like)
R(LIN/F2) proofs.

Proof systems combining resolution or, more generally, logical reasoning with
algebraic reasoning were considered earlier by several authors: Kraj́ıček [17] defined
proof systems R(CP ) and LK(CP ) extending cutting plane by a logic reasoning
and proved an exponential lower bound for a subsystem of R(CP ), Hirsch and
Kojevnikov [8, 13] considered resolution over a system for linear programing and
Kojevnikov [13] improved upon a bound in [17]. Raz and Tzameret [26] studied
resolution over linear equations with integral coefficients and proved a lower bound
for a class of its proofs, and Alekhnovich et al. [1] defined polynomial calculus with
resolution PCR which extends PC in a way that incorporates resolution (lines of
proofs are polynomials, however).

There is also a link to the well-known open problem to establish lower bounds
for constant depth Frege systems in DeMorgan language augmented by a connec-
tive counting modulo a prime, the so-called AC0[p]-Frege systems. The strongest
subsystem of such a system for which a lower bound is known is a low degree
polynomial calculus operating with polynomials formed from AC0-formulas [15].
The lower bound problem for R(LIN/F2) seems interesting also because the top
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proof system is logical. Note that Buss, Kolodziejczyk and Zdanowski [6] proved
that, in fact, the AC0[p]-Frege system collapses (with a quasi-polynomial blow-up
in proof size) to a proof system operating with clauses of conjunctions of low degree
polynomials.

Our approach is to use feasible interpolation for semantic derivations from [16]
but we need to generalize it first to allow small errors. The generalization we develop
here allows randomized communication protocols with errors (protocols in the sense
of [16]) for computing the Karchmer–Wigderson multi-function. Protocols making
no errors correspond to separating circuits but protocols with errors do not yield
separating circuits making some error. Instead we introduce an extension of the
circuit model, circuits with a local oracle (CLO), that does correspond to protocols
with errors.

Tree-like protocols with errors for KWm[U, V ] yield monotone separating for-
mulas with a local oracle and subsume the ordinary Karchmer–Wigderson [12]
protocols pictured as binary trees. A lower bound in this case is known (cf. [9, 18]
for examples based on the bipartite perfect matching problem and Hall’s theorem).
Further, monotone CLOs efficiently simulate monotone real circuits (Sec. 6) and
any two disjoint sets can be separated by a small non-monotone CLO (Lemma 2.3
and the remark at the end of Sec. 3). To establish a lower bound for monotone
CLOs separating two NP sets, one closed upwards, is an open problem.

To be able to apply randomized feasible interpolation to R(LIN/F2), we use the
approximation method of Razborov [30] and Smolensky [33] in order to reduce the
linear width (defined in Sec. 4) in a general not too long proof at the expense of
introducing an error (cf. Sec. 5). The new method may have further applications
and, in particular, it applies to the semantic versions of cutting planes CP, to small
width resolution over cutting planes R(CP), and to random resolution RR. The
method on its own does not yield yet lengths-of-proofs lower bounds; for this it
is necessary to establish lower bounds for randomized protocols or for monotone
CLOs. Some partial results about monotone CLOs are obtained in [21].

The paper is organized as follows. Section 1 recalls some notions and results
from [16]. In Sec. 2, we define the concept of randomized protocols and use it
to formulate randomized feasible interpolation. In Sec. 3, we introduce circuits
with a local oracle (CLO) and prove that they correspond to protocols with errors
and that, in particular, randomized protocols yield CLOs. In Sec. 4, we introduce
the linear width of R(LIN/F2) proofs and discuss the case when it is small. Ran-
domized feasible interpolation is proved for R(LIN/F2) in Sec. 5 and for CP and
small width R(CP) in Sec. 6. The lower bound problem for monotone CLOs (and
hence for randomized protocols computing the monotone Karchmer–Wigderson
multi-function for some pair of sets) is discussed in Sec. 7. The paper is con-
cluded by a few remarks in Sec. 8. A proof complexity background can be found
in [14, 24].
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1. Feasible Interpolation Preliminaries

The general feasible interpolation theorem from [16] for semantic derivations uses
communication complexity. One considers two disjoint NP sets U, V ⊆ {0, 1}n and
the Karchmer–Wigderson multi-function whose valid values on a pair (u, v) ∈ U×V

is any coordinate in which u, v differ. The aim is to extract from a short proof of
the disjointness of U, V some upper bound on the computational complexity of
this multi-function in some computational model. Proving then a computational
complexity lower bound for the model allows to infer a length-of-proofs lower bound.
The original set-up (and the one most frequently used) derives from the proof data
the existence of a small circuit separating U and V . In the monotone case one can
use then known strong lower bounds for monotone circuits, for example Alon and
Boppana [2].

When the construction of [16] is applied to tree-like proofs it leads to famil-
iar protocols for communication that are pictured as binary trees, cf. [12]. How-
ever, for applications to general, dag-like, proofs one needs a more general notion
of a protocol defined in [16, Definition 2.2]. The key fact, allowing to prove
some lower bounds, is that similarly as small tree-like communication protocols
correspond to small formulas separating U and V (by Karchmer and Wigder-
son [12]), the more general protocols used in [16] correspond to small separating
circuits.

Let us now recall formally relevant definitions and facts from [16]. A multi-
function on U ×V with values in some set I �= ∅ is a ternary relation R ⊆ U ×V ×I

such that for all (u, v) ∈ U × V there is i ∈ I such that R(u, v, i). Some value for
(u, v) from its domain can be computed by two players, one receiving u and the
other one v, exchanging bits of information until they agree on a valid value i. The
communication complexity of R, CC(R), is the minimal number of bits they need
to exchange (in an optimal protocol) in the worst case.

The Karchmer–Wigderson multi-function KW [U, V ] of a particular interest is
defined for two disjoint sets U, V ⊆ {0, 1}n: a valid value of KW (u, v) on pair
(u, v) ∈ U × V is any i ∈ [n] such that ui �= vi. The monotone version of this
function KWm[U, V ] is defined when U is closed upwards (or V downwards) and a
valid value on (u, v) is any i ∈ [n] such that ui = 1 ∧ vi = 0.

Given two disjoint U, V ⊆ {0, 1}n and R ⊆ U × V × I a multi-function, [16,
Definition 2.2] defines a protocol for R to be a 4-tuple P = (G, lab, F, S) satisfying
the following conditions:

(P1) G is a directed acyclic graph that has one source (the in-degree 0 node called
the root) denoted ∅.

(P2) The nodes with the out-degree 0 are leaves and they are labeled by the map-
ping lab by elements of I.

(P3) S(u, v, x) is a function (the strategy) that assigns to a node x ∈ G and a pair
u ∈ U and v ∈ V node S(u, v, x) accessible by an edge from x.
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(P4) For every u ∈ U and v ∈ V , F (u, v) ⊆ G is a set (called the consistency
condition) satisfying:

(a) ∅ ∈ F (u, v),
(b) x ∈ F (u, v) → S(u, v, x) ∈ F (u, v),
(c) if x ∈ F (u, v) is a leaf and lab(x) = i, then R(u, v, i) holds.

We say that P is tree-like if and only if G is a tree.
The complexity of P is measured by its size, which is the cardinality of G, and

by the following notion: The communication complexity of P, denoted CC(P), is
the minimal t such that for every x ∈ G the communication complexity for the
players (one knowing u and x, the other one v and x) to decide x ∈? F (u, v) or to
compute S(u, v, x) is at most t.

The interpolation theorem in [16] was formulated using the notion of a seman-
tic derivation ([16, Definition 4.1]): A sequence of sets D1, . . . , Dk ⊆ {0, 1}N is a
semantic derivation of Dk from A1, . . . , Am ⊆ {0, 1}N if each Di is either one of
Aj ’s or contains Dj1 ∩Dj2 , for some j1, j2 < i. A semantic derivation is a refutation
of A1, . . . , Am if and only if Dk = ∅.

We shall introduce now a general set-up for our investigation of interpolation
and we shall refer to it the whole paper. We assume the following conditions for
parameters and sets, and introduce the following notation:

N = n + s + r, N, n ≥ 1. (1)

A1, . . . , Am ⊆ {0, 1}n+s and B1, . . . , B� ⊆ {0, 1}n+r. (2)

From the total N variables, n represents an input a from {0, 1}n, s variables rep-
resent a potential witness b for the membership of a in U and r variables represent
a potential witness c for the membership of a in V (U and V are defined below).
For A ⊆ {0, 1}n+s define

Ã :=
⋃

(a,b)∈A

{(a, b, c) | c ∈ {0, 1}r} (3)

and for B ⊆ {0, 1}n+r define:

B̃ :=
⋃

(a,c)∈B

{(a, b, c) | b ∈ {0, 1}s}, (4)

where a, b, c range over {0, 1}n, {0, 1}s and {0, 1}r, respectively. Define

U = {u ∈ {0, 1}n | ∃b ∈ {0, 1}s; (u, b) ∈
⋂

j≤m

Aj} (5)

and

V = {v ∈ {0, 1}n | ∃c ∈ {0, 1}r; (v, c) ∈
⋂
j≤�

Bj}. (6)
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We shall also refer to the following monotonicity condition. For all u, u′ ∈ {0, 1}n

and b ∈ {0, 1}s:

(u, b) ∈
⋂

j≤m

Aj ∧ u′ ≥ u → (u′, b) ∈
⋂

j≤m

Aj . (7)

The complexity of sets in a semantic derivation is measured by the following
notion of (monotone) communication complexity of subsets of {0, 1}N defined in
[16]. For D ⊆ {0, 1}N , u, v ∈ {0, 1}n, qu ∈ {0, 1}s and rv ∈ {0, 1}r consider four
tasks:

(1) Decide whether (u, qu, rv) ∈ D.
(2) Decide whether (v, qu, rv) ∈ D.
(3) If (u, qu, rv) ∈ D �≡ (v, qu, rv) ∈ D find i ≤ n such that ui �= vi.
(4) If (u, qu, rv) ∈ D and (v, qu, rv) /∈ D either find i ≤ n such that

ui = 1 ∧ vi = 0

or decide that there is some u′ satisfying

u′ ≥ u ∧ (u′, qu, rv) /∈ D.

The communication complexity CC(D) of D is the minimal t such that the tasks (1)–
(3) can be solved by the players, one knowing u, qu and the other one knowing v, rv,
exchanging at most t bits. The monotone communication complexity with respect to
U of D, denoted MCCU (D), is the minimal t ≥ CC(D) such that also the task (4).
can be solved by the players exchanging at most t bits.

Now we are ready to recall a fact about the existence of protocols from the proof
of [16, Theorem 5.1].

Theorem 1.1 ([16]). Assume the set-up conditions (1)–(6) and assume that π =
D1, . . . , Dk is a semantic refutation of the sets Ã1, . . . , Ãm, B̃1, . . . , B̃�. Let t ≥ 1
be such that t ≥ CC(Di) for all i ≤ k.

Then there is a protocol for KW [U, V ] of size k + 2n and of communication
complexity O(t). The protocol has k inner vertices, the sets in π, and additional 2n

vertices, the leaves, labeled by all possible formulas ui = 1 ∧ vi = 0 and ui = 0 ∧
vi = 1.

If condition (7) is also satisfied and MCCU (Di) ≤ t for all i ≤ k then there is a
protocol for KWm[U, V ] of size k + n and of communication complexity O(t).

Further, the consistency condition F is defined in both the monotone and the
non-monotone cases identically as :

D ∈ F (u, v) if and only if (v, qu, rv) /∈ D

for D in π, and

x ∈ F (u, v) if and only if lab(x) is valid for u, v

for x a leaf.
Moreover, if π is tree-like, so is G.
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2. Randomized Feasible Interpolation for Semantic Derivations

First we generalize protocols to allow a randomization and some error.

Definition 2.1. A randomized protocol for multi-function R ⊆ U×V ×I with error
ε > 0 is a random variable (Pr)r where each Pr is a 4-tuple satisfying conditions
(P1), (P2), (P3) and (P4a) defining protocols and instead of conditions (P4b) and
(P4c) it satisfies:

(P4b′) For every (u, v) ∈ U × V ,

Probr[∃x, x ∈ Fr(u, v) ∧ Sr(u, v, x) /∈ Fr(u, v)] ≤ ε.

(P4c′) For every (u, v) ∈ U × V ,

Probr[∃leaf x, x ∈ Fr(u, v) ∧ labr(x) = i ∧ ¬R(u, v, i)] ≤ ε.

The size of (Pr)r is maxr size(Pr) and the communication complexity of (Pr)r is
maxr CC(Pr). We say that (Pr)r is tree-like if each Pr is.

We note a simple observation.

Lemma 2.2. For any randomized protocol (Pr)r for multi-function R ⊆ U × V ×
I of size S, communication complexity t and error ε there exists a randomized
protocol (P̃r)r for multi-function R of size at most 2S (with at most S leaves),
communication complexity at most 3t and error ε such that (P4b) never fails, i.e.
the probability in (P4b′) is 0.

Proof. Introduce for each inner node x ∈ Gr a new leaf node x̃, label it arbitrarily
(e.g. u1 = 1 ∧ v − 1 = 0), and define a new strategy S̃r that first checks if

x ∈ Fr(u, v) → Sr(u, v, x) ∈ Fr(u, v)

is true and if so it uses Sr, otherwise it sends x into x̃ and the failure of the condition
is the definition of x̃ ∈ F̃r(u, v).

In connections with interpolation we are interested in the situation when the
multi-function is the Karchmer–Wigderson one. It makes sense to consider only the
monotone case KWm[U, V ] as the next lemma recalls.

Lemma 2.3 (Raz and Wigderson [27]). Let U, V be any two disjoint subsets of
{0, 1}n. Then for any ε > 0 there is a tree-like randomized protocol (Pr)r computing
KW [U, V ] of size S = (n + ε−1)O(1), communication complexity t = O(log n +
log(ε−1)) and error ε.

In particular, for ε = n−Ω(1) the size is S = nO(1) and the communication
complexity is t = O(log n).

Proof. A randomized protocol computing KW [U, V ] is determined by log(ε−1)
subsets I ⊆ [n]. The players exchange the parity of the bits in their respective
strings belonging to the first such I, then to the second, etc. until they find I for
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which the parity differs. Then they find a valid value for KW [U, V ] by binary search.
If they do not find such I, they declare an error. This gives a randomized protocol
of size polynomial in n, ε−1, with communication complexity 2(logn + log(ε−1)),
and error ε.

Now we introduce a notion that we will use in the context of semantic deriva-
tions. Let X ∈ {0, 1}N and let Y = (Yr)r be a random distribution on subsets of
{0, 1}N , and let δ > 0. We say that Y is a δ-approximation of X if and only if for
all w ∈ {0, 1}N :

Probr[w ∈ X
Yr] ≤ δ

where X
Y is the symmetric difference.
Working in the set-up (1)–(6) the sets X and Yr are subsets of {0, 1}N and the

definitions of CC and MCCU apply to them. With this in mind we further define
that the (monotone) communication complexity of Y is at most t if this is true for
all Yr, and that the δ-approximate (monotone) communication complexity of X is
at most t if there is a δ-approximation Y of X with this property.

Theorem 2.4. Assume the set-up conditions (1)–(7). Let π : D1, . . . , Dk = ∅ be
a semantic refutation of sets Ã1, . . . , Ãm, B̃1, . . . , B̃� such that the δ-approximate
monotone communication complexity of every Di is at most t.

Then there is a randomized protocol (Pr)r for KWm[U, V ] of size at most k+n,

communication complexity O(t) and of error at most 3δk.
Moreover, if the refutation π is tree-like then also (Pr)r is tree-like.

Proof. Take the protocol P = (G, lab, F, S) provided by Theorem 1.1. Its strategy
S and the consistency condition F are defined in terms of sets Di. In particular, for
any (u, v) ∈ U × V and x ∈ G an inner node, both the value of S(u, v, x) and the
truth value of x ∈ F (u, v) are defined from at most 3 truth values of statements
of the form (u, qu, rv) ∈ Di or (v, qu, rv) ∈ Di for some specific indices i ≤ k

determined by x, where qu and rv depend just on u and v, respectively.
Not knowing anything about the monotone communication complexity of the

sets Di we cannot estimate the communication complexity of P. At this point we
use the δ-approximations of the sets Di. If (Ei

s)s are δ-approximations of Di, i ≤ k,
let the space of samples r for Pr be the product of the sample spaces of these k

δ-approximations and define Sr and Fr as S and F before but using the particular
sets Ei

s (with s determined by r) in place of the sets Di. In particular, Di ∈ Fr(u, v)
if and only if (v, qu, rv) /∈ Ei

s. Further, put Gr := G and labr := lab.
For any given (u, v) ∈ U × V and x ∈ G the (truth) value of Sr and Fr differs

from S and F respectively with probability at most 3δ. Hence for (u, v) the error
in conditions (P4b′) and (P4c′) is at most ε := 3δk.

We describe yet another type of semantic refutations that also yields randomized
protocols.
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Theorem 2.5. Assume the set-up conditions (1)–(7). Let e ≥ 1, ε > 0 and let
(Cr)r be a random distribution on (P({0, 1}N))e, Cr = (C1

r , . . . , Ce
r ), such that

each
∧

i≤e(C
i
r)r is an ε-approximation of {0, 1}N .

Assume that for all samples r there is a semantic refutation πr of

Ã1, . . . , Ãm, B̃1, . . . , B̃�, C
1
r , . . . , Ce

r

with k lines, and such that the monotone communication complexity of all sets in
πr is at most t.

Then there is a randomized protocol for KWm[U, V ] of size at most k +n+ e ≤
2k + n, communication complexity O(t) and of error at most ε.

Moreover, if the refutation π is tree-like then also (Pr)r is tree-like.

Proof. The construction of P = (G, lab, F, S) in Theorem 1.1 yields G whose
inner nodes correspond to lines of the refutation and leaves are extra n nodes. The
construction uses the fact that for (u, v) ∈ U × V the strings qu and rv are chosen
so that (u, qu, rv) ∈ Ãi and (v, qu, rv) ∈ B̃j for all i ≤ m and j ≤ �. In particular,
each initial set Ã1, . . . , Ãm, B̃1, . . . , B̃� contains either (u, qu, rv) or (v, qu, rv).

In the presence of the new initial clauses Ci
r this is no longer true and it may

happen that both (u, qu, rv) and (v, qu, rv) are outside of some Ci
r.

We define Pr as follows. Each Gr has e extra leaves yi labeled arbitrarily (say
u1 = 1 ∧ v1 = 0 for the definiteness) and the strategy Sr(u, v, x) sends node x

corresponding to Ci
r to yi if

(v, qu, rv) /∈ Ci
r (8)

and the same condition defines when yi ∈ Fr(u, v).
As

∧
i≤e(C

i
r)r is an ε-approximation of {0, 1}N , (8) happens with probability at

most ε in total.

3. Monotone Circuits with a Local Oracle

Our aim in this section is to define a generalization of the circuit model that corre-
sponds to protocols with errors computing KWm[U, V ]. We restrict ourselves to the
monotone case due to Lemma 2.3 (see also the remark at the end of this section).

A monotone circuit with a local oracle (monotone CLO, briefly) separating U

from V is determined by the following data:

(1) a monotone Boolean circuit D(x1, . . . , xn, y1, . . . , ye) with inputs x and y,
(2) a set R of combinatorial rectangles Uj × Vj ⊆ U × V , for j ≤ e, called oracle

rectangles of the CLO,

and satisfying the following condition:

(3) for all monotone Boolean functions fj : {0, 1}n → {0, 1}, j ≤ e, such that

fj(Uj) ⊆ {1} and fj(Vj) ⊆ {0}

1850012-9



October 1, 2018 11:3 WSPC/S0219-0613 153-JML 1850012

J. Kraj́ıček

the function

C(x) := D(x, f1(x), . . . , fe(x))

separates U from V :

C(U) = {1} and C(V ) = {0}.
The size of the CLO is the size of D and its locality is∣∣∣⋃j≤e Uj × Vj

∣∣∣
|U × V |

(we assume both U, V are non-empty). Note that C defines a monotone Boolean
function for any choice of monotone functions fj .

The proof of the following lemma expands a bit upon a proof by Razborov [31].

Lemma 3.1. Assume that (Pr)r is a randomized protocol for KWm[U, V ] of size
s, communication complexity t and error ε.

Then there is a monotone circuit with a local oracle separating U from V of size
s2O(t) and locality ε.

Proof. Assume (Pr)r is a randomized protocol satisfying the hypothesis of the
lemma, with Pr = (Gr, labr, Fr, Sr). By Lemma 2.2 we may assume that each
Gr makes errors only in leaves, i.e. violates possibly only the condition (P4c) of
Sec. 1 in the sense of (P4c′) of Definition 2.1. This may increase the size and the
communication complexity proportionally but that does not change the form s2O(t)

of the upper bound.
By averaging there must be some sample r such that Pr makes an error for at

most ε-part of all pairs U ×V . Fix one such protocol (G, lab, F, S) := Pr for the rest
of the proof. We may also assume that the communication of the players deciding
that a leaf a is in F (u, v) ends with each player sending the value of the ith bit of u

or v, respectively, where i = lab(a). That is, they both know at the end whether an
error occurred for (u, v) and the set of these erroneous pairs for which a ∈ F (u, v)
is a disjoint union of combinatorial rectangles.

For a vertex a of G and a string w ∈ {0, 1}t denote:

• Ra,w the rectangle Ua,w × Va,w, some Ua,w ⊆ U and Va,w ⊆ V , of pairs (u, v) ∈
U × V such that the communication of the players deciding a ∈? F (u, v) evolves
according to w and ends with the affirmation of the membership,

• ka: the number of nodes in G that can be reached from node a by a directed path
(so ka = 1 for a a leaf, while k∅ ≤ s for the root ∅).

Assume

R1 := U1 × V1, . . . , Re := Ue × Ve, for j ≤ e (9)
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enumerate all rectangles Ra,w where a is a leaf and (u, v) ∈ Ra,w if and only
if a ∈ F (u, v) and the players decided this with communication w but lab(a) is
incorrect for (u, v), i.e. an error occurs for (u, v) at a.

Claim 1. For all a ∈ G and w ∈ {0, 1}t there is a size ≤ ka2O(t) monotone
circuit with a local oracle separating Ua,w from Va,w such that its oracle rectangles
are included among (9). The constant implicit in the exponent O(t) is independent
of a.

For a, w we shall denote by Da,w,Ra,w a monotone CLO that is claimed to
exists; the set Ra,w is the set of its oracle rectangles. We shall establish the claim
by induction on ka.

If ka = 1, a is a leaf. Take arbitrary rectangle Ua,w × Va,w. Either i = lab(a) is
correct on the rectangle, then Da,w is just the input xi and Ra,w = ∅, or not, and
then Da,w = yj and Ra,w = {Rj} where Ua,w × Va,w is Rj in the enumeration (9).

Assume ka > 1 and let w ∈ {0, 1}t. For u ∈ Ua,w let u∗ ∈ {0, 1}4t

be a vector
whose bits u∗

ω are parametrized by ω = (ω1, ω2) ∈ {0, 1}t × {0, 1}t and such that:

• u∗
ω = 1 if and only if there is a v ∈ Va,w such that the communication of the

players computing S(u, v, a) evolves according to ω1 and the computation of
S(u, v, a) ∈? F (u, v) evolves according to ω2 (note that it has to end with the
affirmation that S(u, v, a) ∈ F (u, v).

Define v∗ω ∈ {0, 1}4t

dually:

• v∗ω = 0 if and only if there is a u ∈ Ua,w such that the communication of the
players computing S(u, v, a) evolves according to ω1 and the computation of
S(u, v, a) ∈? F (u, v) evolves according to ω2.

Let U∗
a,w and V ∗

a,w be the sets of all these vectors u∗ and v∗, respectively.

Claim 2. There is a monotone formula ϕa,w in 4t variables zω1,ω2 and of size 2O(t)

separating U∗
a,w from V ∗

a,w.

Claim 2 follows from a theorem of Karchmer and Wigderson [12]: the players
can find a coordinate ω in which u∗

ω = 1 and v∗ω = 0 by first computing S(u, v, a)
(getting thus ω1) and then deciding S(u, v, a) ∈? F (u, v) (obtaining thus ω2). The
strings u ∈ Ua,w, v ∈ Va,w yielding u∗, v∗ need not to be unique but that is not
needed; it suffices that each player has a canonical way to pick one such u or v,
respectively.

For ω1 ∈ {0, 1}t let aω1 be the node S(u, v, a) computed for some u, v with
communication ω1. Then define a monotone circuit with a local oracle by setting:

Da,w := ϕa,w(. . . , zω1,ω2/Daω1 ,ω2 , . . .)

and

Ra,w :=
⋃

(ω1,ω2)

Raω1 ,ω2 .
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As kaω1
< ka, the induction hypothesis implies that all Daω1 ,ω2 work correctly on

all Uaω1 ,ω2 × Vaω1 ,ω2 . Thus, by the definition of the formula ϕa,w, the circuit Da,w

works also correctly.
This concludes the proof of Claim 1 and of the theorem (which follows from

the claim by taking for a the root of G). The bound ε to the locality comes
from our choice to start with a protocol making an error for at most an ε-part
of U × V .

It may be worthwhile to remark that the oracle rectangles of the CLO con-
structed in the proof can be divided into O(s) blocks (corresponding to different
leaves) such that the rectangles in each block are disjoint (they correspond to dif-
ferent communication histories).

The particular CLO is constructed from a particular Pr chosen by averaging.
However, we could construct a CLO for each Pr and instead of estimating the
locality of the one CLO estimate the probability that a pair (u, v) gets into an
oracle rectangle. We do not pursue this generality further here but we state it
formally as it may play a role in an eventual lower bound argument for randomized
protocols.

Lemma 3.2. Assume that (Pr)r is a randomized protocol for KWm[U, V ] of
size s, communication complexity t and error ε.

Then there is a distribution (Cr)r over monotone circuits with a local oracle
separating U from V, each of size s2O(t) and such that for any pair (u, v) ∈ U × V :

Probr[(u, v) is in an oracle rectangle of Cr] ≤ ε.

The next two lemmas establish a form of converse of Lemma 3.1. Let Umin be
the set of ≤-minimal elements of U and V max the set of ≤-maximal elements of V .
In particular, no two elements of Umin (or of V max), respectively, are comparable
and hence any partial Boolean function on Umin (or on V max) can be extended to
a monotone one on Umin ∪ V max.

Lemma 3.3. Assume D, {Uj × Vj}j≤e is a monotone CLO separating Umin from
V max, of size s and locality µ.

Then there is a protocol (G, lab, F, S) for KWm[Umin, V max] of size s, commu-
nication complexity 2 and making an error for at most s ·µ1/2-part of Umin×V max.

Proof. For each j ≤ e, the measure of Uj × Vj in Umin × V max is less than µ and
hence

(i) either |Uj |/|Umin| < µ1/2,
(ii) or |Vj |/|V max| < µ1/2.

Define a monotone Boolean function fj that is identically 1 on Uj , identically 0
on Vj , and for a string from {0, 1}n\(Uj ∪ Vj) it equals to 0 in the case (i) or to 1
in the case (ii).
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Put C(x) := D(x, f1(x), . . . , fe(x)). Define a protocol (G, lab, F, S) as follows:

• the vertices of G are the nodes of D, the root is the output node and the edges
lead from a node of D to its two input nodes,

• for a node a of G corresponding to a subcircuit E of D, define the consistency
condition by:

a ∈ F (u, v) if and only if

(E(u, f1(u), . . . , fe(u)) = 1 ∧ E(v, f1(v), . . . , fe(v)) = 0),

• the strategy finds an input into E that is also in F (u, v),
• the labeling lab assigns to input nodes xi of D the value i and to input nodes yj

an arbitrary value, say 1.

An error can occur only at the labeling of the input nodes corresponding to a
variable yj . Because such a node is in F (u, v), it must hold that fj(u) = 1 and
fj(v) = 0. In both cases (i) and (ii) considered in the definition of fj the measure
of the rectangle of such pairs (u, v) is less than µ1/2 and there are at most e ≤ s of
them. This proves the lemma.

Next we show, for the sake of a completeness of the discussion, that one can
get a better estimate of the error of the protocol if one allows Boolean functions
(and circuits) to have also a third value between 0 and 1. Denote the third value
1/2 and define the conjunction and the disjunction on {0, 1/2, 1} as the minimum
and the maximum, respectively. Call such functions and circuits 3-valued. We shall
say that D, {Uj × Vj}j≤e is a monotone 3-valued CLO separating U from V if
the condition (3). In the definition of the CLO is obeyed even with respect to all
monotone 3-valued functions fj.

Lemma 3.4. Assume D, {Uj × Vj}j≤e is a monotone 3-valued CLO separating
Umin from V max, of size s a locality µ.

Then there is a protocol (G, lab, F, S) for KWm[Umin, V max] of size s, commu-
nication complexity 2 and making an error for at most µ-part of U × V .

Proof. The construction of (G, lab, F, S) is similar to that in the proof of
Lemma 3.3 but we define the functions fj differently: fj equals to 1 on Uj, to
0 on Vj and to 1/2 everywhere else.

With this definition the analysis at the end when an error occurs for a pair
(u, v) at a node corresponding to yj leads as before to a rectangle of (u, v) such
that fj(u) = 1 ∧ fj(v) = 0 but that is now simply Uj × Vj . Hence the measure of
the set of pairs for which an error occurs is at most the locality of the CLO.

Let us conclude the section with a couple of remarks. The first one is that
monotone CLOs simulate efficiently monotone real circuits of [23] (circuits allowing
any non-decreasing real functions at gates); we shall show this in Lemma 6.2. The
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second remarka is that general, non-monotone, CLOs are very strong: any two
disjoint subsets of {0, 1}n can be separated by a polynomial size CLO (in fact, a
formula with a local oracle) with polynomially small locality. This is seen as follows:
take the randomized protocol from Lemma 2.3 and turn it into a non-monotone
(dropping in the definition the condition of monotonicity of oracle functions fj)
CLO of size poly(n, ε−1) and locality ε separating U from V by the construction of
Lemma 3.1.

4. Linear Width

The linear width of an R(LIN/F2)-clause C is the number of fs in it; we shall
denote it lw(C). For a set Φ of R(LIN/F2)-clauses denote by Φ �w C the fact that
C can be derived in R(LIN/F2) from Φ by a proof whose all lines have linear width
at most w.

When the linear width is small the clauses have small communication complexity
(in the sense of Sec. 1) and Theorem 1.1 yields a small monotone protocol and that
yields lower bounds (cf. [16, Sec. 7]).

Unfortunately, general R(LIN/F2) refutations need not to have small linear
width. It is easy to prove a lower bound on the linear width of an R(LIN/F2) refu-
tation by translating it into a polynomial calculus PC refutation and by appealing
to degree lower bounds for that system. In particular, to an R(LIN/F2)-clause
C = {f1, . . . , fk} assign polynomial over F2 pC := Πi≤k(1 − fi): C is satisfied by
a ∈ {0, 1}n if and only if pC(a) = 0. An R(LIN/F2)-refutation π of a set Φ of
R(LIN/F2) clauses can then be straightforwardly translated into a PC refutation
π′ of the set of polynomials

pC , C ∈ Φ

such that the degree of π′ is bounded above by the linear width of π. In particular,
the weakening rule and the binary rule translate into the multiplication and the
addition rules of PC, respectively.

To illustrate this lower bound argument let us consider as a specific example
the set ¬PHPn of R(LIN/F2) clauses:

• 1 − xij , xkj , for i �= k and any j,
• 1 − xij , xik, for any i and j �= k,
• ∑

j xij , any i,

with variables xij , i ∈ [n+1], j ∈ [n]. The linear width of these clauses is 1. However,
the set of polynomials pC for C ∈ ¬PHPn is precisely the set for which the degree
n/2 lower bound for PC refutations was established by Razborov [32].

We shall employ the approximation method in Sec. 5 to reduce in a sense the
linear width. This construction introduces, however, some error into derivations

aI owe this remark to Igor C. Oliveira.
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(modeled in one of the constructions by new initial clauses to be called Ax(π, r))
and this prevents the simple reduction to PC described above.

5. Randomized Feasible Interpolation for R(LIN/F2)

In this section, we use the Razborov–Smolensky approximation method [30, 33] to
reduce in a sense the linear width of not too large R(LIN/F2) refutations.

Theorem 5.1. Assume the set-up conditions (1)–(7) and assume that sets
A1, . . . , Am, B1, . . . , B� are defined by R(LIN/F2)-clauses.

Let π be an R(LIN/F2) refutation of (the clauses defining) these sets with k

steps. Let w ≥ 1 be any parameter.
Then there is a randomized protocol for KWm[U, V ]) of size at most k + n,

communication complexity O(w log n) and of error at most 3 · 2−wk.
Moreover, if the refutation π is tree-like then also G is tree-like.

Proof. Let D be any R(LIN)-clause, i.e. a clause formed by some linear polyno-
mails. Following [30, 33] define a 2−w-approximation (Ys)s of D by the following
process:

• Using the sample s pick independently at random L1, . . . , Lw ⊆ D,
• put Ys to be the set defined by

∨
j≤w

∑
Lj ,

(
∑

Lj is the sum of all linear polynomials in Lj).

Claim. Let D be an R(LIN/F2)-clause of linear width w. Then MCCU (D) =
O(w log n).

Let us write the w linear functions forming D in a matrix form as:

Ax + By + Cz + E.

The U-player sends Au and Bqu and the V-player sends Av and Crv , 4w bits in
total. After this they know the truth values of (u, qu, rv) ∈ D and (v, qu, rv) ∈ D

and if they differ they can use the binary search on a differing row in Au and Av

to find i for which ui �= vi (2 log n bits in total).
It remains to estimate the communication complexity of the task (4). from the

definition of MCCU under the assumption that (u, qu, rv) ∈ D and (v, qu, rv) /∈ D,
i.e.:

Au + Bqu + Crv + E �= 0 and Av + Bqu + Crv + E = 0.

In particular, Au �= Av.
The players will attempt to put A in a reduced-row echelon form but by a

specific process. The U-player sends i1 ∈ [n] (log n bits) such that ui1 = 0 and the
xi1 -column in A is nonzero. The players then both separately transform A using the
elementary row and column operations in some canonical way to a unique matrix
A1 whose first column corresponds to xi1 and A1

1,1 = 1 and all other entries in the
first column are 0.
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In the second step they apply the same process to A1, not using xi1 . That is, the
U-player sends log n bits identifying some i2 ∈ [n], i2 �= i1, such that ui2 = 0 and
the xi2 -column in A1 has a nonzero element in one of the rows 2, . . . , w. Then they
again separately transform A1 into A2 with the first two columns corresponding to
xi1 and xi2 and the left-upper corner 2 × 2 submatrix being the identity matrix I2

and all other entries in the first two columns being 0.
They proceed analogously as long as it is possible. Two cases may occur:

(i) After t ≤ w steps At is in the row-reduced echelon form: the left-upper corner
t × t submatrix being the identity matrix It and all other entries in the first t

columns being 0, and all rows t + 1, . . . , w are zero.
(ii) After some step t < w At is not in the row-reduced echelon form but the U-

player has nothing to choose: there is no i �= i1, . . . , it such that the xi-column
in At has a nonzero element in one of the rows t + 1, . . . , w and ui = 0.

In Case (i) we can switch the values of some ui, i ∈ {i1, . . . , it}, from 0 to 1 to get
u′ ≥ u such that Atu′ = Atv and hence (u′, qu, rv) /∈ D.

In Case (ii) the rows t + 1, . . . , w need not to be zero but Aij �= 0 for i, j > t

implies that ui = 1 (thinking of the ith column as corresponding to xi). If for one
such i vi = 0, the V-player sends the log n bits to identify it; they found i such
that ui = 1 ∧ vi = 0. If all such vi = 1 then Gu = Gv where G is the (w − t) × n

matrix consisting of the last w − t rows of At. Writing the first t rows of At as
(It, H), where H is a t × (n − t) matrix, we can find some u′ ≥ u changing only
some ui, i ∈ {i1, . . . , it}, from 0 to 1 such that (It, H)u′ = (It, H)v and hence also
Atu′ = Atv and (u′, qu, rv) /∈ D.

In all cases the players solved the task (4). and they exchanged O(w log n) bits
at most.

Applying Theorem 2.4 concludes the proof of the theorem.

We now give an alternative proof of the randomized feasible interpolation for
R(LIN/F2), referring to Theorem 2.5 this time. It is more laborious and gives
somewhat worse bounds on the size of the resulting protocols but it may be useful
in connections with the problem of resolution over low degree polynomial calculus
that we shall discuss in Sec. 8, and it also puts R(LIN/F2) in a direct relation with
the random R of [5] (see Sec. 8).

Let π be an R(LIN/F2) refutation of Φ := A1, . . . , Am, B1, . . . , B� and let w ≥ 1
be a parameter to be specified later. In this situation, we perform the following
random process r and transform π to an R(LIN/F2) refutation π(r) of Φ extended
by a set Ax(π, r) of extra clauses:

(1) For each C ∈ π pick independently at random subsets L1, . . . , L� ⊆ C and form
clause Cr := {∑L1, . . . ,

∑
L�}.

(2) For each C ∈ π, C = f1, . . . , fk, add to the set Ax(π, r) the following k clauses:

Cr, fj + 1, for j = 1, . . . , k.
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(3) Transform π into π(r), following the construction below, summarized in
Lemma 5.2.

Clauses in (2). formalize that fj = 1 implies that Cr = 1. Before we describe π(r)
we need to establish a few simple facts.

Claim 1. For all assignments a ∈ {0, 1}n : Cr(a) = 1 implies C(a) = 1. For any
a ∈ {0, 1}n the probability that Cr(a) = 0 ∧ C(a) = 1 is at most 2−w.

Claim 2. (a) For any g, h : g + h �2 g, h.
(b) For any C ∈ π and g ∈ Cr : g �|C| C.

In part (a): derive from g + h clause g, g + h and also an F2-axiom g, g +1 from
which g, h follows by the binary rule and contraction. In part (b): if g = fj1+· · ·+fjv

use part (a) to derive from g clause fj1 + · · · + fjv−1 , fjv , and then repeat this to
remove from the sum all fjs to get the clause fj1 , . . . , fjv from which C follows by
the weakening rule.

Claim 3. Let C ∈ π, C = f1, . . . , fk, and let g = fj1 + · · · + fjv be an arbitrary
sum of a non-empty subset of C (i.e. not necessarily in Cr). Then

Ax(π, r), {g} �w+3 Cr.

By Claim 2(a) derive in linear width 2 from g clause fj1 + · · · + fjv−1 , fjv and
combine this by the binary rule and contraction with clause fjv +1, Cr from Ax(π, r)
to get

fj1 + · · · + fjv−1 , C
r

in linear width bounded by w + 3. Then repeat the same process to remove from
the sum polynomials fjv−1 , fjv−2 , . . . , fj1 to end up just with Cr.

Claim 4. Assume
C

C, h

is an inference in π. Then

Ax(π, r), Cr �2w+2 (C, h)r.

Assume Cr = {g1, . . . , gw} where each gi is a sum of some polynomials from C

and thus also from C, h. So repeating Claim 3 w-times to remove gw, gw−1, . . . , g1

we derive (C, h)r. The linear width is at most w + 3 (from Claim 3) plus w− 1 (for
side polynomials g1, . . . , gw−1), i.e. at most 2w + 2 in total.

Claim 5. Assume
C, gC, h

C, g + h + 1

is an inference in π. Then

Ax(π, r), (C, g)r, (C, h)r) �2w+3 (C, g + h + 1)r.
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We proceed as in Claim 4 and attempt to derive from Ax(π, r), (C, g)r clause
(C, g + h + 1)r. The only obstacle to doing so is when the polynomial g occurs in a
sum in (C, g)r: in that case we leave it as a side polynomial. That is, from (C, g)r

we derive (C, g + h + 1)r, g in linear width at most 2w + 2 + 1 = 2w + 3.
Analogously from (C, h)r derive (C, g + h + 1)r, h and then by the binary rule

(C, g + h + 1)r, g + h + 1.

From that we get the wanted (C, g + h + 1)r using the axiom

(g + h + 1) + 1, (C, g + h + 1)r

from Ax(π, r), the binary rule and a contraction.
The following lemma follows form the last two claims.

Lemma 5.2. Let π be an R(LIN/F2) refutation of A1, . . . , Am, B1, . . . , B� con-
sisting of k clauses and of linear width w0. Let w ≥ 1 be an arbitrary parameter.
Then for a random r there is an R(LIN/F2)-refutation π(r) of

Φ, Ax(π, r)

of linear width bounded above by

w′ := 2w + 3

and with at most O(ww0k) clauses.

Proof. The bound to the linear width follows from the last two claims, using also
that

Φ, Ax(π, r) �w′ Φr.

The bound to the number of clauses follows by inspecting that in both Claims 4
and 5 the constructed derivations have O(ww0) clauses.

We used in this construction the syntactic version of R(LIN/F2) rather than
the semantic one in order to generate explicitly the sets Ax(π, r).

Now we can apply Theorem 2.5. The values of parameters appearing in that
theorem are:

• ε := 2−wk: the conjunction of axioms in Ax(π, r) corresponding to any one clause
in π are 2−w-approximations of {0, 1}N (Claim 1).

• Number of steps: O(ww0k).
• Monotone communication complexity: O(w log n).

Theorem 5.3. Assume the set-up conditions (1)–(7) and assume that sets
A1, . . . , Am, B1, . . . , B� are defined by R(LIN/F2)-clauses.

Let π be an R(LIN/F2)-refutation of (the clauses defining) these sets with k

steps and of the linear width bounded by w0.
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Then for every w ≥ 1 there is a randomized protocol (Pr)r for KWm[U, V ] of
size at most O(ww0k) + n, communication complexity O(w log n) and of error at
most 2−wk.

Moreover, if the refutation π is tree-like then also G is tree-like.

Using Lemma 3.1 we can turn Theorems 5.1 and 5.3 into statements about
separating monotone CLOs (we use Theorem 5.1 in the corollary).

Corollary 5.4. Assume the set-up conditions (1)–(7) and assume that sets
A1, . . . , Am, B1, . . . , B� are defined by R(LIN/F2)-clauses.

Let π be an R(LIN/F2) refutation of (the clauses defining) these sets with k

steps. Let w ≥ 1 be any parameter.
Then there is a monotone CLO of size at most (k + n)2O(w log n) and of locality

at most 3 · 2−wk separating U from V .
Moreover, if the refutation π is tree-like then the monotone CLO is a formula.

6. Randomized Feasible Interpolation for CP

Following [18] call a semantic derivation CP-like if and only if the proof steps are
defined by integer linear inequalities. CP-like derivations were interpolated in [18]
by protocols but their complexity was measured in terms of the real game defined
there: players send each a real number to a referee and he announces how are these
ordered. The real communication complexity of a multi-function R, CCR(R), is
the minimal number of rounds (of sending numbers to the referee in an optimal
protocol) needed to compute a valid value for R in the worst case. We can use this
notion to measure the communication complexity of our protocols P and define
CCR(P) analogously to how CC(P) was defined. We will not recall details as we
will use here only the relation of the real communication complexity to the well-
established probabilistic communication complexity.

Let R be a multi-function defined on U ×V ⊆ {0, 1}n×{0, 1}n and let Cpub
ε (R)

be the probabilistic communication complexity of a multi-function R with public
coins and error ε > 0. The following equality was derived in [18, L. 1.6] from a
result of Nisan [22]. For ε < 1

2 it holds

Cpub
ε (R) ≤ CCR(R) · O(log n + log ε−1). (10)

We will use [18, Theorem 3.3].

Theorem 6.1. Assume the set-up conditions (1)–(7). Assume that the sets
A1, . . . , Am and B1, . . . , B� are defined by integer linear inequalities and that there
is a CP-like refutation π of Ã1, . . . , Ãm, B̃1, . . . , B̃� that has k steps.

Then for any ε < 1/k there is a randomized protocol for KWm[U, V ] of size
k + n, communication complexity O(log(n/ε)) and of error at most εk.

Moreover, if the refutation π is tree-like then also G is tree-like.
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Proof. Theorem 3.3 of [18] shows that there is a protocol for KW [U, V ] (respec-
tively, for KWm[U, V ]) of the stated size and with the real communication com-
plexity O(1). Then (10) implies that protocol can be simulated by a randomized
protocol of communication complexity O(log(n/ε)) which, for given u, v, computes
at every node x the strategy function and the consistency condition with error at
most ε. Hence the total error is estimated by εk. This entails the theorem.

Note that analogously to Corollary 5.4 this can be turned into a statement about
separating monotone CLOs. However, it is more direct to use the argument from
the preceding proof to show that monotone CLOs efficiently simulate monotone real
circuits of Pudlák [23] which do separate pairs U, V by the interpolation theorem
established there.

Lemma 6.2. Assume U, V ⊆ {0, 1}n and U is closed upwards (or V downwards).
Let C be a monotone real circuit of size s separating U from V .

Then for every 0 < ε < 1
2 there is a monotone CLO D separating U from V,

having size s(n
ε )O(1) and locality µ ≤ sε.

In particular, for any µ > 0 there is a monotone CLO separating U from V with
locality ≤ µ and size (nsµ−1)O(1).

Proof. Circuit C yields a protocol for KWm[U, V ] of size s and real communication
complexity O(1): the graph of the protocol is C turned upside down (output is the
root), the consistency condition F (u, v) consists of subcircuits E where E(u) >

E(v), and the strategy is defined so that the consistency condition is preserved.
As in the proof of Theorem 6.1 the protocol can be turned into a randomized

protocol of size s, communication complexity O(log(n/ε)) and error at most sε. The
required monotone CLO then exists by Lemma 3.1.

The particular case is obtained by setting ε := s/µ.

Let us remark that the constructions underlying Theorem 6.1 and Lemma 6.2
apply also to the proof system R(CP) of [17] operating with clauses formed by
CP-inequalities and yield a small separating CLO for small width. In particular, if
each clause in an R(CP)-refutation has size at most w then the (monotone) real
communication complexity is at most w and this yields a monotone separating CLO
of the size as in Lemma 6.2 for w = O(log(n/ε)).

7. The Lower Bound Problem for Monotone CLOs

This section is devoted to a discussion of the problem to establish a lower bound
for monotone circuits with a local oracle separating two sets U and V (obeying all
set-up conditions (1)–(7)). This would imply via Lemma 3.1 also a lower bound for
randomized protocols for KWm[U, V ] and hence a length-of-proofs lower bound for
R(LIN/F2).
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We shall consider the classical pair of disjoint sets of graphs having a large clique
and of graphs colorable by a small number of colors. Let n0 ≥ ω > ξ ≥ 1 and put
n :=

(
n0
2

)
. We shall identify in this context [n] with the set of unordered pairs of

distinct elements from [n0]; we think of each such pair as denoting a potential edge
in a graph with vertices [n0].

Take for U ⊆ {0, 1}n the set Cliquen0,ω of all graphs on [n0] that contain a
clique of size ω. We shall also denote by Cliquen0,ω(p, q) the set of the following
clauses in atoms pij , i �= j ∈ [n0], and qui, u = 1, . . . , ω and i ∈ [n0] (hence there
are s = ω · n0 q-atoms):

• ∨
i∈[n0] qui, one for each u ∈ [ω],

• ¬qui ∨ ¬qvi, one for all u < v ∈ [ω] and i ∈ [n0],
• ¬qui ∨ ¬qvj ∨ pij , one for all u < v ∈ [ω] and i �= j ∈ [n0].

Sets Ai from the set-up condition (2) are the sets defined by these clauses.
The set V ⊆ {0, 1}n will be the set of graphs on [n0] that are ξ-colorable. We

shall denote it Colorn0,ξ and by Colorn0,ξ(p, r) the set of the following clauses in
the p-atoms and atoms ria, i ∈ [n0] and a ∈ [ξ] (there are n0 · ξ r-atoms):

• ∨
a∈[ξ] ria, one for each i ∈ [n0],

• ¬ria ∨ ¬rib, one for all a < b ∈ [ξ] and i ∈ [n0],
• ¬ria ∨ ¬rja ∨ ¬pij , one for all a ∈ [ξ] and i �= j ∈ [n0].

Sets Bj from the set-up condition (2) are the sets defined by these clauses.
If we identify a truth assignment w ∈ {0, 1}n to the p-atoms with graph Gw

on [n0], truth assignments to qui satisfying Cliquen0,ω(w, q) correspond to injective
(multi-)maps from [ω] onto a clique in Gw and analogously truth assignments to
ria making Colorn0,ξ(w, r) true correspond to colorings of Gw by ξ colors. Thus if
ω > ξ the sets U and V are disjoint and it is easy to see that they, together with
the clauses above, satisfy the set-up conditions (1)–(7) from Sec. 1.

Let us first note that a lower bound for a monotone CLO with oracle rectangles
inside U × V can be derived as an easy consequence of a theorem of Jukna [11,
Theorem 3], generalizing an earlier result by Yao [34]. In particular, [11, Theorem 3]
states that there is no small (polynomial size) monotone circuit computing the
characteristic function χU of U for ω = (n0/ logn0)2/3 even if the circuits are
allowed to use at gates arbitrary monotone Boolean functions as long as all their
min-terms have size o(ω). In the case of a monotone CLO with oracle rectangles
Uj × Vj we can take for all functions fj the disjunction f of all conjunctions

�X� :=
∧

i�=j∈X

pij , (11)

where sets X ⊆ [n0] run over all sets of vertices of size ξ + 1. Clearly f is iden-
tically 1 on U and 0 on V and hence if, say, ξ = ω1/2, Jukna’s [11, Theorem 3]
applies. However, this is not good enough: we want a stronger lower bound but
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more importantly we need a lower bound for monotone CLOs separating U from
V and not just for those computing χU .

The classical result of Alon and Boppana [2], strengthening Razborov’s [29]
lower bound, offers such a lower bound for ordinary monotone circuits.

Theorem 7.1 (Alon and Boppana [2, Theorem 3.11]). Assume that 3 ≤
ξ < ω and

√
ξω ≤ n0

8 log n0
. Then any monotone circuit separating Cliquen0,ω from

Colorn0,ξ must have the size at least 2Ω(
√

ξ).

It appears possible that the same lower bound holds also for monotone CLOs
with a small constant locality. Alluding to Boppana and Sipser [3, L. 4.2] we
prove at least the following partial result for monotone CLOs of the restricted
form

D :=
∨
i≤a

(�Xi� ∧ Ci(y)), (12)

where

(12.1) |Xi| ≤ �ξ1/2� and �Xi� is defined as in (11) using variables xij in place of pij ,
(12.2) Ci(y) is a monotone circuit of an arbitrary size not containing the x-

variables,
(12.3) the size a of the disjunction is arbitrary.

Lemma 7.2. Assume that 4 ≤ ξ < ω and that n0 is large enough. Then no mono-
tone circuit with a local oracle D of the form (12), satisfying conditions (12.1)–(12.3)
and with locality µ ≤ 1

16 separates Cliquen0,ω from Colorn0,ξ.

The proof of the lemma will be summarized after Lemma 7.4.
A CLO separating U(= Cliquen0,ω) from V (= Colorn0,ξ) separates also Umin

from V max. Note that elements of Umin are graphs consisting of a clique of size
ω and having no other edges and elements of V max are ξ-partite graphs with all
possible edges among the different parts. These two sets are called in [2, 3] positive
and negative examples, respectively. In fact, for the counting purposes the nega-
tive examples are represented as ξ-colorings of [n0], each coloring determining the
maximal graph for which it is still a graph coloring.

Let D(x, y),R be a monotone CLO of the form (12), satisfying (12.1)–(12.3),
with locality µ and with e oracle rectangles Uj × Vj . Let

Bad :=
⋃
j≤e

Uj × Vj ⊆ Umin × V max.

We know that |Bad| ≤ µ · |Umin × V max|.
In the argument we shall consider other rectangles inside Umin × V max and y-

variables attached to them. Let us introduce the following notation. For U ′ ⊆ Umin

and V ′ ⊆ V max let y[U ′, V ′] be a new variable. Its valid interpretation is any
monotone Boolean function h : {0, 1}n → {0, 1} that is 1 on U ′ and 0 on V ′. Two
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specific valid interpretations of the y-variables are:

• FU -interpretation: each y[U ′, V ′] is interpreted by the Boolean function that is 1
on U ′ and 0 everywhere else on Umin ∪ V max,

• FV -interpretation: each y[U ′, V ′] is interpreted by the Boolean function that is 0
on V ′ and 1 everywhere else on Umin ∪ V max,

(we only care for values on Umin∪V max). Let E(x, y) be a monotone circuit involving
also some of the y-variables and let F be a valid interpretation of the y-variables.
Then

E(x,F)

denotes the Boolean function obtained by substituting for each y-variable in E the
function interpreting it in F .

Lemma 7.3. Let E(x, y) be a monotone circuit. It holds on Umin ∪ V max:

(1) For any valid interpretation F :

E(x,FU ) ≤ E(x,F) ≤ E(x,FV ).

(2) For F = FU ,FV :

(y[U1, V1] ∨ y[U2, V2])(F) = y[U1 ∪ U2, V1 ∩ V2](F).

(3) For F = FU ,FV :

(y[U1, V1] ∧ y[U2, V2])(F) = y[U1 ∩ U2, V1 ∪ V2](F).

(4) If both U1 × V1 and U2 × V2 are subsets of Bad, so are U1 ∪ U2 × V1 ∩ V2 and
U1 ∩ U2 × V1 ∪ V2.

Proof. Parts (1) and (4) are obvious. Let χW be the characteristic function of
W ⊂ {0, 1}n. For Part (2):

(y[U1, V1] ∨ y[U2, V2])(FU ) = χU1 ∨ χU2 = χU1∪U2 = y[U1 ∪ U2, V1 ∩ V2](FU )

and

(y[U1, V1] ∨ y[U2, V2])(FV ) = χ\V1 ∨ χ\V2 = χ\(V1∩V2) = y[U1 ∪ U2, V1 ∩ V2](FV ).

Part (3) is analogous.

We shall argue that either D(x,FU ) rejects a lot of Umin or that D(x,FV )
accepts a lot of V max. The choice to evaluate how well D works on Umin using the
interpretation FU and on V max using FV gives us (due to Part 1 of Lemma 7.3)
the best chance to detect errors.

Note that �X� is equivalent to

�X�y[Umin, ∅]
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under the two extreme interpretations as y[Umin, ∅] is 1 on Umin under FU and 1 on
both Umin and V max under FV . So we could have allowed in (12) also stand-alone
terms �X� and if we defined �∅� := 1 also stand-alone y-variables.

Lemma 7.4. Assume µ ≤ 1/16. Then for any monotone CLO E of the form

E =
∨
i≤a

(�Xi� ∧ y[Ui, Vi])

where a is arbitrary, |Xi| ≤ �ξ1/2� and all rectangles Ui × Vi are subsets of Bad it
holds :

(1) Either E(FV ) accepts at least 1/4 of V max,

(2) or E(FU ) rejects at least 3/4 of Umin.

Proof. If E is the empty disjunction, it is constantly zero and the second option
occurs.

If not, note that as all rectangles Ui × Vi are subsets of Bad, their measure in
Umin × V max at most µ. Hence at least one of its sides Ui or Vi has the measure at
most µ1/2 in Umin or V max, respectively. Now consider two cases:

(1) There is a term �Xi� ∧ y[Ui, Vi] in E with Vi having the measure at most µ1/2

in V max,
(2) not (1).

Denote � := maxj≤a |Xj|; we have � ≤ �ξ1/2�.
In the first case the term �Xi� ∧ y[Ui, Vi](FV ) accepts at least the fraction of[

1 −
(

�
2

)
ξ

]
− µ1/2 ≥

[
3
4
−

(
�
2

)
ξ

]
≥ 1

4

elements v ∈ V max: the first term is the same estimate as in [3, L. 4.2], the second
accounts for the elements of Vi.

In the second case use FU : all y[Ui, Vi](FU ) are 1 only inside Ui and hence E

accepts at most the subset
⋃

i Ui of Umin. But for each u from this union the pair
(u, v) ∈ Bad for at least a fraction of µ1/2 of elements v of V max. Hence the measure
of the union is at most µ1/2 ≤ 1

4 .

Now we can derive Lemma 7.2. By parts (2) and (3) of Lemma 7.3, each sub-
circuit Ci(y) of D is equivalent under both FU and FV to some y[Ui, Vi] such that,
by part (4) of that lemma, Ui × Vi ⊆ Bad. Hence Lemma 7.4 applies.

Let us remark that there is a certain discrepancy in the sizes when protocols
are turned to CLOs in Lemma 3.1 and CLOs are transformed into protocols in
Lemma 3.3. Thus even if the lower bound for monotone CLOs was not valid one
could still try the tight 3-valued version of Lemma 3.4.
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8. Concluding Remarks

We remark without elaborating it that Theorem 2.5 yields a randomized feasible
interpolationb for the random resolution system proposed informally by Dantchev
and defined formally by Buss, Kolodziejczyk and Thapen [5, Sec. 5.2]. Pudlák and
Thapen [25] consider more variants of the definition and they prove a feasible
interpolation for the tree-like case. According to the definition from Buss et al. [5]
an ε-random resolution refutation distribution of a set of clauses Φ is a random
distribution (πr)r of resolution refutations of Ψ ∪ ∆r, where ∆r are sets of clauses
such that any fixed truth assignment fails to satisfy

∧
∆r with the probability at

most ε. In other words, if Xr is the set of assignments satisfying all clauses in ∆r

then (Xr)r is an ε-approximation of the universe of all assignments. The number
of steps in such a random refutation is the maximal number of steps among all πr.

R(LIN/F2) can be generalized to a proof system R(PCd/F2), resolution over
degree d PC, operating with clauses formed by degree ≤ d polynomials over F2;
just add an extra rule

C, g

C, gh + h + 1

corresponding to the multiplication rule of polynomial calculus PC (cf. Clegg,
Edmonds and Impagliazzo [7]). Both processes from Sec. 5 of reducing the width of
clauses in a proof work analogously as for R(LIN/F2). For definiteness let us now
consider the construction underlying Lemma 5.2. The clauses Cr = {g1, . . . , gw}
can be themselves replaced by a single polynomial 1−Πj≤w(1−gj) of degree ≤ wd.
Hence the process can be repeated any fixed number of times and thus, in fact, it
can be applied to AC0[2]-formulas and AC0[2]-Frege proofs instead of R(PCd/F2)-
proofs only. This would result in a semantic PC-refutation of the original set of
clauses augmented by additional initial polynomials (analogous to axioms Ax(π, r))
of degree wO(1) which yields also a syntactic PC-refutation of the same set of clauses
and of the same degree by Buss et al. [4, Theorem 2.6]. A similar reduction can
be obtained also by using the characterization of AC0[2]-Frege proofs via the so-
called extended Nullstellensatz proofs of Buss et al. [4] and removing the extension
axioms there by a random assignment to the extension variables at the expense
of introducing the new initial polynomials. However, if monotone CLOs separating
Cliquen0,ω and Colorn0,ξ from Sec. 7 must be indeed large, randomized feasible
interpolation will not work in this situation as constant depth Frege systems admit
short proofs of the weak pigeonhole principle and hence also of the disjointness of
the sets Cliquen0,ω and Colorn0,ξ (when ω ≥ 2ξ). Note also that R(PCd/F2) even
without the extra axioms p-simulates R(d), a proof systems operating with d-DNFs
(cf. [19]), which is known to be fairly strong (it corresponds to bounded arithmetic
theory T 2

2 (α) for d poly-logarithmic in n, cf. [19]).

bA different one than [20].
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[14] J. Kraj́ıček, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Ency-
clopedia of Mathematics and Its Applications, Vol. 60 (Cambridge University Press,
1995).
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