
A Personal View of Average-Case ComplexityRussell Impagliazzo�Computer Science and EngineeringUC, San Diego9500 Gilman DriveLa Jolla, CA 92093-0114russell@cs.ucsd.eduApril 17, 1995AbstractThe structural theory of average-case com-plexity, introduced by Levin , gives a for-mal setting for discussing the types ofinputs for which a problem is di�cult.This is vital to understanding both whena seemingly di�cult (e.g. NP -complete)problem is actually easy on almost all in-stances, and to determining which prob-lems might be suitable for applications re-quiring hard problems, such as cryptog-raphy. This paper attempts to summarizethe state of knowledge in this area, includ-ing some \folklore" results that have notexplicitly appeared in print. We also tryto standardize and unify de�nitions. Fi-nally, we indicate what we feel are inter-esting research directions. We hope thatthis paper will motivate more research inthis area and provide an introduction tothe area for people new to it.�Research Supported by NSF YI Award CCR-92-570979, Sloan Research Fellowship BR-3311,and USA-Israel BSF Grant 92-00043

1 IntroductionThere is a large gap between a problemnot being easy and the same problem be-ing di�cult. A problem could have noe�cient worst-case algorithm but still besolvable for \most" instances, or on in-stances that arise in practice. Thus, a con-ventional completeness result can be rel-atively meaningless in terms of the \reallife" di�culty of the problem, since twoproblems can both be NP - complete, butone can be solvable quickly on most in-stances that arise in practice and the othernot. However, \average run-time" argu-ments of particular algorithms for partic-ular distributions are also unenlighteningas to the complexity of real instances ofa problem. First, they only analyze theperformance of speci�c algorithms ratherthan describing the inherent complexity ofthe problem. Secondly, the distributionsof inputs that arise in practice are oftendi�cult to characterize, so analysis of al-gorithms on \nice" distributions does notcapture the \real-life" average di�culty.Thus, a structural theory of distribu-tional complexity is necessary. Such a the-ory should allow one to compare the inher-ent intractability of distributional prob-



lems (computational problems togetherwith distributions on instances). It shouldalso provide results that are meaningfulwith respect to instances from an arbitrarydistribution that might arise.Besides capturing more accurately the\real world" di�culty of problems, the\average-case complexity" of a problemis important in determining its suitabilityfor applications such as cryptography andthe de-randomization of algorithms. Forsuch applications, one needs more thanthe mere existence of hard instances of theproblem; one needs to be able to generateinstances in a way that guarantees that al-most all generated instances are hard.For these reasons, Levin in [L1] intro-duced a structural theory of the average-case complexity of problems. The maincontributions of his paper were a gen-eral notion of a distributional problem,a machine-independent de�nition of theaverage-case performance of an algorithm,an appropriate notion of reduction be-tween distributional problems, and an ex-ample of a problem that was complete forthe class of all NP problems on su�ciently\uniform" distributions. Since, he andmany others have built on this foundation(see e.g., [BCGL],[G2],[VL], [G3]).Despite the above work, I feel the struc-ture of average-case complexity has not re-ceived the attention due to a central prob-lem in complexity theory. The goal of thispaper is to motivate more research in thisarea, and to make the research frontiermore accessible to people starting work inthis area.Several caveats are necessary with re-spect to this goal. As this is basically apropaganda piece, I will present my ownpersonal view of what makes the �eld ex-citing. I will not present a comprehensivesummary or bibliography of work in thearea, nor do I claim that the work men-tioned here is the \best" in the area. I

will also attempt to \clarify" and \sim-plify" concepts in the area by presentingboth my own equivalent formulations andalso by trying to make a uniform taxon-omy for concepts. The current de�nitionsare the product of much thought and workby top researchers, so many researchers inthe area will consider my attempts to dothis as a \confusion" and \complicating"of the issues rather than a \clari�cationand simpli�cation" of them. However, Ifeel someone starting out in the area mightbene�t from seeing a variety of perspec-tives. Many of the results mentioned inthis paper should be considered \folklore"in that they merely formally state ideasthat are well-known to researchers in thearea, but may not be obvious to beginnersand to the best of my knowledge do notappear elsewhere in print.2 Five possible worldsTo illustrate the central role in complex-ity theory of questions regarding the aver-age case complexity of problems in NP ,we will now take a guided tour of �vepossible (i.e., not currently known to befalse ) outcomes for these questions, andsee how they would a�ect computer sci-ence. In each such \world", we will lookat the inuence of the outcomes of thesequestions on algorithm design for such ar-eas as arti�cial intelligence and VLSI de-sign, and for cryptography and computersecurity. We will also consider the moretechnical issue of derandomization of al-gorithms (the simulation of probabilisticalgorithms by deterministic algorithms).This will have a much smaller impact onsociety than the other issues, but we in-clude it as another situation (besides cryp-tography) where having di�cult problemsis actually useful.Finally, to provide a human angle, wewill consider the impact these questions2



would have had on the sad story of Profes-sor Grouse, the teacher who assigned theyoung Gauss's class the problem of sum-ming the numbers from 1 to 100. The be-ginning of this story is well-known, butfew people realize that Professor Grousethen became obsessed with getting his re-venge by humiliating Gauss in front of theclass, by inventing problems Gauss couldnot solve. In real life, this led to Grouse'scommitment to a lunatic asylum (not apleasant end, especially in the 19'th cen-tury) and to Gauss's developing a life-longinterest in number-theoretic algorithms.Here, we imagine how the story might haveturned out had Grouse been an expertin computational complexity at a timewhen the main questions about average-case complexity had been resolved. (Webelieve that this story inspired Gurevich's\Challenger-Solver Game" [G1]).In this section, we will leave unresolvedthe questions of how to properly formal-ize the complexity assumptions behind theworlds. In particular, we will leave openwhich model of computation we are talk-ing about, e.g., deterministic algorithms,probabilistic algorithms, Boolean circuits,or even quantum computers, and we shallignore quantitative issues, such as whetheran n100 time algorithm for satis�abilitywould be \feasible". We also assume that,if an algorithm exists, then it is known tothe inhabitants of the world. We also ig-nore the issue of whether it might be possi-ble that algorithms are fast for some inputsizes but not others, which would have thee�ect of bouncing us from world to worldas technology advanced.We will take as our standard for whetherthese worlds are indeed \possible" the ex-istence of an oracle relative to which theappropriate assumptions hold. Of course,this is far from a de�nitive answer, and theexistence of an oracle should not stop theresearcher from attempting to �nd non-

relativizing techniques to narrow the rangeof possibilities. Indeed, it would be won-derful to eliminate one or more of theseworlds from consideration, preferably thepestilent Pessiland. We will try to suc-cinctly and informally describe what typeof algorithm and/or lower bound would beneeded to conclude that we are in a partic-ular world. Barring the caveats mentionedin the previous paragraph, these condi-tions will basically cover all eventualities,thus showing that these are the only possi-ble worlds. (This is an informal statement,and will be more true for some worlds thanothers.)2.1 AlgorithmicaAlgorithmica is the world in which P =NP or some moral equivalent, e.g., NP �BPP . In this world, Grouse would haveeven less success at stumping Gauss thanhe had in real life. Since Grouse neededto stump Gauss on a problem for whichhe (Grouse) could later present an answerto the class, he is restricted to problemswhich have succinct, easily veri�able so-lutions, i.e., NP . Gauss could use themethod of verifying the solution to auto-matically solve the problem.Such a method of automatically pro-ducing a solution for a problem fromthe method of recognizing a valid solu-tion would revolutionize computer science.Seemingly intractable algorithmic prob-lems would become trivial. Almost anytype of optimization problem would beeasy and automatic; for example, VLSIdesign would no longer use heuristics, butcould instead produce exactly optimal lay-outs for problems once a criterion for op-timality was given. Programming lan-guages would not need to involve instruc-tions on how the computation should beperformed, Instead, one would just spec-ify the properties that a desired output3



should have in relation to the input. Ifthe speci�cation language is such that it iseasy to evaluate whether an output meetsthe speci�cation, then the compiler couldautomatically feed it to the algorithm tosolve the NP -complete problem to gener-ate the output. (This is the motivationbehind logic-programming languages suchas PROLOG, but in Algorithmica it wouldactually work that way!)Less obviously, P = NP would maketrivial many aspects of the arti�cial intel-ligence program that are in real life chal-lenging to the point of despair. Inductivelearning systems would replace our feebleattempts at expert systems. One coulduse an \Occam's Razor" based inductivelearning algorithm to automatically traina computer to perform any task that hu-mans can (see, e.g., [] ). Such an algo-rithm would take as input a training setof possible inputs and outputs producedby a human expert, and would producethe simplest algorithm that produced thesame results as the expert. Thus, a com-puter could be taught to recognize andparse grammatically correct English justby having su�ciently many examples ofcorrect and incorrect English statements,without needing any specialized knowl-edge of grammar or English. (This as-sumes merely that there exists a simplealgorithm that humans use to parse nat-ural languages. People have attemptedto use neural nets to do similar learningtasks, but that implicitly makes the muchstronger assumption that the task is per-formable by a constant depth thresholdcircuit, which is not always reasonable.)Using the result that approximatecounting is in the polynomial-time hierar-chy [St], exponential sized spaces of possi-ble sequences of events could be searchedand a probability estimate for an eventgiven observed facts could be output, thusproducing Mr. Spock-like estimates for all

sorts of complicated events. \Computer-assisted mathematics" would be a redun-dant phrase, since computers could �ndproofs for any theorem in time roughlythe length of the proof. (We could usethe above learning method to train thecomputer to search for \informal proofsacceptable to mathematicians" or \papersacceptable at FOCS"!) In short, as soonas a feasible algorithm for an NP-completeproblem is found, the capacity of comput-ers will become that currently depicted inscience �ction.On the other hand, in Algorithmica,there would be no way of telling di�er-ent people or computers apart by informa-tional means. The above-mentioned learn-ing algorithms could simply learn to mimicthe behavior of another machine or per-son. Any code that could be developedcould be broken just as easily. It woulddo little good to keep the algorithm thecode is based on secret, since an identi-cal algorithm could be automatically gen-erated from a small number of samples ofencrypted and clear-text messages. Therewould be no way to allow some peopleaccess to information without making itavailable to everyone. Thus any meansof identi�cation would have to based onsome physical measurement, and the secu-rity of the identi�cation would have to bebased on the unforgeability of the physicalmeasurement and the extent to which allchannels from the measuring device to theidenti�er are tamper-proof. In particular,any �le or information remotely accessiblevia a possibly insecure channel would ba-sically be publicly available. (The aboveassumes that no physical property is di-rectly observable at a distance, which maynot be true. In particular, it may be pos-sible to identify people based on certainquantum e�ects [BBR]).There seems to be no reason why ran-domness could not be essential for the4



worst-case algorithm for the NP -completeproblem. No general techniques for de-randomization are known to be possiblein a version of Algorithmica where, say,NP = RP 6= P .To show that we are in Algorithmica,one needs to present an e�cient algorithmfor some NP -complete language. A rela-tivized Algorithmica was given in [BGS].2.2 HeuristicaHeuristica is the world where NP prob-lems are intractable in the worst-case, buttractable on average for any samplable dis-tribution.Heuristica is in some sense a paradoxi-cal world. Here, there exist hard instancesof NP problems, but to �nd such hardinstances is itself an intractable problem!In this world, Grouse might be able to�nd problems that Gauss cannot answerin class, but it might take Grouse a weekto �nd a problem that Gauss could notsolve in a day, and a year to �nd one thatGauss could not solve in a month. (Here, Iam assuming that Gauss has some polyno-mial advantage over Grouse, since Gaussis after all a genius!) Presumably, \real-life " is not so adversarial that it wouldsolve intractable problems just to give usa hard time , so for all practical purposesthis world is indistinguishable from Algo-rithmica.Or is it? In Heuristica, the time tosolve a problem drawn from a distributionmight be polynomial in not just the prob-lem size but also the time required to sam-ple from the distribution and the fractionof problems from the distribution that areat least as \hard" as the given problem.In other words, the average-case time tosolve an NP problem is a function of theaverage-case time to think up the prob-lem. This makes the situation not at allclear. Say that, on average, it takes us

just twice as long to solve a problem asit does to think it up. As we all know,the solution to one mathematical probleminvariably leads to another problem. Soif we spend time T thinking up problem1, and then 2T solving it, and the solutionleads to a second problem 2, we have spent3T time thinking up problem 2. Thus,it might take 6T time to solve problem 2in Heuristica. (In Algorithmica, the timewould be independent of how we thoughtup the problem.) Which leads to a prob-lem 3 which took 10T steps to think up,and so 20T time to solve. Since this recur-sion is exponential, in a few iterations wehave crossed the border between \feasible"and \infeasible".A more speci�c example of a possi-ble di�erence between Algorithmica andHeuristica would be V LSI problems in-volving circuit minimization. In V LSI ,algorithms should be given some represen-tation of a function and then be able to de-sign a circuit that is minimal with respectto certain costs that computes the func-tion. In Algorithmica, you could make upsuch an algorithm in two stages. First,you could use your solution to an NP -complete problem to come up with an al-gorithm that will recognize when a circuitactually computes the speci�ed function,this being a Co�NP problem, since youcould certify the circuit incorrect by pro-viding one input on which it does not pro-duce the speci�ed value. Then, using the�rst algorithm as the de�ning criterion forwhat a possible solution is, the problem ofminimization becomes an NP -type prob-lem, and you can solve it using your algo-rithm for an NP -complete problem.The same process in Heuristica is notguaranteed to produce good results. Your�rst algorithm will work well on most cir-cuits and speci�cations, but you don't re-ally care about most circuits. You reallywant an algorithm that will work well on5



circuits that are minimal instantiations ofspeci�cations! Such circuits might not bedistributed in any nice way, and since itwould seem to take exponential time to�nd such circuits, there is no reason whythey might not be the hard to �nd, hardinstances of the problem on which algo-rithms fail in Heuristica.Thus, a central problem in the structureof average-case complexity is : if all prob-lems in NP are easy on average, can thesame be said of all problems in the poly-nomial hierarchy? (The circuit minimiza-tion problem is in �P2 and problems involv-ing repeated iterations of NP questionsare in PNP .) This question is exploredin more detail in [SW]. The best knownresult along these lines is that of [BCGL]reducing average case search problems toaverage case decision problems.As far as network security and cryptog-raphy go, there would not be much of a dif-ference between Algorithmica and Heuris-tica. It would not be much help to have le-gitimate users spend huge amounts of timethinking up problems to uniquely identifythem if eavesdroppers can solve the prob-lems in comparable amounts of time. Oneshould always assume that people willingto break a system are also willing to usesigni�cantly more resources doing so thanlegitimate users are willing to spend rou-tinely!As we shall see later, there are sev-eral ways of formalizing a problem's being\easy-on-average". In some of these def-initions, some de-randomization follows;for example, one can show that if allNP problems have polynomial-on-averageprobabilistic algorithms in the sense ofLevin, then BPP = ZPP . However, wefeel this is more of an artifact of the de�-nition than an essential fact about Heuris-tica. We will present alternate de�nitionsin the next section.From the results of [ILe], being in Heur-

sitica is basically equivalent to knowing amethod of quickly solving almost all in-stances of one of the average-case completeproblems on the uniform distribution (seee.g., [L1],[G2],[VL], [G3]). and having alower bound for the worst-case complex-ity of some NP -complete problem. We donot know of any relativized Heuristica us-ing Levin's de�nition of average-case com-plexity. However, there is an oracle inwhich every problem in NP has an al-gorithm that solves it on most instances,yet NP 6� P=poly ([IR2]). The di�erencebetween the two de�nitions is that in theweaker one, the algorithm always runs inpolynomial time but occasionally gives anincorrect answer, whereas Levin's strongerde�nition insists that the algorithm be al-ways correct, but it may occasionally runfor more than polynomial time. (This dif-ference will be detailed in the next sec-tion.) We do not know whether these twocriteria for NP being easy on average areequivalent, and we feel it is a questionworth exploring.2.3 PessilandPessiland is, to my mind, the worst of allpossible worlds, the world in which thereare hard average-case problems, but noone-way functions. By the non-existenceof one-way functions,we mean that anyprocess f(x) that is easy to compute isalso easy to invert in the sense that, foralmost all values of x, given f(x), it is pos-sible to �nd some x0 with f(x0) = f(x) inroughly the same amount of time it tookto compute f(x). In Pessiland, it is easyto generate many hard instances of NP -problems. However, there is no way of gen-erating hard solved instances of problems.For any such process of generating prob-lems, consider the function which takes therandom bits used by the generator as in-put and outputs the problem. If this func-tion were invertible, then given the prob-6



lem, one could �nd the random bits usedto generate the problem, and hence the so-lution.In Pessiland, Grouse could pose Gaussproblems that even the budding geniuscould not solve. However, Grouse couldnot solve the problems either, and soGauss's humiliation would be far fromcomplete.In Pessiland, problems for many do-mains will have no easy solutions.Progress will be like it is in our world:made slowly through a more completeunderstanding of the real-world situationand compromises by using unsatisfactoryheuristics. Generic methods of problemsolving will fail in most domains. How-ever, a few relatively amazing generic al-gorithms are possible based only on thenon-existence of one-way functions. Forexample, [ILe] gives a method of using ageneric function inverter to learn in aver-age polynomial time the behaviour of anunknown algorithm by observing its input-output behaviour on some samplable inputdistribution. It would also be possible togive a generic data compression method,where if one knows the process by whichstrings are being produced, i.e. an algo-rithm that produces samples according tothe distribution, then, in the limit, stringscan be compressed to an expected lengthof the entropy of the distribution ([IZ]).Finding other algorithmic implicationsof the non-existence of one-way functionsis an interesting research direction. Moregenerally, the structural theory of cryptog-raphy under the axiom that one-way func-tions exist is rich; is there a similarly richtheory under the axiom that there are noone-way functions?There does not seem to be a way ofmaking use of the hard problems in Pessi-land in cryptography. A problem that noone knows the answer to cannot be usedto distinguish legitimate users from eaves-

droppers. This intuition is made formalin [ILu], where it is shown that one-wayfunctions are necessary for many crypto-graphic applications.The existence of hard average-caseproblems in a non-uniform setting hasbeen shown by Nisan and Wigderson([NW])to be su�cient for generic de-randomization. Note that the de�nition ofdi�cult problem they use is much strongerthan the negation of Levin's de�nition ofan easy-on-average problem. They givea smooth trade-o� between the di�cultyof a problem and its consequences forthe de-randomization of algorithms; if aproblem in E has exponential di�culty,then P = BPP ; if such a problem hassuper-polynomial di�culty, then BPP �DTIME(2no(1)).Levin ([L2]) gives an example of a func-tion that is complete for being one-way,so having an algorithm for inverting thisfunction su�ces to show that there areno one-way functions. To then show thatyou are in Pessiland, you need to give anaverage-case lower bound for some prob-lem in NP .2.4 MinicryptIn Minicrypt, one-way functions exist,but public key cryptography is impossi-ble. We here identify public key cryp-tography with the task of agreeing on asecret with a stranger via a publicly ac-cessible channel, although strictly speak-ing, public key cryptography is just onemethod of accomplishing this task. Theone-way function could be used to gener-ate hard, solved problems: the generatorwould pick x, compute y = f(x) and posethe search problem, \Find any x0 withf(x0) = y" knowing one solution, x. Thus,in Minicrypt, Grouse �nally gains the up-per hand, and can best Gauss in front ofthe class.7



There are no known positive algorithmicaspects to Minicrypt, except that you canuse the one-way function to get a pseudo-random generator that can be used to de-randomize algorithms [HILL].On the other hand, it is possible for par-ticipants in a network to identify them-selves to other participants and to authen-ticate messages as originating from themusing electronic signatures [NY], [?]. It ispossible to prove facts about a secret inin a way that discloses no other informa-tion about the secret ([?],[GMW]). It ispossible, if a small amount of informationis agreed upon in advance, to set up a pri-vate unbreakable code between two partic-ipants in the network that will allow themto talk privately over a publicly accessi-ble channel. ([HILL],[GGM], [LR]). How-ever, it is impossible to have secure elec-tions over a public channel, or to establisha private code without sending some in-formation through a secure channel. It isnot known how to have anonymous digi-tal money in such a world. Many otherapplications involving multiple participantprotocols seem impossible if you cannot es-tablish private codes on public channels.To prove that the real world isMinicrypt, one would have to prove thatno e�cient algorithm exists for invertingsome one-way functions, and also showhow to break any secret-key agreementprotocol. There seems to be no nice char-acterization of secret-key agreement pro-tocols, and maybe this is inherent to theproblem ([Ru]), so it is not clear how onecould even start to do the latter. [IR] givesa relativized Minicrypt.2.5 CryptomaniaIn Cryptomania, public-key cryptographyis possible, i,e., it is possible for two par-ties to agree on a secret message usingonly publicly accessible channels. In Cryp-

tomania, Gauss is utterly humiliated; bymeans of conversations in class, Grouseand his pet student would be able tojointly choose a problem that they wouldboth know the answer to, but which Gausscould not solve. In fact, in such a world,Grouse could arrange that all the studentsexcept Gauss would be able to solve theproblems asked in class!Such a secret key agreement protocolimplies the existence of a one-way function[ILu], so we still have pseudo-randomness,signatures, identi�cation, zero-knowledge,etc. Also, if one does the secret-keyexchange using trap-door one-way func-tions (and all known protocols are eitherexplicitly or implicitly using such func-tions), one can do almost any crypto-graphic task imaginable! (See [?],[?] ).Any group of people can agree to jointlycompute an arbitrary function of secret in-puts without compromising their secrets.This directly includes, for example, se-cure electronic voting, or anonymous dig-ital cash, although not necessarily in apractical form. Unlike in the other worldswhere establishing privacy is a technologi-cal challenge, the technology of Cryptoma-nia would limit the capability of author-ities to restrict privacy. Most decisionsabout how much privacy is available to cit-izens of such a world would be guided bysocial and political processes rather thantechnical capability. For example, thereare a whole gamut of possible electronicmoney systems , some of which protectuser anonymity to a greater extent thanothers. Which becomes the standard is amatter of political choice { although per-haps not a democratic choice, since thestandards are now set without much pub-lic discussion except within a small circleof interested parties.This world is the one closest to the realworld, in that as far as we know, the RSAcryptosystem is secure. Public key cryp-8



tography is currently in the transition pro-cess of being accepted as a standard, al-though both technical and political issuesblock full implementation of the above-mentioned protocols.However, blind acceptance of the ex-istence of public key cryptosystems as ade facto complexity axiom is unwarranted.Currently, all known secure public keycryptosystems are based on variants ofRSA, Rabin, and Di�e-Hellman crypto-systems. If an e�cient way of factoring in-tegers and solving discrete logarithms be-came known, then not only would the pop-ular public key cryptosystems be broken,but there would be no candidate for a se-cure public-key cryptosystem, or any realmethodology for coming up with such acandidate. There is no theoretical reasonwhy factoring or discrete log should be in-tractable problems. Con�dence that theyare intractable is based on our ignorance ofany good method for solving the problemsafter more than twenty years of intense re-search. However, the same twenty yearshave vastly improved number-theoretic al-gorithms, so there is no reason to suspectsimilar improvements do not lie ahead.This makes it impossible to pick param-eters for public-key sizes that will be stillsecure in say 20 years. In fact, the earliestguess for such a parameter 20 years agowas recently broken. More speculatively,it has been recently shown how to solveboth problems in the quantum computermodel [Sh]. The existence of public-keycryptography is fragile at best.To prove that we live in Cryptomania,one must prove that a particular secret-key exchange protocol is secure. Provinga strong lower bound on the average casetime to factor or take discrete logs wouldbe su�cient, and no other problems arecurrently candidates for founding public-key cryptography. Brassard[Bra] gives arelativized world where public-key cryp-

tography is possible.3 De�nitional issuesThe de�nitions Levin gave for the ba-sic concepts of his theory seem counter-intuitive to many people on �rst reading.For example, he talks about the expecta-tion of some positive power of the timetaken by an algorithm, rather than that ofthe time. In this section, we will give someequivalent formulations of Levin's de�ni-tions that are intended to justify the def-initions and make them seem more intu-itive. We will also present some variationsof these de�nitions that seem related butnot equivalent.3.1 In�nite input distributionsversus ensembles of �nite in-put distributionsOne feature of Levin's de�nition that Ipersonally �nd unappealing is that in hisde�nition of a distributional problem, theinput distribution is a single distributionon all inputs of all sizes. I prefer to thinkof the input distribution as being, at any�xed time, on a �nite set of possible in-puts of at most some �xed size. However,as technology improves, the size of inputsthat we are interested in increases (sincemost computational problems arise fromthe technology itself). So the inputs for anaverage-case problem are to my mind bestmodeled by a sequence of �nite probabilitydistributions on strings of bounded size,where the sequence is parameterized bythe input size. Fortunately, as we shall see,Levin's de�nition of average-case complex-ity remains pretty much unchanged undereither model. So the choice of �nite ver-sus in�nite input distributions is merelyan aesthetic one.The proof here is messy, but stupid. It9



is included for completeness, but pleasefeel free to accept the moral without get-ting bogged down in the computation. Iinclude Levin's de�nition of a time func-tion's being \polynomial-on-average" herewithout explanation or justi�cation, sothat we can eliminate the in�nite distribu-tions once and for all. If you don't want totry to make sense of this de�nition, skip tothe next subsection, where an equivalentformulation is given.(Intuitively, in the following, T (i) rep-resents the time taken by a machine oninput i.)Definition 3.1: A distribution on thepositive integers Z+ is a function � :Z+ ! R where �(i) � 0 andPi2Z+ �(i) =1, A distribution on a �nite set S is thesame replacing Z+ with S in the sum.An ensemble of distributions is a sequenceof distributions �n, n 2 Z+, where each�n is a distribution on the set of posi-tive integers with binary length at mostn. A function T : Z+ ! Z+ is polyno-mial on average with respect to �, a dis-tribution on Z+, if there is some � > 0 sothat Pi2Z+ T (i)�jij�1�(i) converges. Wesay that T is polynomial on average withrespect to an ensemble of distributions�n; n 2 Z+ if there is an � > 0 so thatthe expectation of T (i)� when i is chosenaccording to �n is O(n),Proposition 1: Let � be a distributionon Z+ and let �n be the restriction of �to numbers of length at most n. Then anyfunction T is polynomial on average withrespect to � if and only if it is polynomialon average with respect to the ensemble�n, n 2 Z+.Proof: Assume T is polynomial on aver-age with respectto �. So Pi T (i)�jij�1�(i) converges forsome � > 0. Then Pi;jij�n T (i)��n(i) �Pi;jij�n(n=jij)T (i)�(�(i)=Probi2�Z+ [jij �

n]) = O(n)Pi T (i)�jij�1�(i) = O(n), soT is polynomial on average with respectto �n.Conversely, if T is polynomial onaverage with respect to �n, there issome � > 0 so that T (i)� has expec-tation O(n) when i is chosen accord-ing to n. Then Pi;jij=n T (i)��(i) �Pi;jij�n T (i)��(i) � Pi;jij�n T (i)��n(i) =O(n). Thus Pi(T (i)�=3)jij�1�(i) =Pi;T (i)�=3�jij T (i)�=3jij�1�(i) +Pi;T (i)�=3>jij T (i)�=3jij�1�(i) � Pi �(i) +Pi;T (i)�=3�jij(T (i)�=(jijT (i)2=3�))�(i) � 1+PnPi;jij=n(T (i)��(i))=n3 =1+PnO(n)=n3 = 1+PnO(1=n2), whichconverges. So T is polynomial on averagewith respect to �. 2.From now on then, we will look at theinput as coming from one element of anensemble of distributions.3.2 Expected Time versus the\Average Case"Why did Levin look at the expectation ofT � rather than T? The traditional an-swer is that the expectation of a func-tion might be small, but some polynomialof that function, huge, For example, ifT (x) = n for all but a 1=2n fraction ofinputs, but was 2n on those inputs, thenthe expectation of T is O(n), but the ex-pectation of T 2 is O(2n). Thus, if you �rstdo a computation that's expected polyno-mial time, and then compute a worst-casepolynomial-time function of the result, thewhole process might not be expected poly-nomial time. Levin's de�nition closes theclass of average-case polynomial problemsunder such transformations.However, I think there's a better rea-son. Levin's de�nition is not intended tocapture the expected cost to the solver;rather, it captures the trade-o� betweena measure of di�culty and the fraction10



of hard instances of the problem, i.e., be-tween a time bound T and the fractionof instances that take the algorithm morethan T time. This trade-o� should bepolynomial in T : only a sub-polynomialfraction of instances should require super-polynomial time, only a quasi-polynomialfraction more than quasi-polynomial time,etc. Thus, the time to �nd, through ran-dom sampling, an instance requiring morethan T time is at least T �, so the poserdoes not have more than a polynomial ad-vantage over the solver. Levin hints atthis in the last sentence of his original pa-per, and Gurevich has explained it nicelyin [G1]. However, I feel that the followingformal statement based on this intuitionmight be helpful to have in the literature:Definition 3.2: A distributional prob-lem is a function f and an input ensemle�n, n 2 Z+. The distributional prob-lem f on input ensemble �n is said to bein AvgP if there is an algorithm to com-pute f whose running time is polynomialon average with respect to �n. An algo-rithm computes f with benign faults if iteither outputs an element of the range off or \ ?" and if it outputs anything otherthan ?, it is correct (f of the input.) Apolynomial-time benign algorithm schemefor a function f on �n is an algorithmA(x; �) so that:� A runs in time polynomial in jxj and1=�.� A computes f(x) with benign faults.� 8�; 1 > � > 0 and all n 2 Z+,Probx2�nZ+ [A(x; �) =?] � �.Proposition 2: A problem f on inputensemble �n is in AvgP if and only if ithas a polynomial-time benign algorithmscheme.Proof: Assume f on �n is in AvgP.Then there is an algorithm A so that

for TA(x) the time T takes on inputx, Expx2�nZ+ [TA(x)�] = O(n). ThenProb[TA(x) � O((kn)1=�)] � 1=k. So thealgorithm B where B(x; �) simulates A forO(n=�)1=� steps, and outputs ? if A failsto halt is a benign algorithm scheme for f .Conversely, assume B(x; �) is a benignalgorithm scheme for f with time at most(jxj=�)c. Then let A be the algorithmthat simulates B with parameters � =1=2; 1=4; 1=8; ::: until an answer is given.The expectation of the power 1=2c of thetime of A on inputs from �n is then atmost: (2n)1=2+1=2(4n)1=2+1=4(8n)1=2+::: = n1=2(Pi(2�i=2) = O(n1=2):, since atmost 1/2 of the inputs run for more thanone iteration, at most 1/4 more than twoiterations, etc. So A is a polynomial onaverage algorithm for f 2,Definition 3.3: A distribution ensemble�n is samplable if there is a probabilisticpolynomial-time algorithm A that on in-put 2n produces outputs distributed ac-cording to �n. The class DistNP is theclass of distributional problems in NPwhere the input distribution is samplable.Proposition 3: If every problem inDistNP has a polynomial-time benign er-ror algorithm that produces an outputwith probability 1�1=n2, then DistNP �AvgP .Sketch: We reduce �nding a benign algo-rithm scheme for the problem to �nding a1=n2 benign error algorithm for the sameproblem but a slightly di�erent input dis-tribution. In the second problem, you pickan input by picking a random n0 from 1to n amd then sampling according to n0as the �rst problem does. Given an in-stance from the original problem, and anerror parameter �, we use the 1=n2 benignerror algorithm on the input distributionfor n = 1=�.11



From this it follows that there is some�xed polynomial p so that there is an al-gorithm solving one of the average-casecomplete problems with probability 1 �1=p(n) and only making benign faults,then DistNP � AvgP .3.3 ExtensionsRephrasing Levin's de�nition in this lightgives us some insight into extensions. The�rst obvious extension is to change ourmodel from deterministic to probabilisticcomputation. There are several ways ofdoing this. The �rst would be to insistthat all errors be benign on all randominputs of the algorithm . I call the result-ing class AvgZPP , for average case, zero-error probabilistic algorithms. Then it isrelatively easy to use results of [NW] toprove the following:Proposition 4: IfDistNP � AvgZPP then BPP = ZPP .However, this is saying less about the av-erage case hardness of problems in NPthen about error-free vs. error prone ran-domized computation. For example, it isan open problem whether DistBPP �AvgZPP , but a problem in BPP shouldnot be considered hard on average in-stances! Thus we could de�ne an average-case version of BPP:Definition 3.4: A probabilisticalgorithm returning output possibly ? isstatistically benign for decision problem fif on any input, the probability that the al-gorithm returns an answer other than f(x)is at most 1/3. Similarly for a statisticallybenign algorithm scheme. The class of dis-tributional problems which have poly-timestatistically benign algorithm schemes iscalled AvgBPP .It is also easy to present a non-uniformversion of AvgP in the obvious way, which

we will call AvgP=poly.However, even these more robust de�ni-tions fail to bridge the gap between whatis not easy and what is hard. This gapis largely caused by the insistence on thealgorithm making only benign errors.Definition 3.5: An algorithm scheme fora distributional problem is an algorithmA(x; �) so that for x chosen according tothe distribution ensemble and any �xed� > 0, the probability that A fails to re-turn a correct answer is at most �. HPfor heuristic polynomial-time is the class ofdistributional problems with a determinis-tic poly-time algorithm scheme, and sim-ilarly HPP is the class of distributionalproblems with a probabilistic poly-time al-gorithm scheme, andHP=poly with a non-uniform algorithm scheme.To get some idea for the di�erence,[NW] shows how to use any problemin DistNP but not in HP=poly for de-randomization. [IR2] was able to con-struct an oracle where DistNP � HPbut NP 6� P=poly, but the same forAvgP=poly is not known. However, manyof the reductions between average-caseproblems work equally well for the heuris-tic classes as for the average-case classes.Investigating the di�erences between theaverage-case and heuristic distributionalclasses is another important research di-rection.References[BGS] T.Baker, J. Gill and R. Solo-vay Relativizations of the P=NPquestion, SIAM J. Comput.,1975, pp. 431-442.[BBR] Bennett, C., Brassard, G.,Robert, J., \Privacy Ampli�ca-tion by Public Discussion", Siam12



J. on Computing, Vol. 17, No. 2,1988, pp. 210-229.[BCGL] S. Ben-David, B. Chor,O. Gol-dreich, and M. Luby, On theTheory of Average Case Com-plexity, STOC 22 (1990), 379-386.[Bra] G. Brassard, Relativized Cryp-tography, IEEE Trans. Inform.Theory, IT-29 (1983), 877-894.[DH] W. Di�e and M. Hellman,\New directions in cryptogra-phy", IEEE Trans. Inform. The-ory, Vol. 22, 1976, pp. 644-654.[GGM] Goldreich, O., S. Goldwasser,and S. Micali, \How to Con-struct Random Functions", J. ofACM, Vol. 33, No. 4, 1986, pp.792-807.[GMW] Goldreich, O., Micali, S., andWigderson, A., \Proofs thatYield Nothing But their Valid-ity or All Languages in NP haveZero-Knowledge Proofs", J. ofthe ACM, Vol. 38, No. 3, July1991, pp. 691{729.[G1] Y. Gurevich The Challenger-Solver Game Bulletin of theEATCS, October, 1991.[G2] Y. Gurevich Average case com-pleteness JCSS[G3] Y. Gurevich Matrix block de-composition is complete for theaverage case 31'st FOCS, 1990,pp. 802-811.[HILL] J. Has-tad, R. Impagliazzo,L. Levin,and M. Luby, Pseudo-RandomGenerators Based on One-WayFunctions. To appear, SIAMJournal of Computing.

[ILe] R. Impagliazzo and L. Levin, NoBetter Ways of Finding HardNP-Problems Than Picking Uni-formly at Random. Proceedingsof the 31'st IEEE Symposium onFoundations of Computer Sci-ence, 1990.[ILu] R. Impagliazzo and M. Luby,One-Way Functions are Essentialfor Complexity Based Cryptog-raphy. Proceedings of the 30'thIEEE Symposium on Founda-tions of Computer Science, 1989.[IR] R. Impagliazzo and S. Rudich,Limits on the Provable Conse-quences of One-Way Functions.Proceedings, 20'th ACM Sympo-sium on Theory of Computing,1989 .[IR2] R. Impagliazzo and S. Rudich, inpreparation.[IZ] R. Impagliazzo and D. Zucker-man, How to Recycle RandomBits. Proceedings of the 30'thIEEE Symposium on Founda-tions of Computer Science, 1989.[L1] L. Levin, Average Case Com-plete Problems SIAM J. Com-put. 15 (1986), 285-286.[L2] L. Levin. ?[LR] Luby M., and Racko�, C., \Howto Construct Pseudorandom Per-mutations From PseudorandomFunctions", SIAM J. on Com-puting, Vol. 17, No. 2, 1988, pp.373-386.[NW] N. Nisan and A. Wigderson,Hardness vs. Randomness, JCSS?[NY] Naor, M. and Yung, M., \Uni-versal One-way Hash Functions13



and Their Applications", 21rstSTOC, 1989, pp 33-43.[OW] Ostrovsky, R and Wigderson,A., \One-way Functions areEssential for Non-Trivial Zero-Knowledge", 2nd Israel Sympo-sium on the Theory of Comput-ing and Systems, 1993, pp. 3-17.[RSA] R. Rivest, A. Shamir and L.Adleman, \A method for obtain-ing digital signatures and public-key cryptosystems", Comm. ofthe ACM, Vol. 21, 1978, pp. 120-126.[Rom] Rompel, J., \One-way Functionsare Necessary and Su�cient forSecure Signatures", 22nd STOC,1990, pp 387-394.[Ru] S. Rudich The Role of Inter-action in Public Key Cryptogra-phy, Crypto, 91.[Sh] P. Shor, Algorithms for Quan-tum Computation: Discrete Log-arithms and Factoring, FOCS,1994.[St] L. Stockmeyer On approxima-tion algorithms for #P TCS 3,1977,1-22.[SW] R. Schuler and O.Watanabe, To-wards Average-Case Complex-ity Analysis of NP OptimizationProblems, this proceedings.[VL] R. Venkatesan and L. Levin Ran-dom instances of a graph color-ing problem are hard, STOC 20(1988), 217-222. 14


