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Chapter 1

Introduction

We meet the fluids basically everywhere. The water forms 80% of the human
body, without drinking we would die in three days. However, how much do we
know about the fluids?

We skip all very important facts coming from chemistry, physics and other
sciences and we immediately start with the mathematical description. It appears
that we know very little about the almost simplest model of a viscous fluid....

1.1 The equations

We assume that the fluid occupies at the time instant t the region Ω(t) ⊂ RN .
Typically, we take N = 2, 3, as these are the most interesting cases. We will
work with the following quantities

• density ”ρ(t, x) = limr→0
M(t,Br(x))

|Br(x)| ” with M(t, B) denoting the mass of

the fluid contained at the time instant t in the ball B

• velocity field u(t, x)

We assume that we can specify these two quantities at each time instant t at
any point x ∈ Ω(t). For more details about the assumptions used in continuum
mechanics and more detailed explanation, see, e.g., [16].

Let B ⊂ RN be a fixed domain such that B ⊂ Ω(t). Then the mass of the
fluid remains conserved, i.e., the change of the mass of the fluid contained in B
is either due to the changes of the density or due to the convection through the
boundary, i.e.,

d

dt
M(t, B) =

d

dt

∫
B

ρ(t, ·) dx = −
∫
∂B

ρ(t, ·)u(t, ·) · n(·) dS,

where n(x) denotes the outer normal to B at the point x ∈ ∂B. The Gauss the-
orem implies the following integral form of the conservation of mass (continuity
equation) ∫

B

( ∂
∂t
ρ(t, ·) + div(ρu)(t, ·)

)
dx = 0, (1.1)

provided the corresponding derivatives exist.
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4 CHAPTER 1. INTRODUCTION

Next, we formulate the Newton law saying that the change of the linear
momentum is proportional to the force, in the language of the continuum me-
chanics. We have

d

dt

∫
B

(ρu)(t, ·) dx = −
∫
∂B

(ρu⊗ u)(t, ·)n(·) dS + FB ,

where the boundary term denotes again the flux of the momentum through the
boundary and the last term denotes the force applied on the part of the fluid
B. In continuum mechanics we consider two kinds of forces, the volume forces
(e.g., the gravity force or any other force which acts similarly) and the surface
forces (i.e., the tension). Thus

FB =

∫
B

(ρf)(t, ·) dx+

∫
∂B

t(t, ·) dS.

It is possible to show that under quite general hypothesis the tension can be
written in the form

t(t, x,n) = T(t, x)n(x)
(
=

N∑
j=1

Tij(t, x)nj(x)
)
.

Thus
d

dt

∫
B

(ρu)(t, ·) dx = −
∫
∂B

(ρu⊗ u)(t, ·)n(·) dS

+

∫
B

(ρf)(t, ·) dx+

∫
∂B

T(t, ·)n(·) dS,

which after the application of the Gauss theorem (again, if the derivatives exist)
leads to the integral form of the balance of linear momentum∫

B

( ∂
∂t

(ρu)(t, ·) + div(ρu⊗ u)(t, ·)− (ρf)(t, ·)− divT(t, ·)
)
dx = 0. (1.2)

Next, we could consider also the balance of the angular momentum and
energy. However, the balance of the angular momentum, assuming no internal
momenta in the fluid, leads to the fact that T is a symmetric tensor. Further, we
neglect any changes of the internal energy, i.e., the balance of the total energy
is just the balance of the kinetic energy which is formally (if all quantities are
sufficiently smooth) the consequence of the balance of linear momentum.

We return to system (1.1)–(1.2) and assume that all quantities are smooth
enough. Multiplying each equation by 1

|B| and letting |B| → 0+ we get the

differential form of the balance equations

∂ρ

∂t
+ div(ρu) = 0,

∂

∂t
(ρu) + div(ρu⊗ u) = ρf+ divT.

(1.3)

From now on, we will assume that the fluid is incompressible, i.e., if we follow
any part of the fluid, its volume remains unchanged. It means

d

dt

∫
V (t)

dX(t) = 0;
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here we integrate at time instant t over the volume which is occupied by the fluid
particles which occupied initially (at t = t0) the fixed volume Bt0 . It follows by
the transport theorem (which is basically the change of variables) that

divu = 0. (1.4)

Moreover, we assume that the density is initially spatially constant, i.e.,

ρ(0, x) = ρ0 = const.

Then it follows by (1.3)1 and (1.4) that ρ = const and thus (1.3)1 is reduced to
(1.4).

Finally, we have to specify the stress tensor. It is the moment, when mod-
elling starts to play an important role, especially for more complex fluids. First,
we write the stress tensor in the form

T = −pI+ S,

where the scalar function p = − 1
3 trT (i.e., trS = 0). The so-called viscous part

of the stress tensor, the quantity S, must be modelled.
Assuming that the fluid has no memory and the response on the shear is

instantaneous (first order), we get

S = S(∇u).

Moreover, using the material frame indifference (i.e., the Galilean invariance),
it can be shown that

S = S(D(u))

withD(u) = 1
2 (∇u+∇uT ), the symmetric part of the velocity gradient. Further,

as the fluid has the full group of symmetry, the tensor function S fulfils

QS(D(u))QT = S(QD(u)QT )

for any orthogonal matrix Q with detQ = 1. This leads in three space dimen-
sions to the representation

S(D(u)) = α0I+ α1D(u) + α2D(u)2,

where the scalars α0, α1 and α2 depend on the invariants of D(u). Note that in
three space dimensions, the invariants of a matrix A are:

• tr (A) =
∑3

i=1Aii

• tr (AAT ) = |A|2

• detA

For more details see, e.g., [22].
We further linearize, i.e., we assume that the dependence of S on D(u) is

linear, which, together with the incompressibility condition (1.4) leads to

S(D(u)) = α1D(u),



6 CHAPTER 1. INTRODUCTION

where α1 is a constant. Thus we arrive at

divu = 0,

ρ0
∂u

∂t
+ ρ0 div(u⊗ u) +∇p− µ∆u = ρ0f,

(1.5)

where we used the fact that

div(α1D(u)) =
1

2
α1 div(∇u+∇uT ) =

1

2
α1(∆u+∇ divu) = µ∆u,

and we denoted by µ = 1
2α1 the viscosity. In order to formulate correctly our

problem, we must specify the boundary and the initial conditions.
The initial condition can be formulated only for the velocity field u, i.e.,

u(t0, x) = u0(x). (1.6)

In what follows, we will take t0 = 0.
Concerning the boundary conditions, the situation is more complex. One

can consider problem (1.5)–(1.6) in the full space, i.e., it is enough to specify
the behaviour of the solution at infinity. Another possibility is to consider the
problem in the space periodic cells and assume that all functions are space pe-
riodic. Both these conditions simplify the study considerably, as they avoid any
troubles near the boundary. However, we will consider more realistic situation
when Ω(t) = Ω is a fixed bounded domain. We will mainly consider the case of
the homogeneous Dirichlet boundary condition, i.e.,

u(t, x) = 0, t > 0, x on ∂Ω. (1.7)

Note that condition (1.7) means that the fluid does not penetrate through the
boundary (i.e., the normal part of the velocity is zero) and that the fluid adheres
at the boundary (i.e., the tangential part is also zero). We could also study more
general conditions. Keeping the no-penetration condition

u(t, x) · n(x) = 0, t > 0, x at ∂Ω,

we can assume
(T(t, x)n(x)) · τττ(x) + βu(t, x) · τττ(x) = 0

for t > 0, x at ∂Ω and τττ any tangent vector. Here, β ≥ 0. Note that the case
β = 0 corresponds to the full slip at the boundary while letting β to infinity we
recover (1.7). Indeed, we can also study situations with prescribed flux at the
boundary, i.e., the normal velocity component non-zero.

However, we restrict ourselves only on the homogeneous Dirichlet condition,
i.e., on problem (1.5)–(1.7). The classical formulation of the problem reads as
follows:
For a given T ∈ (0,∞], u0 and f find1

u ∈
(
C1,2((0, T )× Ω)

)N ⋂(
C([0, T )× Ω)

)N
, u = 0 on ∂Ω,

p ∈ C0,1((0, T )× Ω) such that in (0, T )× Ω,
divu = 0,

∂u

∂t
+ div(u⊗ u) +∇p− ν∆u = f.

(1.8)

Note that we denoted ν = µ
ρ0

and we redefined the pressure p.

1By Cα,β((0, T ) × Ω) we mean the set of all functions which are α-times continuously
differentiable in the time- and β-times continuously differentiable in the space variables.
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1.2 Historical remarks

Equations (1.5) were firstly derived by the French engineer C.M.L.H. Navier
in 1822. However, his assumptions, under which he deduced the system from the
molecular physics, appeared to be unrealistic. Surprisingly, G. Stokes obtained
in 1845 exactly the same system using more or less similar approach as presented
above. However, between these years the same model has been proposed by S.D.
Poisson (1829) and A.J.C.B. de Saint-Venant (1843). Unfortunately, these
names did not enter into the name of this system of equations.

Modern mathematical attempts to study this system go back to twenties
of the last century. Swedish mathematician and physicist C.W. Oseen [32]
studied mostly the linearized version of our system, but he was also the first one
who proposed a weaker version of the formulation to our problem. In the next
decade, French mathematician J. Leray followed Oseen’s ideas in his doctoral
thesis and proved existence and uniqueness of a classical solution in the case
when Ω = R2, see [25]. However, he failed in the case Ω = R3 and therefore
he proposed another approach, which is nowadays known as weak formulation.
In [26], he proved existence of such solutions for Ω = R3. However, he was
not able to decide, whether these solutions are unique and whether they are
smooth if data are so. He called these solutions turbulent as he believed that
the turbulence is responsible for possible irregularities in the flow.

After the second world war J. Leray abandoned the field of mathematical
fluid mechanics. However, a new generation represented by E. Hopf [17], O.A.
Ladyzhenskaya [21] or J.-L. Lions [27] studied carefully our problem and
extended the previous results to many other boundary value problems, with
similar results as for the Cauchy problem: in two space dimensions regularity and
uniqueness, in three space dimensions only weak solutions with partial results
in the direction of regularity and uniqueness.

An interesting idea how to localize the problem of the regularity goes back
to early eighties of the last century. Based on the attempts of W. Scheffer, in
their seminal paper [4], L. Caffarelli, R. Kohn and L. Nirenberg proposed
the suitable weak solution, whose existence they were able to show, together with
its partial regularity. We will not treat this problem here, note only that the
question whether any weak solution is necessarily a suitable weak solution is
still open.

In 2000, inspired by the hundred years old talk of D. Hilbert, the Clay
Mathematical Institute [6] offered 1 million US $ for solution of seven open prob-
lems in mathematics. And the question, whether weak solutions for the Navier–
Stokes equations in three space dimensions are necessarily smooth provided the
data are so, was among them. This offer attracted several mathematicians to the
problems of mathematical fluid mechanics. It lead to several interesting partial
results by P.-L. Lions [28], J. Nečas et al. [30], V. Šverák, G. Seregin
[8], [9], [34] . . . but the millennium problem remains still open. More complete
list of new results can be found in the recent monographs [23], [24], [33] or [40].

Let us finally mention several very recent results. For so-called very weak
solution (a solution for which even the first spatial derivatives may not exist)
T. Buckmaster a V. Vicol in [2] showed that this definition of a solution
is too weak and there may exist many such solutions; even uncountably many.
This result is closely connected with similar results for Euler equations of C.
De Lellis and L. Székelyhidi (the original paper is [7]).
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Moreover, V. Šverák and H. Jia pointed out the possibility [18] that non-
smooth initial conditions may generate more than one weak solution of the
Navier–Stokes equations. The proof of this property is based on a certain con-
dition. The fact that this condition may be fulfilled was shown ”numerically” in
[15]. It is not yet an analytical proof, but it shows that this scenario is possible.

1.3 Weaker notion of a solution

Let as briefly explain the main idea how to weaken the formulation of our
problem. Take the momentum equation

∂u

∂t
+ div(u⊗ u) +∇p− ν∆u = f,

multiply it scalarly by a smooth function ϕϕϕ such that divϕϕϕ = 0, ϕϕϕ(x, T ) = 0
and ϕϕϕ = 0 at the boundary. Finally, apply the Gauss theorem. We consider each
term separately:∫ T

0

∫
Ω

∂u

∂t
·ϕϕϕdxdt = −

∫ T

0

∫
Ω

u · ∂ϕ
ϕϕ

∂t
dxdt−

∫
Ω

u0(·) ·ϕϕϕ(0, ·) dx∫ T

0

∫
Ω

(u · ∇u) ·ϕϕϕdxdt =

∫ T

0

∫
Ω

div(u⊗ u) ·ϕϕϕdxdt

= −
∫ T

0

∫
Ω

(u⊗ u) : ∇ϕϕϕdx dt+

∫ T

0

∫
∂Ω

((u⊗ u)n) ·ϕϕϕ︸ ︷︷ ︸
=0

dS dt

∫ T

0

∫
Ω

−∆u ·ϕϕϕdx dt =

∫ T

0

∫
Ω

∇u : ∇ϕϕϕdxdt−
∫ T

0

∫
∂Ω

∂u

∂n
· ϕϕϕ︸︷︷︸

=0

dS dt∫ T

0

∫
Ω

∇p ·ϕϕϕdxdt =

∫ T

0

∫
∂Ω

pϕϕϕ · n︸︷︷︸
=0

dS dt−
∫ T

0

∫
Ω

p divϕϕϕ︸ ︷︷ ︸
=0

dx dt

and we get

T∫
0

∫
Ω

(
−u · ∂ϕ

ϕϕ

∂t
−(u⊗u) : ∇ϕϕϕ+ν∇u : ∇ϕϕϕ

)
dxdt =

T∫
0

∫
Ω

f ·ϕϕϕdx dt+

∫
Ω

u0 ·ϕϕϕdx

(1.9)

for all ϕϕϕ ∈
(
C∞

0 ([0, T )× Ω)
)N

such that divϕϕϕ = 0 in (0, T )× Ω.
Later on, we will slightly modify the definition of our weak solution. Let us

now emphasize two important things. Firstly, we separated the pressure from
the formulation, which simplifies considerably the situation. We will return to
the question if we can reconstruct it when we prove the existence of a weak
solution to our problem. Secondly, our solution has much less regularity than
the classical solution, thus we have better chance to construct it. Note that we

need only ∇u ∈
(
L1((0, T )× Ω)

)N2

such that u ∈
(
L2((0, T )× Ω)

)N
.

Remark . Note that we started with integral formulation of the balance laws,
then switched, assuming that the solution is sufficiently smooth, to the classical
formulation and finally relaxed the regularity assumption to get weak formula-
tion. Is this approach correct, in view of the fact that classical solutions may not
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exist? Fortunately, we can get the weak formulation without necessity to work
with classical solutions. The proof is slightly technical, but can be done using
standard methods from the measure theory. C.W. Oseen (see [32]) has already
observed this fact, however, he worked with Riemann integral rather than with
the Lebesgue one. For another approach, see [11].

The plan of the Lecture notes is following:

• we introduce the function spaces which we will use later on, part of the
results without the proof, part will also be proved

• we prove existence of a solution to our problem, in bounded two- and
three-dimensional domains

• we show that to a given weak solution the pressure exists

• for two space dimensions, we prove uniqueness and regularity of the solu-
tion

• in three space dimensions we show uniqueness under additional regularity
assumptions, under similar assumptions also higher regularity

• we prove short time regularity as well as global-in-time regularity for small
data



Chapter 2

Basic function spaces

2.1 Lebesgue and Sobolev spaces

We use standard notation for:
Sobolev space: W k,p(Ω), k ∈ N, 1 ≤ p ≤ ∞
Lebesgue space: Lq(Ω), 1 ≤ q ≤ ∞

We assume that the theory of these fundamental spaces is known to the
reader. It can be found in many textbooks on partial differential equations (see,
e.g., [10]) or in special monographs (see, e.g., [1] or [20]).

Let us only mention the following well known interpolation inequalities:

a) Lebesgue:

Lemma 2.1.1. Let f ∈ Lp(Ω) ∩ Lq(Ω), 1 ≤ p < q ≤ ∞, Ω ⊂ RN . Then
f ∈ Lr(Ω), p ≤ r ≤ q, and

‖f‖r ≤ ‖f‖αp ‖f‖1−α
q ,

1

r
=
α

p
+

1− α

q
, α ∈ [0, 1] . (2.1)

Proof. It is left as an exercise for the kind reader. �

b) Lebesgue, Sobolev:

Let f ∈ Lq(Ω) ∩W 1,s(Ω), 1 ≤ q < ∞. Is it possible to show inequalities of
the type

‖f‖r ≤ C‖f‖1−α
q ‖f‖α1,s

for certain r, q a s? The answer is affirmative.

Theorem 2.1.1. Let Ω ∈ C0,1 be a bounded domain in RN , f ∈ W 1,s(Ω) ∩
Lq(Ω), 1 ≤ q <∞.

10
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a) If s < N , then f ∈ Lr(Ω), r ≤ Ns
N−s and for q ≤ r ≤ Ns

N−s there exists
C = C(Ω, N, s, q, r):

‖f‖r ≤ C ‖f‖α1,s‖f‖1−α
q , α ∈ [0, 1] ,

1

r
= α

(1
s
− 1

N

)
+ (1− α)

1

q
.

(2.2)

b) If s = N we can take in (2.2) q ≤ r <∞ and r ≤ ∞ for s > N .

Proof. The idea of the proof is based on the following two steps:
a) we show that (2.2) holds true for f ∈ C∞

0 (RN ), basically using Gagliardo-
Nirenberg type inequalities

b) we use the extension theorem (therefore Ω ∈ C0,1!) and density of smooth
functions or properties of the mollifier to transfer these results to bounded do-
mains.

Remark: If Ω = RN or f ∈ W 1,s
0 (Ω), we can take in (2.2) instead of ‖f‖1,s

only ‖∇f‖s .

Remark: We show only two special cases of (2.2) which will be important for
us:

N = 2, r = 4, s = q = 2 :
1

4
= α

(
1

2
− 1

2

)
+ (1− α)

1

2
⇒ α =

1

2
,

N = 3, r = 4, s = q = 2 :
1

4
= α

(
1

2
− 1

3

)
+ (1− α)

1

2
⇒ α =

3

4
,

i.e., ∃C = C(N) : ∀u ∈W 1,2(Ω) : ‖u‖4 ≤ C ‖u‖
1
2
1,2 ‖u‖

1
2
2 , Ω ⊂ R2,

‖u‖4 ≤ C ‖u‖
3
4
1,2 ‖u‖

1
4
2 , Ω ⊂ R3.

Let us prove these inequalities:

a) N = 2: Let u ∈ C∞
0 (R2). Then ‖u‖4 ≤

√
2‖∇u‖

1
2
2 ‖u‖

1
2
2 .

Proof. The Gagliardo–Nirenberg inequality tells us for v ∈ C∞
0 (R2)

‖v‖2 ≤ ‖∇v‖1.

Take v = |u|2. It implies

‖u‖24 ≤
∫
R2

|∇(u2)|dx ≤ 2

∫
R2

|u||∇u|dx ≤ 2‖u‖2‖∇u‖2,

i.e.,

‖u‖4 ≤
√
2‖u‖

1
2
2 ‖∇u‖

1
2
2 .

(The constant is not optimal — see R. Temam [38]: C = 2
1
4 .)

b) N = 3: Let u ∈ C∞
0 (R3). Then ‖u‖4 ≤

(
8
3

) 3
4 ‖∇u‖

3
4
2 ‖u‖

1
4
2 .
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Proof. Analogously as above

‖v‖ 3
2
≤ ‖∇v‖1.

Choose v = |u| 83 . Then

‖u‖
8
3
4 ≤

∫
R3

|∇|u| 83 |dx ≤ 8

3

∫
R3

|∇u||u| 53 dx

=
8

3

∫
R3

|∇u||u| 53α|u|(1−α) 5
3 dx ≤ 8

3
‖∇u‖2‖u‖

4
3
4 ‖u‖

1
3
2 .

(As 1
2 + 5α

12 + 5(1−α)
6 = 1 ⇒ α = 4

5 .) Altogether

‖u‖4 ≤
(
8

3

) 3
4

‖∇u‖
3
4
2 ‖u‖

1
4
2 .

(The constant can be decreased to C =
√
2, see [38].)

Especially, if u ∈ W 1,2
0 (Ω), then the inequality holds with the same constant,

it is enough to use the density of smooth functions with compact support. In
the general case one applies the extension theorem and instead of the norm of
gradient the whole W 1,2-norm appears. �

2.2 Bochner spaces

We will be interested in functions u: I ⊂ R → X, where X is a Banach space.
The proofs of the following results can be found, e.g., in [20].

Definition 2.2.1. a) A function f : I → X is called a simple function, if
its range is finite, i.e., there exist c1 . . . , ck ∈ X and O1, . . . , Ok ⊂ I,

Oi ∩Oj = ∅ i 6= j, Oi measurable such that f(t) =
k∑

i=1

ciχOi(t).

b) A function f : I → X is called strongly measurable if there exists a sequence
of simple functions fn such that lim

n→∞
‖fn(t)− f(t)‖X = 0 for a.e. t ∈ I.

Lemma 2.2.1. Let f be strongly measurable. Then ‖f(·)‖X : I → R is measur-
able in the Lebesgue sense.

Definition 2.2.2. A function f : I → X is Bochner integrable, if there exists a
sequence of simple functions {fn}∞n=1 such that

• lim
n→∞

‖fn(t)− f(t)‖X = 0 for a.a. t ∈ I (i.e., f is strongly measurable),

• lim
n→∞

∫
I

‖fn(·)− f(·)‖X dt = 0.

If J ⊆ I and f is Bochner integrable over I, then∫
J

f dt = lim
n→∞

∫
I

χJ(t)fn(t) dt = lim
n→∞

kn∑
i=1

cni |On
i ∩ J |,

where fn fulfils the assumptions stated above.
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Theorem 2.2.1 (Bochner). A strongly measurable function f : I → X is Boch-
ner integrable over I ⇐⇒ ‖f(·)‖X has finite Lebesgue integral over I.

Corollary 2.2.1. Let I be a bounded open interval in R. If f ∈ C
(
I;X

)
, then

it is Bochner integrable ⇐⇒ ‖f(·)‖X has finite integral over I.

Lemma 2.2.2. If f is Bochner integrable over I, then

a) ‖
∫
I

fdt‖X ≤
∫
I

‖f‖X dt,

b) lim
|J|→0+ , J⊂I

∫
J

f dt = 0 ∈ X (null element).

Remark . It follows from the definition that for η ∈ X∗ and ϕ Bochner inte-
grable over I it holds〈

η,

∫
I

ϕ(t) dt
〉
X∗, X

=

∫
I

〈η, ϕ(t)〉X∗,X dt.

2.2.1 Spaces Lp(I;X)

Definition 2.2.3. Let X be a Banach space, 1 ≤ p ≤ ∞, I ⊂ R. We denote by
Lp(I;X) the set of all strongly measurable functions f : I → X such that

a) 1 ≤ p <∞ ∫
I

||f(t)||pXdt <∞,

b) p = ∞

ess sup
I

‖f(t)‖X <∞.

�

Theorem 2.2.2. The spaces Lp(I;X) are linear spaces. We set f1 = f2 if
f1(t) = f2(t) for a.a. t ∈ I (in the sense of X). Then Lp(I;X) are Banach
spaces endowed with the norms

‖f‖Lp(I;X) =
(∫

I

‖f(t)‖pX dt
)1/p

, 1 ≤ p <∞,

‖f‖L∞(I;X) = ess sup
I

‖f(·)‖X , p = ∞.

Note that if I is a bounded interval, then

• Lp(I;X) ↪→ Lq(I;X), 1 ≤ q ≤ p,

• ‖
∫
I

f(t) dt‖X ≤
∫
I

‖f(t)‖X dt ≤ ‖f‖Lp(I;X)|I|1−
1
p(

‖f(·)‖X ∈ L1(I) ⇒ f is Bochner integrable.
)
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Theorem 2.2.3. Let X be a reflexive Banach space, let X∗ denote its dual, 1 ≤
p < ∞. Then each continuous linear functional on Lp(I;X) can be represented
as

〈Φ, f〉(Lp(I;X))∗,Lp(I;X) =

∫
I

〈ϕ(t), f(t)〉X∗,X dt, f ∈ Lp(I;X), ϕ ∈ Lp′
(I;X∗).

Moreover, if 1 < p <∞, then Lp(I;X) is a reflexive Banach space.

Let I = (0, T ), T < ∞. Extend f ∈ Lp(I;X) by the null element of X
outside of I. For ω(·) the standard mollifier denote

fh(t) =
1

h

∫
R

ω

(
t− s

h

)
f(s) ds.

Then

fh ∈ C∞ ([0, T ] ;X) .

If f ∈ Lp(I;X) for 1 ≤ p <∞,

fh −→ f in Lp(0, T ;X),

and for any 1 ≤ p ≤ ∞

‖fh‖Lp(0,T ;X) ≤ ‖f‖Lp(0,T ;X).

As a consequence we have

Theorem 2.2.4. Let 1 ≤ p < ∞, X be a separable Banach space. Then also
Lp(I;X) is a separable Banach space.

Proof. It is similar to the case X = R.

In particular, for 1 ≤ p < ∞, the functions from C∞
0 ((0, T ) ;X) are dense

in Lp(0, T ;X).

2.2.2 Spaces with time derivative

We now define the weak derivative with respect to the variable t. The situation
is similar to the definition of the weak derivative for Sobolev spaces.

Definition 2.2.4. Let u ∈ L1
loc(0, T ;X), g ∈ L1

loc(0, T ;X). Then g = u′ (= ∂u
∂t ),

if
T∫

0

u(t)ϕ′(t) dt = −
T∫

0

g(t)ϕ(t) dt ∀ϕ ∈ D(0, T ).

�
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Lemma 2.2.3. Let X be a Banach space, X∗ its dual. Let u, g ∈ L1(0, T ;X).
Then the following assertions are equivalent:

u(t) = ξ +

t∫
0

g(s) ds for a.a. t ∈ [0, T ] , ξ ∈ X, (2.3)

∀ϕ ∈ D(0, T ) :

T∫
0

u(t)ϕ′(t) dt = −
T∫

0

g(t)ϕ(t) dt, (2.4)

∀η ∈ X∗ :
d

dt
〈η, u〉X∗,X = 〈η, g〉X∗,X in D′(0, T ). (2.5)

If (2.3)–(2.5) holds true, then u = ũ a.e. in [0, T ], where ũ ∈ C ([0, T ] ;X).

Proof.
First note that the mapping t 7→

∫ t

0
g(s) ds is absolutely continuous on [0, T ]

with values in X. Thus:
(2.3) ⇒ (2.4): multiply (2.3) by ϕ′(t) ∈ D(0, T ) and (2.4) is a consequence of
the integration by parts.
(2.3) ⇒ (2.5): first apply η ∈ X∗ to (2.3), then proceed as above.
(2.5) ⇒ (2.4): we know that ∀ϕ ∈ D(0, T )

T∫
0

〈η, u〉X∗,X ϕ′ dt = −
T∫

0

〈η, g〉X∗,X ϕdt,

η ∈ X∗. As η is independent of t, the linearity of the integral implies

〈
η,

T∫
0

uϕ′ dt+

T∫
0

gϕ dt
〉
X∗,X

= 0 ∀η ∈ X∗,

which gives (2.4).
(2.4) ⇒ (2.3): we may assume, without loss of generality, that g = 0. Indeed, we

set u0(t) =
t∫
0

g(s) ds and v = u(t)− u0(t). Clearly, u0 ∈ AC ([0, T ];X), u0
′ = g

a.e. in I. Let
T∫

0

vϕ′ dt = 0 ∀ϕ ∈ D(0, T ).

We show that then v = const ∈ X. Each function ϕ ∈ D(0, T ) can be written
as

ϕ = λϕ0 + ψ′ , λ =

T∫
0

ϕ(s) ds,

where ϕ0 ∈ D(0, T ) is a fixed function, for which

T∫
0

ϕ0 ds = 1,
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and ψ ∈ D(0, T ) is a primitive to ϕ− λϕ0 such that ψ(0) = 0. We have∫ T

0

(v(t)− ξ)ϕ(t) dt = 0 ∀ϕ ∈ D(0, T ), ξ =

∫ T

0

v(s)ϕ0(s) ds.

Now, using standard argument (mollification in time) it follows that v(t)−ξ = 0
a.e. in (0, T ). �

Consider two separable Hilbert spaces, V (e.g.,W 1,2
0 (Ω)) andH (e.g., L2(Ω)).

Using the Riesz representation theorem we identify H = H∗. Let us consider
the Gelfand triple

V ↪→
densely H = H∗ ↪→

densely V
∗ (2.6)

(we prove the dense embedding of the dual spaces later on, see Lemma 2.2.6).
Consider our spaces V = W 1,2

0 (Ω) a H = L2(Ω). The embedding of V into H
represents the identity operator I: W 1,2

0 (Ω) → L2(Ω). Let us look at the identi-
fication of H and H∗. To any Φ ∈

(
L2(Ω)

)∗ ∃!g ∈ L2(Ω): 〈Φg, ϕ〉(L2(Ω))∗,L2(Ω) =∫
Ω
gϕ dx, ‖Φg‖(L2(Ω))∗ = ‖g‖L2(Ω). This functional belongs to (W 1,2

0 (Ω))∗ in the
sense

〈Φg, ψ〉(W 1,2
0 (Ω))∗,W 1,2

0 (Ω) =

∫
Ω

gψ dx ∀ψ ∈W 1,2
0 (Ω).

Thus for g ∈W 1,2
0 (Ω)

〈g, ψ〉(W 1,2
0 (Ω))∗,W 1,2

0 (Ω)

def
= 〈Φg, ψ〉(L2(Ω))∗,L2(Ω) =

∫
Ω

gψ dx ∀ψ ∈W 1,2
0 (Ω).

In the general case, we have for u, v ∈ V ↪→ H

(Iu, Iv)H = 〈ΦIu, Iv〉H∗,H ,

where I is the identity mapping representing the embedding V ↪→ H and Φ(·)
plays, as above, the role of the Riesz representation theorem. Then

〈u, v〉V ∗,V
def
= 〈ΦIu, Iv〉H∗,H = (Iu, Iv)H ∀v ∈ V.

In this sense we also understand the embedding V ↪→ V ∗. We can proceed
analogously for V only a reflexive Banach space.

Remark . For spaces V and H as above we can define the time derivative of a
function u ∈ Lp(0, T ;V ) lying in Lq(0, T ;V ∗) as follows: we require that∫ T

0

〈u′, v〉V ∗,V ψ dt = −
∫ T

0

(Iu, Iv)Hψ
′ dt

∀v ∈ V and ∀ψ ∈ C∞
0 (0, T ). If moreover u, v ∈ Lp(0, T ;V ), u′, v′ ∈ Lp′

(0, T ;V ∗)
and ψ ∈ C∞

0 (0, T ), 2 ≤ p <∞, then∫ T

0

(
〈u′, v〉V ∗,V + 〈v′, u〉V ∗,V

)
ψ dt = −

∫ T

0

(u, v)Hψ
′ dt.

The proof follows the same lines as the proof of the lemma below.

In what follows, we skip writing the identity operator I.
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Lemma 2.2.4. Let V be a reflexive Banach space and H a Hilbert spaces, V ∗

and H∗ be the corresponding dual spaces. Let V ↪→
densely H = H∗ ↪→

densely V
∗. Let

u ∈ Lp(0, T ;V ), u′ ∈ Lp′
(0, T ;V ∗), 1 < p < ∞. Then u is equal a.e. in (0, T )

to a continuous function from [0, T ] to H. Moreover,

d

dt
‖u‖2H = 2 〈u′, u〉V ∗,V in D′(0, T ). (2.7)

Proof. The proof will be performed in three steps.

Step 1. Let us show (2.7). From Lemma 2.2.3 we know that u ∈ C ([0, T ] ;V ∗).
Namely, as V ↪→ V ∗, the functions u, u′ ∈ L1(0, T ;V ∗). Further,

‖u‖2H = (u, u)H = 〈u, u〉H∗,H = 〈 u︸︷︷︸
∈L∞(0,T ;V ∗)

, u︸︷︷︸
∈Lp(0,T ;V )

〉V ∗,V ∈ L1(0, T ),

i.e., u ∈ L2(0, T ;H). Now, let um be the mollification of ũ (ũ = u in [0, T ],
otherwise ũ is equal to 0 ∈ V ), um ∈ C∞ ([0, T ] ;V ),

um −→ u in Lp(0, T ;V ),

u′m −→ u in Lp′
(0, T ;V ∗),

um −→ u in L2(0, T ;H).

Hence
d

dt
‖um‖2H = 2 (u′m, um)H = 2 〈u′m, um〉V ∗,V ∀m ∈ N,

thus

−
∫ T

0

‖um‖2H ϕ′ dt = 2

∫ T

0

〈u′m, um〉V ∗,V︸ ︷︷ ︸
∈L1(0,T )

ϕdt ∀ϕ ∈ D(0, T ).

The limit passage m→ ∞ gives

−
∫ T

0

‖u‖2H ϕ′ dt = 2

∫ T

0

〈u′, u〉V ∗,V ϕdt ∀ϕ ∈ D(0, T ),

which is equality (2.7), where we used that the function: t 7→ 〈u′, u〉V ∗,V (t) ∈
L1(0, T ). This is a consequence of the fact that u′ ∈ Lp′

(0, T ;V ∗) and u ∈
Lp(0, T ;V ), ∫ T

0

〈u′, u〉V ∗,V dt ≤
∫ T

0

‖u′‖V ∗ ‖u‖V dt < +∞

and therefore u ∈ L∞(0, T ;H). Moreover, u ∈ C ([0, T ] ;V ∗) and ‖u‖2H ∈
C([0, T ]).

Step 2. It holds:

Lemma 2.2.5. Let X,Y be Banach spaces. Let X be reflexive and X ↪→
densely Y .

Let ϕ ∈ L∞(0, T ;X)
⋂
C ([0, T ] ;Yw). Then ϕ ∈ C ([0, T ] ;Xw).
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The proof of Lemma 2.2.5 will be given later on. Just recall (at the endpoints,
the limits are one-sided):

ϕ ∈ C ([0, T ] ;Y ) ⇐⇒ lim
t→t0

‖ϕ(t)− ϕ(t0)‖Y = 0 ∀t0 ∈ [0, T ],

ϕ ∈ C ([0, T ] ;Yw) ⇐⇒ lim
t→t0

〈η, ϕ(t)〉 − 〈η, ϕ(t0)〉

= lim
t→t0

〈η, ϕ(t)− ϕ(t0)〉 = 0 ∀η ∈ Y ∗, ∀t0 ∈ [0, T ].

Evidently, ϕ ∈ C ([0, T ] ;Y ) ⇒ ϕ ∈ C ([0, T ] ;Yw), the opposite implication
holds true only for Y finite dimensional. Therefore we have u ∈ C([0, T ];V ∗),
which implies u ∈ C([0, T ];V ∗

w) and due to Lemma 2.2.5 and identification
H = H∗ we know that u ∈ C ([0, T ] ;Hw).

Step 3. Let us show that u ∈ C ([0, T ] ;H). Let t0 ∈ I. Compute

‖u(t)− u(t0)‖2H = ‖u(t)‖2H − 2 (u(t), u(t0))H + ‖u(t0)‖2H .

Thus, due to the fact that ‖u(·)‖2H ∈ C([0, T ]) and u(t) ⇀ u(t0) for t → t0 (at
the endpoints the limits are one-sided),

lim
t→t0

‖u(t)− u(t0)‖2H
= lim

t→t0
‖u(t)‖2H︸ ︷︷ ︸
→∥u(t0)∥2

H

− lim
t→t0

2 (u(t), u(t0))H︸ ︷︷ ︸
→2(u(t0),u(t0))H due to Step 2

+ ‖u(t0)‖2H

= ‖u(t0)‖2H − 2 ‖u(t0)‖2H + ‖u(t0)‖2H = 0.

�
It remains to prove Lemma 2.2.5. First, recall that

Lemma 2.2.6. Let X be a reflexive Banach space, Y a Banach space and let

X ↪→
densely Y . Then Y ∗ ↪→

densely X
∗.

Proof. Denote
i : X −→ Y

the mapping defining the embedding X ↪→ Y , i.e., a continuous injective map-
ping from X to Y , defined on the whole X. According to our assumptions we
know that i(X) is dense in Y . Define

i∗ : Y ∗ −→ X∗

as follows:
〈i∗(y∗), x〉X∗,X := 〈y∗, i(x)〉Y ∗,Y .

We show that i∗ defines the embedding Y ∗ to X∗, i.e., it is a continuous injective
mapping defined on the whole Y ∗, such that i∗(Y ∗) is dense in X∗.

Let i∗(y∗) = 0, i.e., 〈y∗, i(x)〉Y ∗,Y = 0 for all x ∈ X. As i(X) is dense in Y ,
we get y∗ = 0. Now, let X be a reflexive Banach space. Suppose that Y ∗ 6= X∗.
Then ∃ x∗∗ ∈ X∗∗: ∀ y∗ ∈ Y ∗ is 〈x∗∗, i∗(y∗)〉X∗∗,X∗ = 0, but x∗∗ 6= 0. Due
to the reflexivity of X there exists x ∈ X: x∗∗ = J(x) (J(x) is the canonical
mapping) such that

〈i∗(y∗), x〉X∗,X = 0 ∀y∗ ∈ Y ∗ =⇒
〈y∗, i(x)〉Y ∗,Y = 0 ∀y∗ ∈ Y ∗ =⇒ i(x) = 0,

hence, as i is injective, x = 0, which contradicts to Y ∗ 6= X∗. �
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We can now prove Lemma 2.2.5 which is of independent interest.

Proof (of Lemma 2.2.5). As X ↪→
densely Y , it is Y ∗ ↪→

densely X
∗. Due to the as-

sumptions we know that

〈η, ϕ(t)〉Y ∗,Y
−→
t→t0

〈η, ϕ(t0)〉Y ∗,Y ∀η ∈ Y ∗.

We aim to show that

〈µ, ϕ(t)〉X∗,X
−→
t→t0

〈µ, ϕ(t0)〉X∗,X ∀µ ∈ X∗.

Define ϕ̃(t) ∈ X as follows

〈J(ϕ̃(t)), µ〉X∗∗,X∗ = lim inf
h→0

t+h∈I

1

h

∫ t+h

t

〈µ, ϕ(s)〉X∗,X ds.

Evidently, the right-hand side is bounded by ‖ϕ‖L∞(0,T ;X) ‖µ‖X∗ and thus

J(ϕ̃(t)) ∈ X∗∗. Due to the reflexivity of X, ϕ̃(t) ∈ X is uniquely defined.
Moreover,

‖ϕ̃(t)‖X = sup
∥µ∥X∗≤1

〈µ, ϕ̃(t)〉 ≤ sup
∥µ∥X∗≤1

‖ϕ‖L∞(0,T ;X) ‖µ‖X∗ ≤ ‖ϕ‖L∞(0,T ;X) .

In particular, for µ ∈ Y ∗( ↪→
densely X

∗) we see that ϕ̃(t) = ϕ(t) in [0, T ] . Thus

‖ϕ(t)‖X ≤ ‖ϕ‖L∞(0,T ;X) ∀t ∈ [0, T ] . As Y ∗ is dense in X∗, ∀µ ∈ X∗ and

∀ε > 0 ∃µε ∈ Y ∗ : ‖µε − µ‖X∗ < ε. Fix ε > 0. Therefore

〈µ, ϕ(t)− ϕ(t0)〉X∗,X = 〈µ− µε̃, ϕ(t)− ϕ(t0)〉X∗,X + 〈µε̃, ϕ(t)− ϕ(t0)〉X∗,X .

Now, for ε̃ chosen appropriately, the first term

| 〈µ− µε̃, ϕ(t)− ϕ(t0)〉X∗,X |
≤ ‖µ− µε̃‖X∗ ‖ϕ(t)− ϕ(t0)‖X ≤ 2 ‖ϕ‖L∞(0,T ;X) ε̃ <

ε

2
.

The second term is small for t sufficiently close to t0, as µε̃ ∈ Y ∗:

| 〈µε̃, ϕ(t)− ϕ(t0)〉X∗,X | = | 〈µε̃, ϕ(t)− ϕ(t0)〉Y ∗,Y | < ε

2
.

Thus, to any ε > 0 ∃δ > 0 ∀t ∈ Uδ(t0) : | 〈µ, ϕ(t)− ϕ(t0)〉X∗,X | < ε. �

We will need the compact embedding of the space

W =Wα0,α1

X0,X1
= {v ∈ Lα0(0, T ;X0); v

′ ∈ Lα1(0, T ;X1)}

into a suitable space Lα(0, T ;X). Set

‖v‖W = ‖v‖Lα0 (0,T ;X0)
+ ‖v′‖Lα1 (0,T ;X1)

.

It holds

Theorem 2.2.5 (Aubin–Lions). Let X0, X1, X be three Banach spaces sat-
isfying X0 ↪→↪→ X ↪→ X1. Let X0, X1 be additionally reflexive. Further, let
1 < αi <∞, i = 0, 1.

Then for 0 < T <∞, W ↪→↪→ Lα0(0, T ;X).
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Remark . It is possible to take α1 = 1, but the proof is more complicated and
we need neither complications nor the strength of this assertion.

We first prove:

Lemma 2.2.7. Let X0, X1, X be Banach spaces such that X0 ↪→↪→ X ↪→ X1.
Then ∀η > 0 ∃cη such that ∀v ∈ X0

‖v‖X ≤ η ‖v‖X0
+ cη ‖v‖X1

. (2.8)

Proof. We prove the lemma by contradiction. Let (2.8) be not satisfied, i.e.,
∃η > 0: ∀m ∈ N ∃wm ∈ X0 that

‖wm‖X > η ‖wm‖X0
+m ‖wm‖X1

.

We set
vm =

wm

‖wm‖X0

,

thus
‖vm‖X > η +m ‖vm‖X1

.

As ‖vm‖X0
= 1, vm is bounded in X (due to the embedding) and

‖vm‖X1
−→ 0 for m −→ ∞.

Further, there is a subsequence vmk
strongly convergent in X (X0 ↪→↪→ X) and

thus vmk
→ 0 in X. But ‖vmk

‖X > η > 0, which leads to the contradiction. �

Proof (Aubin–Lions). We proceed in four steps.
Step 1. Let um be a bounded sequence in W . We aim to show that there is a

subsequence umk
, strongly convergent in Lα0(0, T ;X). As X0, X1 are reflexive,

1 < αi <∞, W is also reflexive a thus there is a u ∈W such that

umk
⇀ u in W,

therefore

umk
⇀ u in Lα0(0, T ;X0),

u′mk
⇀ u′ in Lα1(0, T ;X1).

We have to show that vmk
= umk

− u→ 0 in Lα0(0, T ;X).
Step 2. It is enough to show that vmk

→ 0 in Lα0(0, T ;X1). Indeed, in such
a case

‖vmk
‖Lα0 (0,T ;X) ≤ η ‖vmk

‖Lα0 (0,T ;X0)
+ cη ‖vmk

‖Lα0 (0,T ;X1)
,

and due to the boundedness of vmk in W we have

‖vmk
‖Lα0 (0,T ;X) ≤ Cη + cη ‖vmk

‖Lα0 (0,T ;X1)
.

To any ε > 0 there is η > 0: Cη < ε
2 and there is n0: ∀mk > n0 we have

cη ‖vmk‖Lα0 (0,T ;X1)
< ε

2 . Thus

‖vmk
‖Lα0 (0,T ;X) < ε
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and as ε > 0 was arbitrary, the assertion of the theorem is proved.
Step 3. Let us show that W ↪→ C ([0, T ] ;X1) . We know that each element

from W belongs (after a possible change on a subset of [0, T ] of measure zero)
to C ([0, T ] ;X1) due to Lemma 2.2.3. The continuity of the embedding is im-
mediate, as Lemma 2.2.3 implies

u(t) = u(0) +

∫ t

0

u′(s) ds

and thus
‖u(t)‖X1

≤ ‖u(0)‖X1
+ ‖u′‖L1(0,T ;X1)

.

Integrating the equality over (0, T ) reads

T ‖u(0)‖X1
≤ ‖u‖L1(0,T ;X1)

+ T ‖u′‖L1(0,T ;X1)

≤ C ‖u‖L1(0,T ;X0)
+ T ‖u′‖L1(0,T ;X1)

=⇒ max
t∈[0,T ]

‖u(t)‖X1
≤ C ‖u‖W .

Step 4. We know that ‖vmk
(t)‖X1

≤ C ∀t ∈ [0, T ] and to be able to apply
the Lebesgue dominated convergence theorem, it is enough to show that

vmk
(t) −→ 0 strongly in X1.

Choose, e.g., t = 0. Then

vmk
(0) = vmk

(t)−
∫ t

0

v′mk
(τ) dτ.

Integrate this equality from 0 to s:

vmk
(0) =

1

s

{∫ s

0

vmk
(t) dt−

∫ s

0

(∫ t

0

v′mk
(τ) dτ

)
dt
}

=
1

s

∫ s

0

vmk
(t) dt− 1

s

∫ s

0

(s− τ)v′mk
(τ) dτ := amk

+ bmk
.

Choose ε > 0. We easily see that ‖bmk
‖X1

≤
∫ s

0

∥∥v′mk
(τ)

∥∥
X1

dτ < ε
2 for s

sufficiently small (α1 > 1!). We know that vmk
⇀ 0 in Lα0(0, T ;X0) and thus

amk
= 1

s

∫ s

0
vmk

(t) dt ⇀ 0 in X0; whence amk
→ 0 in X1. As s is fixed, for n0

sufficiently large ‖amk
‖X1

< ε
2 ∀mk > n0. �

2.3 Spaces with zero divergence

2.3.1 Temam spaces

We define

Definition 2.3.1. Let Ω ⊂ RN be a bounded domain. We set for 1 ≤ p <∞

Ep(Ω) = {g ∈ (Lp(Ω))N ; div g ∈ Lp(Ω)},
‖g‖Ep(Ω) = ‖g‖p + ‖ div g‖p,

Ep
0 (Ω) = (C∞

0 (Ω))N
∥ · ∥Ep(Ω)

.
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Evidently, both spaces are Banach spaces which are for 1 < p <∞ reflexive.
We would like to show that the smooth functions up to the boundary are dense
in Ep(Ω). To this aim we need the notion of a star shaped domain.

Definition 2.3.2. A domain Ω ⊂ RN is called star-shaped with respect to a
point x0 ∈ Ω, if there is a continuous positive function h: ∂B1 → R such that

Ω =
{
x ∈ RN ; |x− x0| < h

( x− x0
|x− x0|

)}
.

A domain Ω ⊂ RN is called star-shaped with respect to a ball B ⊂ Ω, if it is
star-shaped with respect to all points x ∈ B.

Domains with Lipschitz boundary can be decomposed into star-shaped do-
mains. It holds (see [12]):

Lemma 2.3.1. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary.
Then there exists a family of bounded domains

G = {G1, G2, . . . , Gr, Gr+1, . . . , Gr+m}, r,m ∈ N

such that

(i) Ω ⊂
⋃r+m

i=1 Gi,

(ii) ∂Ω ⊂
⋃r

i=1Gi,

(iii) there exists a family of balls

B = {B1, B2, . . . , Br+m}

such that each domain

Ωi = Ω ∩Gi, i = 1, . . . , r +m

is star-shaped with respect to the ball Bi.

Further, let f ∈ C∞
0 (Ω) and

∫
Ω
f dx = 0. Then there is a family of functions

F = {f1, . . . , fr, fr+1, . . . , fr+m}

such that

(i) fi ∈ C∞
0 (Ωi),

∫
Ωi
fi dx = 0,

(ii) f(x) =
∑r+m

i=1 fi(x),

(iii)
‖fi‖k,q,Ωi ≤ C(m, q,Ω1, . . . ,Ωr+m,Ω)‖f‖k,q,Ω,

1 < q <∞, k = 0, 1, . . . .

It holds

Theorem 2.3.1. Let Ω ∈ C0,1, 1 ≤ p <∞.

Then Ep(Ω) = (C∞(Ω))N
∥ · ∥Ep(Ω)

.
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Proof. We will only sketch the main ideas of the proof:

a) Ω = RN the result follows by standard mollification

b) Ω = C0,1, bounded domain

we use local description of the boundary and partition of unity

Ω ⊂ V ∪
m⋃
i=1

Vi

on V – we use standard mollification

on Vi – by translation and additional partition of unity we can decompose V +
i

(i.e., Vi ∩Ω) into domains, which are star-shaped with respect to the origin, see
Lemma 2.3.1 (here we use that Ω ∈ C0,1!). On the star-shaped domain we ”shift
out” the function by

uλ(x) = u
(x
λ

)
, λ > 1

and we regularize this shifted function. Passing λ→ 1+ and h→ 0+ (mollifica-
tion factor) we show that un → u in Ep(Ω), un ∈ (C∞(Ω))N , where

un(x) = (uλn
)hn

.

The precise proof can be found in book [39]. �

2.3.2 Sobolev spaces with zero divergence

For 1 ≤ p <∞ we will consider spaces of the type

W 1,p
0,div(Ω) =

{
u ∈ (W 1,p

0 (Ω))N ; divu = 0
}
,

and

W 1,p
0,div(Ω) = {u ∈ (C∞

0 (Ω))N ; divu = 0}
∥ · ∥1,p ,

respectively. We will show that for Ω ∈ C0,1 the spaces coincide. This is based
on the following result

Lemma 2.3.2 (Bogovskii, Solonnikov, Ladyzhenskaya, Borchers, Sohr, and oth-
ers). Let Ω ∈ C0,1 be a bounded domain in RN . Let f ∈ Wm,q

0 (Ω), m ≥ 0,
1 < q <∞,

∫
Ω
f dx = 0. Then ∃v ∈ (Wm+1,q

0 (Ω))N , a solution to

div v = f in Ω,

v|∂Ω = 0

such that
‖∇v‖m,q ≤ C ‖f‖m,q ,

where C is independent of f. In particular, if f ∈ C∞
0 (Ω), then also v ∈

(C∞
0 (Ω))N .
If f = div g, g ∈ Eq

0(Ω), then also

‖v‖q ≤ C‖g‖q.

Moreover, the operator T : {f ∈Wm,q
0 (Ω):

∫
Ω
f dx = 0} → (Wm+1,q

0 (Ω))N such
that Tf = v is linear (the same holds also in the case when f = div g with
g ∈ Eq

0(Ω)).
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Proof. The proof can be found in the book of Novotný, Straškraba [31] or
Galdi [12], or also in Appendix to these Lecture notes. �

Lemma 2.3.3. Let Ω ∈ C0,1, 1 < p <∞. Then W 1,p
0,div(Ω) =W 1,p

0,div(Ω).

Proof. Evidently, W 1,p
0,div(Ω) ⊆ W 1,p

0,div(Ω). Let us show the opposite inclu-

sion. Let u ∈ W 1,p
0,div(Ω). As W 1,p

0 (Ω) = C∞
0 (Ω)

∥ · ∥1,p , there exists {un}∞n=1 ∈
(C∞

0 (Ω))N such that ‖un − u‖1,p −→
n→∞ 0. However, generally divun 6= 0. On

the other hand, divun −→
Lp(Ω) divu = 0. It follows from Lemma 2.3.2 that the

problem

divvn = divun,

vn|∂Ω = 0,

‖∇vn‖p ≤ C ‖divun‖p (2.9)

(and due to the boundary condition also ‖vn‖p ≤ C(Ω) ‖∇vn‖p) has a solution

(the compatibility condition 0 =
∫
Ω
divun dx =

∫
∂Ω

un · ndS is trivially satis-
fied) such that vn ∈ (C∞

0 (Ω))N . Moreover, as divun → 0 in Lp(Ω), un 6= vn
1

for infinitely many n ∈ N. Set wn = un − vn. Then

a) divwn = divun − divvn = 0,

b) ‖wn − u‖1,p ≤ ‖un − u‖1,p + ‖vn‖1,p −→ 0,

c) wn ∈ (C∞
0 (Ω))N ,

i.e., u ∈W 1,p
0,div(Ω). �

Remark . With a certain modification of the proof the same result holds also
for Ω exterior domain or Ω = RN , see Appendix. However, there are domains,
e.g., domains with several exists to infinity, where the spaces differ.

2.3.3 Decomposition of (L2(Ω))N . Existence of the pres-
sure.

We will consider spaces of the type

L2
0,div(Ω) = {u ∈ (C∞

0 (Ω))N ; divu = 0}
∥ · ∥2 .

Our aim is to characterize this space and to show that (L2(Ω))N = L2
0,div(Ω)⊕P,

where we further characterize the orthogonal complement P .

Let 1 < p < ∞. Denote by W 1− 1
p ,p(∂Ω) the range of the trace operator

fromW 1,p(Ω). Recall that our spaceW 1− 1
p ,p(∂Ω) — with non-integer derivative

— is something like intermediate space between Lp(∂Ω) and W 1,p(∂Ω), more
precisely

‖u‖
W

1− 1
p
,p
(∂Ω)

= ‖u‖Lp(∂Ω) +
(∫

∂Ω

∫
∂Ω

|u(x)− u(y)|p

|x− y|N+p−2
dSxdSy

) 1
p

.

1except for the case u = 0 which does not require any approximation, or if, by chance,
divun = 0 for all n, where we do not need any correction
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Denote W
− 1

p′ ,p
′
(∂Ω) = (W 1− 1

p ,p(∂Ω))∗, p′ = p
p−1 . Let u ∈

(
C∞(Ω)

)N
,

v ∈ C∞(Ω), Ω ∈ C0,1. Then∫
Ω

u · ∇v dx+

∫
Ω

v divu dx =

∫
∂Ω

(u · n) v dS.

As Ω ∈ C0,1, the normal vector n exists a.e. at ∂Ω. The left-hand side makes
also sense for u ∈ Ep(Ω), v ∈ W 1,p′

(Ω)2. On the right-hand side, function

v ∈ W
1− 1

p′ ,p
′
(∂Ω); in a certain sense we will be able to extend this Green

formula also for functions with only the above mentioned regularity.

Theorem 2.3.2. Let Ω ∈ C0,1, 1 < p < ∞. Then there exists a continuous

linear operator γn from Ep(Ω) to W− 1
p ,p(∂Ω) = (W

1− 1
p′ ,p

′
(∂Ω))∗ such that

γnu = u · n|∂Ω for u ∈ (C∞(Ω))N .

For u ∈ Ep(Ω), v ∈W 1,p′
(Ω) it holds∫

Ω

u · ∇v dx+

∫
Ω

v divudx = 〈γnu, T v〉
W

− 1
p
,p
(∂Ω),W

1− 1
p′ ,p′

(∂Ω)
,

where Tv is the trace of the function v (Tv ∈W
1− 1

p′ ,p
′
(∂Ω)).

Proof. Let ϕ ∈ W
1− 1

p′ ,p
′
(∂Ω), v ∈ W 1,p′

(Ω) so that ϕ = Tv. For u ∈ Ep(Ω)
we set

Xu(ϕ) =

∫
Ω

(v divu+ u · ∇v) dx.

The value Xu(ϕ) does not depend on v, it depends only on its trace Tv = ϕ.
Indeed, let v1, v2 ∈W 1,p′

(Ω) be such that Tv1 = Tv2 = ϕ. Set v = v1 − v2. We
show ∫

Ω

(v divu+ u · ∇v) dx = 0.

For v ∈ W 1,p′

0 (Ω), there exists vm ∈ C∞
0 (Ω) such that vm → v in W 1,p′

(Ω),
for u ∈ Ep(Ω), there exists um ∈ (C∞(Ω))N such that um → u in Ep(Ω).
Therefore

0 =

∫
Ω

(vm divum + um · ∇vm) dx −→
m→∞

∫
Ω

(v divu+ u · ∇v) dx.

Due to the inverse trace theorem we have for suitable v (we may take any v, in
particular we take that one from the inverse trace theorem)

Xu(ϕ) ≤ ‖u‖Ep(Ω) ‖v‖W 1,p′ (Ω) ≤ C0 ‖u‖Ep(Ω) ‖ϕ‖
W

1− 1
p′ ,p′

(∂Ω)
.

2In fact it is enough to have divu ∈ (W 1,p(Ω))∗ and u ∈ (Lp(Ω))N , if we understand the
duality in the sense

⟨divu, φ⟩
(W1,p′ (Ω))∗,W1,p′ (Ω)

:= −
∫
Ω
u · ∇v dx+ ⟨u · n, v⟩

W
− 1

p
,p

(∂Ω),W
1− 1

p′ ,p′
(Ω)

,

this is, however, not the same as the claim of the theorem.
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For fixed u ∈ Ep(Ω) the functional Xu(·) ∈ (W
1− 1

p′ ,p
′
(∂Ω))∗ and thus there

exists g = g(u) ∈W− 1
p ,p(∂Ω) such that

Xu(ϕ) = 〈g, ϕ〉
W

− 1
p
,p
(∂Ω),W

1− 1
p′ ,p′

(∂Ω)
∀ϕ ∈W

1− 1
p′ ,p

′
(∂Ω).

The mapping u 7→ g(u) is evidently linear, ‖g‖
W

− 1
p
,p
(∂Ω)

≤ C0 ‖u‖Ep(Ω) . It

remains to show that for u ∈ (C∞(Ω))N we have g(u) = u · n|∂Ω. Let u ∈(
C∞(Ω)

)N
, v ∈ C∞(Ω). Then

Xu(Tv) =

∫
Ω

div (vu) dx =

∫
∂Ω

v u · n dS =

∫
∂Ω

(Tv)u · n dS = 〈u · n, T v〉 .

As T
(
C∞(Ω)

)
is dense in W

1− 1
p′ ,p

′
(∂Ω) (W

1− 1
p′ ,p

′
(∂Ω) = T

(
W 1,p′

(Ω)
)
and

C∞(Ω) is dense in W 1,p′
(Ω)), the equality

Xu(ϕ) = 〈u · n, ϕ〉
W

− 1
p
,p
(∂Ω),W

1− 1
p′ ,p′

(∂Ω)
∀ϕ ∈W

1− 1
p′ ,p

′
(∂Ω)

holds true. Therefore

g(u) = u · n|∂Ω for u ∈
(
C∞(Ω)

)N
.

�

Before we characterize the space L2
0,div(Ω), we need to prove the following

lemma which basically gives the existence of pressure for steady problems. It
holds

Lemma 2.3.4. Let Ω ∈ C0,1, 1 < q < ∞ and let G ∈
((
W 1,q

0 (Ω)
)N)∗

(=
(
W−1,q′(Ω)

)N
) be such that

〈G,ϕϕϕ〉((W 1,q
0 (Ω))N )∗,(W 1,q

0 (Ω))N = 〈G,ϕϕϕ〉 = 0 ∀ϕϕϕ ∈W 1,q
0,div(Ω).

Then ∃! p ∈ L̃q′(Ω) = {u ∈ Lq′(Ω);
∫
Ω
udx = 0} such that

〈G,ϕϕϕ〉 =
∫
Ω

p divϕϕϕdx ∀ϕϕϕ ∈
(
W 1,q

0 (Ω)
)N
.

To prove it, we need the following lemma (see, e.g., [3, Théoreme II.18]).

Lemma 2.3.5. Let A: X → Y be a bounded linear operator, D(A) = X, A−1

exist and be continuous. Let X,Y be reflexive Banach spaces.

Then

R (A∗) = (kerA)
⊥ 3 =

{
f ∈ X∗; 〈f, u〉 = 0 ∀u ∈ kerA

}
.

�
3here the annihilator
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Proof (of Lemma 2.3.4). Take A: (W 1,q
0 (Ω))N → L̃q(Ω), Av = divv. We

consider a special branch of A−1, so called ”Bogovskii operator”, i.e., the special
solution operator to the problem

divw = divv in Ω,

w|∂Ω = 0,

‖w‖1,q ≤ C ‖divv‖q ,

given by Lemma 2.3.2. This operator is linear and bounded, thus also continuous.
Therefore we know

(kerA)
⊥
= R (A∗) .

Evidently

kerA =
{
u ∈

(
W 1,q

0 (Ω)
)N

; divu = 0
}
,

thus G ∈ (kerA)
⊥
= R (A∗) . As Y = L̃q(Ω), we have

Y ∗ =
{
Lq′(Ω)|R

}
4.

Then, by virtue of 〈A∗v, u〉X∗,X = 〈v,Au〉Y ∗,Y , it holds

〈G,ϕϕϕ〉 =
∫
Ω

p︸︷︷︸
p∈L̃q′ (Ω)

Aϕϕϕdx =

∫
Ω

pdivϕϕϕdx.

�

We are now ready to characterize L2
0,div(Ω):

Theorem 2.3.3. Let Ω ∈ C0,1.

Then

L2
0,div(Ω) =

{
u ∈

(
L2(Ω)

)N
; divu = 0 in D′(Ω); γn(u) = 0

}(
≡ L2

0,div(Ω)
)

(
L2
0,div(Ω)

)⊥
5 =

{
v ∈

(
L2(Ω)

)N
; v = ∇p, p ∈W 1,2(Ω)

}
(≡ P ) .

Proof. Step 1. Let v ∈ P. Then ∀w ∈
{
w ∈ (C∞

0 (Ω))
N
; divw = 0

}
∫
Ω

v ·wdx =

∫
Ω

w · ∇pdx = −
∫
Ω

p divwdx = 0,

i.e., v ∈
(
L2
0,div(Ω)

)⊥
. Conversely, let v ∈

(
L2
0,div(Ω)

)⊥
. Then

∫
Ω

v ·wdx = 0 ∀w ∈ L2
0,div(Ω),

4the quotient space (and can be represented by L̃q′ (Ω))
5here the orthogonal complement
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in particular also ∀w ∈
{
w ∈ (C∞

0 (Ω))N ; divw = 0
}︸ ︷︷ ︸

=W 1,2
0,div(Ω)

∥ · ∥1,2 ⊂ L2
0,div(Ω). Due to

Lemma 2.3.4 there exists p ∈ L̃2(Ω), for which it holds∫
Ω

v ·wdx = −
∫
Ω

p divwdx ∀w ∈ (C∞
0 (Ω))N .

This implies that v = ∇p in D′(Ω), i.e., p ∈ W 1,2(Ω). Thus
(
L2
0,div(Ω)

)⊥
⊂ P

which gives
(
L2
0,div(Ω)

)⊥
= P.

Step 2. Let u ∈ L2
0,div(Ω). Then there exists a sequence um ∈ (C∞

0 (Ω))N

with divum = 0: um → u in (L2(Ω))N . Further

0 =

∫
Ω

divumϕdx = −
∫
Ω

um · ∇ϕdx ∀ϕ ∈ C∞
0 (Ω),

hence for m→ ∞
0 = −

∫
Ω

u · ∇ϕdx ∀ϕ ∈ C∞
0 (Ω).

Thus divu = 0 in D′(Ω). We have u ∈ E2(Ω), i.e., (recall that um → u in
E2(Ω))

0 = γn(um) −→ γn(u) = 0 =⇒ u ∈ L2
0,div(Ω).

Conversely, let L2
0,div(Ω) ( L2

0,div(Ω). Let u ∈ H, where H denotes the orthog-

onal complement of L2
0,div(Ω) to L

2
0,div(Ω) (both spaces are closed!). According

to Step 1 there exists p ∈W 1,2(Ω) such that u = ∇p. Therefore,

divu = div(∇p) = ∆p = 0 in D′(Ω),

u · n|∂Ω =
∂p

∂n
= 0 in the sense of the operator γn(u),(

γn(u) ∈ H− 1
2 (∂Ω)

)
.

In W 1,2(Ω), there exists a solution to this problem, unique up to an additive

constant. This solution is p = const, i.e., u = 0 and H = {0}. Thus L2
0,div(Ω) =

L2
0,div(Ω). �

2.4 Stokes problem

Consider the problem:
Find u ∈ (C2(Ω))N ∩ (C(Ω))N , p ∈ C1(Ω):

−∆u+∇p = f in Ω,

divu = 0 in Ω,

u|∂Ω = 0.

We have two possibilities for the weak formulation:
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a) u ∈W 1,2
0 (Ω), p ∈ L2(Ω), f ∈ (L2(Ω))N (or f ∈ (W−1,2(Ω))N ):∫

Ω

∇u : ∇ϕϕϕdx−
∫
Ω

pdivϕϕϕdx =

∫
Ω

f ·ϕϕϕdx︸ ︷︷ ︸
or⟨f,φφφ⟩

∀ϕϕϕ ∈ (C∞
0 (Ω))N

(
or ∀ϕϕϕ ∈ (W 1,2

0 (Ω))N
)
,

together with ∫
Ω

u · ∇ψ dx = 0 ∀ψ ∈W 1,2(Ω).

b) u ∈W 1,2
0,div(Ω), f ∈ (L2(Ω))N (or f ∈ (W−1,2(Ω))N ):∫

Ω

∇u : ∇ϕϕϕdx =

∫
Ω

f ·ϕϕϕdx︸ ︷︷ ︸
or⟨f,φφφ⟩

∀ϕϕϕ ∈ V = {w ∈ (C∞
0 (Ω))N ; divw = 0}

(
or ∀ϕϕϕ ∈W 1,2

0,div(Ω)
)
.

A question appears, whether weak formulation b) does not destroy the informa-
tion about the pressure. Fortunately, it is not the case. We have from Lemma
2.3.4 for

〈G,ϕϕϕ〉 =

∫
Ω

(∇u : ∇ϕϕϕ− f ·ϕϕϕ) dx

(2.10)

that

• G ∈ (W−1,2(Ω))N

• 〈G,ϕϕϕ〉 = 0 ∀ϕϕϕ ∈W 1,2
0,div(Ω),

and thus ∃!p ∈ L2(Ω),
∫
Ω
p dx = 0:∫

Ω

(∇u : ∇ϕϕϕ− f ·ϕϕϕ) dx =

∫
Ω

p divϕϕϕdx ∀ϕϕϕ ∈ (W 1,2
0 (Ω))N ,

which is precisely the weak formulation as in a). Thus formulation b) is more
suitable, due to

Theorem 2.4.1. Let f ∈ (W−1,2(Ω))N .
Then there exists the unique weak solution to the Stokes problem in the sense

b) above. Moreover,

‖∇u‖2 ≤ C ‖f‖−1,2 ,

‖p‖2 ≤ C ‖f‖−1,2 ,

where p is the pressure constructed above.

Proof. The existence of the unique u, satisfying weak formulation b), together
with the estimate, is a consequence of the Lax–Milgram lemma (do the proof
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carefully!), the existence of the pressure follows from Lemma 2.3.4. Moreover, if
we use as test function in weak formulation a) function ϕϕϕ, solution to

divϕϕϕ = p,

ϕϕϕ|∂Ω = 0

from Lemma 2.3.2 — check carefully the details! — we have∫
Ω

p2 dx = −〈f,ϕϕϕ〉+
∫
Ω

∇u : ∇ϕϕϕdx ⇒ ‖p‖2 ≤ C
(
‖f‖−1,2 + ‖∇u‖2

)
.

�

Remark . If we take f ∈
(
W 1,2

0,div(Ω)
)∗
, then the existence of the unique weak

solution according to formulation b) can be shown as above, but it is not clear
whether the pressure exists!

Generally (for the proof see, e.g., [12]):

Theorem 2.4.2. Let m ≥ −1, 1 < q < ∞. Let f ∈ (Wm,q(Ω))N , Ω ∈
Cmax{m+2,2}, u∗ ∈ (Wm+2− 1

q ,q(∂Ω))N ,
∫
∂Ω

u∗ · n dS = 0.
Then there exists the unique weak solution to the Stokes problem with non-

homogeneous boundary condition u∗ such that

u ∈ (Wm+2,q(Ω))N ,

p ∈ Wm+1,q(Ω),

∫
Ω

p dx = 0

(2.11)

and ∃C = C(Ω, N, q) such that

‖u‖m+2,q + ‖p‖m+1,q ≤ C(‖f‖m,q + ‖u∗‖m+2− 1
q ,q,∂Ω

).

�

Remark . The function u ∈ (W 1,q(Ω))N is a (q-)weak solution to the Stokes
problem if u− u∗ ∈ (W 1,q

0 (Ω))N and∫
Ω

∇u : ∇ϕϕϕdx = 〈f,ϕϕϕ〉 ∀ϕϕϕ ∈ V =
{
w ∈ (C∞

0 (Ω))N ; divw = 0
}
.

Let us return to the case q = 2. Denote by Λ the solution operator with
homogeneous boundary condition, i.e.,

Λ : L2
0,div(Ω) →W 1,2

0,div(Ω) ⊂ (W 1,2
0 (Ω))N ,

such that
Λf = u,

where u is a weak solution to the Stokes problem. (Recall that arbitrary f ∈
(L2(Ω))N can be decomposed

f = f1 +∇π,

where f1 ∈ L2
0,div(Ω) and π can be absorbed into the pressure, thus assuming

the right-hand side directly from L2
0,div(Ω) makes sense).
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Lemma 2.4.1. The operator Λ is as operator from L2
0,div(Ω) to L

2
0,div(Ω) self-

adjoint and compact.

Proof. The operator is evidently linear and bounded,D(Λ) = L2
0,div(Ω), further

R(Λ) ⊂W 1,2
0,div(Ω) ↪→↪→ L2

0,div(Ω) and thus it is compact.

Let u,v ∈ L2
0,div(Ω). Then for Λu = f, Λv = g it holds

∫
Ω

Λu · v dx =

∫
Ω

f · v dx

Λv=g︷︸︸︷
=

∫
Ω

∇f : ∇gdx

Λu=f︷︸︸︷
=

∫
Ω

u · gdx =

∫
Ω

u · Λv dx.

Thus we have for all u, v ∈ L2
0,div(Ω) = D(Λ) that

(Λu,v)L2
0,div(Ω) = (u,Λv)L2

0,div(Ω),

i.e., D(Λ) ⊆ D(Λ∗). As D(Λ) = L2
0,div(Ω), we know that D(Λ∗) = L2

0,div(Ω).
Hence Λ is selfadjoint. �

Remark . The eigenfunctions of Λ form an orthonormal basis of the space
L2
0,div(Ω),

Λwj =
1

λ j
wj , j ∈ N , λj → ∞ for j → ∞.

Evidently, ∫
Ω

∇wj : ∇v dx = λj

∫
Ω

wj · v dx ∀v ∈W 1,2
0,div(Ω),

and ∫
Ω

wj ·wi dx = δij ⇒
∫
Ω

∇wj : ∇wi dx = λjδij ,

and thus
{
wj

}∞
j=1

form an orthogonal system in W 1,2
0,div(Ω). Moreover, it is also

a basis in W 1,2
0,div(Ω) (

∫
Ω
∇wn : ∇ϕϕϕdx = 0 ∀n⇒

∫
Ω
wn ·ϕϕϕ = 0 ∀n⇒ ϕϕϕ = 0).

Further, due to the regularity of the Stokes problem, if Ω ∈ Cm+2, then
wj ∈ (Wm+2,2(Ω))N , m ≥ 0 (and also wj ∈ (C∞(Ω))

N
for arbitrary Ω open).



Chapter 3

Weak solution to
evolutionary Navier–Stokes
equations

3.1 Existence of a weak solution

Let us recall the classical formulation

∂u

∂t
+ u · ∇u− ν∆u+∇p = f in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u|∂Ω = 0 in (0, T ),

u(0, x) = u0(x) in Ω.

We get the weak formulation by multiplying the momentum equation by ϕϕϕ ∈
(C∞

0 (Ω))N , divϕϕϕ = 0 and integrating over Ω, together with the Gauss formula:

∫
Ω

∂u

∂t
·ϕϕϕdx+

∫
Ω

(u · ∇u) ·ϕϕϕdx+ ν

∫
Ω

∇u : ∇ϕϕϕdx+

∫
Ω

p divϕϕϕdx =

∫
Ω

f ·ϕϕϕdx.

First, recall that the pressure term is equal to zero. Further, we will not be able
to show that ∂u

∂t ∈ L1
loc(QT ), thus we replace the scalar product by the duality.

One possible representation of this duality was shown in Chapter 1. We will also
consider more general right-hand side. We get

Definition 3.1.1. Let Ω ⊂ RN , N = 2, 3. Let f ∈ L2(0, T ; (W 1,2
0,div(Ω))

∗),

u0 ∈ L2
0,div(Ω).

Then the function u ∈ L2(0, T ;W 1,2
0,div(Ω)) ∩ L∞(0, T ;L2

0,div(Ω)) with ∂u
∂t ∈

L1(0, T ; (W 1,2
0,div(Ω))

∗) is called a weak solution to the Navier–Stokes equations

32
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corresponding to the data f and u0, if〈
∂u

∂t
,ϕϕϕ

〉
(W 1,2

0,div(Ω))
∗
,W 1,2

0,div(Ω)

+

∫
Ω

(u · ∇u) ·ϕϕϕdx+ ν

∫
Ω

∇u : ∇ϕϕϕdx

= 〈f,ϕϕϕ〉(W 1,2
0,div(Ω))

∗
,W 1,2

0,div(Ω) ∀ϕϕϕ ∈W 1,2
0,div(Ω) and a.a. t ∈ (0, T ),

lim
t→0+

∫
Ω

u(t, ·) ·ϕϕϕdx =

∫
Ω

u0 ·ϕϕϕdx ∀ϕϕϕ ∈ L2
0,div(Ω).

�

Remark . The case N > 3 can be considered analogously; we will not do it
here. It is necessary to take ϕϕϕ smooth, so that the convective term makes sense,
and consider the time derivative in another spaces.

Remark . Set V = W 1,2
0,div(Ω), H = L2

0,div(Ω). According to results of Chapter
2, after possible change on a subset of the time interval of measure zero, u ∈
C ([0, T ] ;V ∗) ∩ L∞(0, T ;H), and we have u ∈ C ([0, T ] ;Hw), due to Lemma
2.2.5. Thus we understand the initial condition in this sense, assuming to have
changed the function u on a set of measure zero, if necessary. Due to Theorem
2.3.3 we even have u ∈ C([0, T ]; ((L2(Ω))N )w). We will see later that for the
initial condition we prove a stronger result, i.e., lim

t→0+
‖u(t)− u0‖2 = 0.

Remark . Consider a ”sufficiently smooth” solution to the Navier–Stokes equa-
tions. Multiply the classical formulation by u and integrate over Ω (or set ϕϕϕ := u
in the weak formulation)∫

Ω

∂u

∂t
· udx+

∫
Ω

(u · ∇u) · udx+ ν

∫
Ω

∇u : ∇udx = 〈f,u〉 ,

1st term:
1

2

d

dt
‖u‖22

2nd term:

∫
Ω

(u · ∇u) · u dx =
1

2

∫
Ω

u · ∇|u|2 dx

= −1

2

∫
Ω

divu︸ ︷︷ ︸
=0

|u|2 dx+
1

2

∫
∂Ω

u · n︸︷︷︸
=0

|u|2 dS.

Integrating over time∫
Ω

|u(t)|2 dx+ 2ν

∫ t

0

∫
Ω

|∇u|2 dx dτ =

∫
Ω

|u0|2 dx+ 2

∫ t

0

〈f,u〉 dτ, (3.1)

i.e., we got the so called energy equality. However, for N = 3 we get only a
weaker result, the energy inequality, namely∫

Ω

|u(t)|2 dx+ 2ν

∫ t

0

∫
Ω

|∇u|2 dx dτ ≤
∫
Ω

|u0|2 dx+ 2

∫ t

0

〈f,u〉 dτ (3.2)

for a.a. t ∈ (0, T ).

Definition 3.1.2. We call u the Leray–Hopf weak solution to the Navier–Stokes
equations, if u is a weak solution and moreover, it satisfies for a.a. t ∈ (0, T )
inequality (3.2). �
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We aim to prove the following results

Theorem 3.1.1 (weak solution, N = 2). Let Ω ⊂ R2 be a bounded domain, f
and u0 satisfy the assumptions of Definition 3.1.1 and 0 < T <∞. Then there
exists exactly one weak solution to the Navier–Stokes equations. This solution is
also the Leray–Hopf weak solution and it fulfils the initial condition in the sense
lim

t→0+
‖u(t)− u0‖2 = 0. Moreover, u ∈ C([0, T ];L2

0,div(Ω)) and due to Theorem

2.3.3 also u ∈ C([0, T ]; (L2(Ω))2) and it fulfils also energy equality (3.1).

Theorem 3.1.2 (weak solution, N = 3). Let Ω ⊂ R3 be a bounded domain, f
and u0 satisfy the assumptions of Definition 3.1.1 and 0 < T <∞. Then there
exists at least one Leray–Hopf weak solution to the Navier–Stokes equations.
This solution fulfils the initial condition in the sense lim

t→0+
‖u(t)− u0‖2 = 0.

The proof of both theorems will be performed parallelly. Only at the end,
we prove the stronger result in two space dimensions. We proceed as follows

(i) Galerkin approximation — formulation

(ii) solvability of Galerkin approximation + a priori estimates of un

(iii) a priori estimates of the time derivative

(iv) limit passage

(v) energy inequality

(vi) initial condition

(vii) uniqueness and energy equality for N = 2

Step (i) Take
{
wi

}∞
i=1

the orthogonal basis of the space W 1,2
0,div(Ω) formed by the

eigenfunctions of the Stokes operator. We further assume that the func-
tions

{
wi

}∞
i=1

are normalized in (L2(Ω))N .

Definition 3.1.3. A function un(t, x) =
n∑

i=1

cni (t)w
i(x) is called the n-th

Galerkin approximation, if∫
Ω

∂un

∂t
·wj dx+

∫
Ω

(un · ∇un) ·wj dx+ ν

∫
Ω

∇un : ∇wj dx

=
〈
f,wj

〉
∀j = 1, .., n,

un(0, x) =

n∑
i=1

aiw
i(x),

(3.3)

where ai =
∫
Ω
u0(x) ·wi(x) dx (i.e., un(0, x) is the projection of u0(x) to

Lin
{
wi

}n

i=1
in L2

0,div(Ω)). �

Equality (3.3) can be rewritten to a system of ordinary differential equa-
tions for {cni (t)}

n
i=1 . Recall that

∫
Ω
wi ·wj dx = δij

1.

ċnj (t)+c
n
k (t)c

n
l (t)

∫
Ω

(
wk · ∇wl

)
·wj dx+ν λjc

n
j (t)︸ ︷︷ ︸

not summed

=
〈
f,wj

〉
, j = 1, .., n,

(3.4)

1We use the summation convection, i.e., we sum over twice repeated indeces, e.g., ui
∂uj

∂xi
=∑N

i=1 ui
∂uj

∂xi
or cnk (t)w

k(x) =
∑n

k=1 c
n
k (t)w

k(x).
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cnj (0) = aj .

To simplify the notation, in what follows, we skip the upper index n at
cnj (t).

Step (ii) We may apply the Carathéodory theory to the system of ordinary differ-
ential equations (3.4) (and if f ∈ C([0, T ]; ((W 1,2

0 (Ω))∗)N ), we could even
use the classical theory). Thus there exists (locally in time) exactly one
generalized solution — cj ∈ AC [0, T ∗

n) — to system (3.4) ∀n ∈ N. If the
time interval [0, T ∗

n) on which this solution exists is such that T ∗
n < T,

then necessarily maxj∈{1,2,...,n} |cj(t)| −→
t→(T∗

n)− +∞. We will exclude this

possibility and thus our solution exists on (0, T ). Furthermore, as we shall
later, the solution can be extended up to t = T . Multiply (3.4)j by cj(t)
and sum over j = 1, . . . , n. Integrate over (0, t) (formally it means the
same as to take as test function in (3.3) the solution un). It yields∫ t

0

1

2

n∑
j=1

d

dt
|cj |2 dτ +

∫ t

0

ckclcj

∫
Ω

(
wk · ∇wl

)
·wj dxdτ

+ν

∫ t

0

n∑
j=1

|cj |2λj dτ =

∫ t

0

〈
f, cjw

j
〉
dτ,

or, equivalently∫ t

0

1

2

d

dt
‖un(t)‖22 dτ +

∫ t

0

∫
Ω

(un · ∇un) · un dx︸ ︷︷ ︸
=0

dτ

+ν

∫ t

0

∫
Ω

|∇un|2 dx dτ =

∫ t

0

〈f,un〉 dτ

and thus

1

2
‖un(t)‖22 + ν

∫ t

0

‖∇un‖22 dτ

≤ ‖f‖L2(0,t;(W 1,2
0,div(Ω))

∗
) ‖u

n‖L2(0,t;W 1,2
0,div(Ω)) +

1

2
‖un(0)‖22 .

The first term on the right-hand side can be estimated by virtue of the
Friedrichs and Young inequalities by

C(ν) ‖f‖2L2(0,t;(W 1,2
0,div(Ω))∗) +

1

2
ν ‖∇un‖2L2(0,t;L2(Ω))

and thus we have

‖un(t)‖22 + ν

∫ t

0

‖∇un‖22 dτ ≤ C (f,u0) , (3.5)

as ‖un(0)‖22 =
n∑

j=1

a2j ≤ ‖u0‖22. It follows from here that cj(·) are bounded

in time and thus T ∗
n = T for all n ∈ N as well as that cj ∈ AC[0, T ],
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j = 1, 2, . . . , n. Moreover,

sup
t∈[0,T )

‖un(t)‖22 + ν

∫ T

0

‖∇un‖22 dτ ≤ C (f,u0) . (3.6)

It means that the sequence un is bounded in spaces L∞(0, T ; (L2(Ω))N )
and L2(0, T ; (W 1,2(Ω))N ) uniformly with respect to n.

Step (iii) Estimate (3.6) is not sufficient for the limit passage. We have at our dis-
posal the Aubin–Lions lemma, however, to apply it, we need an estimate
of the time derivative. We will get different estimates in different space
dimensions, thus we first compute the simpler twodimensional case, for
N = 3 we only show the main difference. Let ϕϕϕ ∈ L2(0, T ;W 1,2

0,div(Ω)).

Then we can write ϕϕϕ(t, x) =
∞∑
k=1

ak(t)w
k(x), ak(t) =

∫
Ω
ϕϕϕ(t, x) ·wk(x) dx.

Denote ϕϕϕn(t, x) =
n∑

k=1

ak(t)w
k(x). It is easy to see that (do it carefully!)

‖ϕϕϕn‖L2(0,T ;W 1,2
0,div(Ω)) ≤ ‖ϕϕϕ‖L2(0,T ;W 1,2

0,div(Ω)) .

Thus ∥∥∥∥∂un

∂t

∥∥∥∥
L2(0,T ;(W 1,2

0,div(Ω))∗)

= sup
φφφ∈L2(0,T ;W

1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

∫
Ω

∂un

∂t
·ϕϕϕdxdt

∣∣∣
= sup

φφφ∈L2(0,T ;W
1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

∫
Ω

∂un

∂t
·ϕϕϕn dx dt

∣∣∣ =︸︷︷︸
we can use Definition 3.1.3

= sup
φφφ∈L2(0,T ;W

1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

〈f,ϕϕϕn〉 dt−
∫ T

0

∫
Ω

(un · ∇un) ·ϕϕϕn dxdt

−ν
∫ T

0

∫
Ω

∇un : ∇ϕϕϕn dx dt
∣∣∣

≤ sup
φφφ∈L2(0,T ;W

1,2
0,div

(Ω))

∥φφφ∥≤1

[(
‖f‖L2(0,T ;(W 1,2

0,div(Ω))∗)

+ν ‖∇un‖L2(0,T ;(L2(Ω))N )

)
‖ϕϕϕn‖L2(0,T ;(W 1,2(Ω))N ) +C.T.

]
.

Let us estimate the convective term (C.T.)

∣∣∣− ∫ T

0

∫
Ω

(un · ∇un) ·ϕϕϕn dxdt
∣∣∣ = ∣∣∣ ∫ T

0

∫
Ω

un · (un · ∇ϕϕϕn) dxdt
∣∣∣

≤
∫ T

0

‖∇ϕϕϕn‖2 ‖u
n‖24 dt ≤ C

∫ T

0

‖∇ϕϕϕn‖2 ‖∇un‖2 ‖u
n‖2 dt

≤ C ‖un‖L∞(0,T ;(L2(Ω))2) ‖∇un‖L2(0,T ;(L2(Ω))4) ‖∇ϕϕϕ
n‖L2(0,T ;(L2(Ω))4) .
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Altogether we have

sup
φφφ∈L2(0,T ;W

1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

∫
Ω

∂un

∂t
·ϕϕϕn dxdt

∣∣∣
≤ sup

φφφ∈L2(0,T ;W
1,2
0,div

(Ω))

∥φφφ∥≤1

C
(
‖f‖L2(0,T ;(W 1,2

0,div(Ω))∗) + ν ‖∇un‖L2(0,T ;(L2(Ω))4)

+ ‖∇un‖L2(0,T ;(L2(Ω))4) ‖u
n‖L∞(0,T ;(L2(Ω))2)

)
‖ϕϕϕn‖L2(0,T ;W 1,2

0,div(Ω))

≤ C(f,u0),

and hence

N = 2

∥∥∥∥∂un

∂t

∥∥∥∥
L2(0,T ;(W 1,2

0,div(Ω))∗)

≤ C (f,u0) . (3.7)

In three space dimensions, the only change appears in the convective term.
Hence∫ T

0

∫
Ω

|un|2|∇ϕϕϕn|dx dt ≤
∫ T

0

‖∇ϕϕϕn‖2 ‖u
n‖24 dt

≤ C

∫ T

0

‖∇ϕϕϕn‖2 ‖u
n‖

1
2
2 ‖∇un‖

3
2
2 dt

≤ C ‖un‖
1
2

L∞(0,T ;(L2(Ω))3) ‖∇un‖
3
2

L2(0,T ;(L2(Ω))9) ‖∇ϕϕϕ
n‖L4(0,T ;(L2(Ω))9)

and we replace the above estimate by

sup
φφφ∈L4(0,T ;W

1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

∫
Ω

∂un

∂t
·ϕϕϕdxdt

∣∣∣ ≤ C (f,u0) ,

N = 3

∥∥∥∥∂un

∂t

∥∥∥∥
L

4
3 (0,T ;(W 1,2

0,div(Ω))∗)

≤ C (f,u0) . (3.8)

As we will see later, the lower power (in the integrability over the time
variable) in this estimate has big consequences. It was explained above
that it corresponds to lower integrability in time of the convective term.

Step (iv) We are now ready for the limit passage. Due to the a priori estimates
we know that there exists u ∈ L2(0, T ;W 1,2

0,div(Ω)) ∩ L∞(0, T ; (L2(Ω))N )

with ∂u
∂t ∈ Lq(0, T ; (W 1,2

0,div(Ω))
∗)

(
q = 2 for N = 2, q = 4

3 for N = 3
)

such that for a suitable subsequence nk:

unk ∗⇀ u in L∞(0, T ; (L2(Ω))N ),

unk ⇀ u in L2(0, T ;W 1,2
0,div(Ω)),

∂unk

∂t
⇀

∂u

∂t
in Lq(0, T ; (W 1,2

0,div(Ω))
∗).
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If we take in the Aubin–Lions lemma X0 =W 1,2
0,div(Ω), X = L2

0,div(Ω) and

X1 = (W 1,2
0,div(Ω))

∗, then for Ω bounded

X0 ↪→↪→ X ↪→ X1,

hence, additionally (generally for another subsequence),

unk −→ u in L2(0, T ; (L2(Ω))N ).

Moreover, due to the a priori bounds of unk in L∞(0, T ; (L2(Ω))N ) and in
L2(0, T ; (W 1,2(Ω))N ), we have

unk −→ u in Lq(0, T ; (L2(Ω))N ) ∀q <∞,

unk −→ u in L2(0, T ; (Lp(Ω))N )
∀p <∞ for N = 2, ∀p < 6 for N = 3.

Now, take equality (3.3) for a fixed function wj . Multiply it by ψ ∈
C∞

0 (0, T ) and integrate over (0, T ).We have (instead of nk we write again
n) ∫ T

0

〈∂un

∂t
,wj

〉
ψ dt+

∫ T

0

∫
Ω

(un · ∇un) ·wj dx ψ dt

+ν

∫ T

0

∫
Ω

∇un : ∇wj dxψ dt =

∫ T

0

〈
f,wj

〉
ψ dt,

where〈∂un

∂t
,wj

〉
=

〈∂un

∂t
,wj

〉
(W 1,2

0,div(Ω))∗,W 1,2
0,div(Ω)

=

∫
Ω

∂un

∂t
·wj dx ∀n ∈ N.

We now let n→ ∞. There is no problem in the linear terms, weak conver-
gence is enough. Thus, let us look at the convective term. We have, due
to the strong convergence (we proceed for N = 3, for N = 2 the situation
is simpler) ∣∣∣ ∫ T

0

∫
Ω

[
(un · ∇un) ·wj − (u · ∇u) ·wj

]
dx ψ dt

∣∣∣
=

∣∣∣ ∫ T

0

∫
Ω

[
(u · ∇wj) · u−

(
un · ∇wj

)
· un

]
dx ψ dt

∣∣∣
≤

∣∣∣ ∫ T

0

∫
Ω

(ui − uni )
∂wj

k

∂xi
ukψ dxdt

∣∣∣
+
∣∣∣ ∫ T

0

∫
Ω

uni
∂wj

k

∂xi
(uk − unk )ψ dx dt

∣∣∣
≤

∫ T

0

‖u− un‖3 ‖u‖6
∥∥∇wj

∥∥
2
|ψ|dt

+

∫ T

0

‖u− un‖3 ‖u
n‖6

∥∥∇wj
∥∥
2
|ψ|dt ≤

≤ ‖u− un‖L2(0,T ;(L3(Ω))3)

∥∥∇wj
∥∥
(L2(Ω))9

‖ψ‖L∞(0,T ) ×

×
(
‖u‖L2(0,T ;(L6(Ω))3) + ‖un‖L2(0,T ;(L6(Ω))3)

)
−→ 0.
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The limit function u fulfils∫ T

0

〈∂u
∂t
,wj

〉
ψ dt+

∫ T

0

∫
Ω

(u · ∇u) ·wj dxψ dt

+ν

∫ T

0

∫
Ω

(
∇u : ∇wj

)
dxψ dt =

∫ T

0

〈
f,wj

〉
ψ dt (3.9)

∀j ∈ N, ∀ψ ∈ C∞
0 (0, T ).

Now, let ϕϕϕ ∈ W 1,2
0,div(Ω), thus ϕϕϕ ∈ Lin {wj}∞j=1 and therefore (formally,

it is just another limit passage wn, n → ∞) equality (3.9) is satisfied
for all test functions from W 1,2

0,div(Ω). As the equality is satisfied for all
ψ ∈ C∞

0 (0, T ), it holds〈∂u
∂t
,ϕϕϕ

〉
+

∫
Ω

(u · ∇u) ·ϕϕϕdx+ ν

∫
Ω

∇u : ∇ϕϕϕdx = 〈f,ϕϕϕ〉

∀ϕϕϕ ∈W 1,2
0,div(Ω) for a.a. t ∈ (0, T ).

Step (v) Take the equality

1

2
‖un(t)‖22 + ν

∫ t

0

∫
Ω

|∇un|2 dxdτ −
∫ t

0

〈f,un〉 dτ − 1

2
‖un(0)‖22 = 0,

multiply it by ψ ∈ C∞
0 (0, T ), ψ ≥ 0 on [0, T ] and integrate over [0, T ]. We

have ∫ T

0

[1
2
‖un(t)‖22 ψ + ν

∫ t

0

∫
Ω

|∇un|2 dx dτψ

−
∫ t

0

〈f,un〉 dτψ − 1

2
‖un(0)‖22 ψ

]
dt = 0

and let n→ ∞. The first term goes due to the strong convergence un → u

in L2(0, T ; (L2(Ω))N ) to
∫ T

0
1
2 ‖u‖

2
2 ψ dt. In the second term we use the

lower semicontinuity of the norm and the Fatou lemma. As

lim inf
n→∞

∫ t

0

∫
Ω

|∇un|2 dxdτ ≥
∫ t

0

∫
Ω

|∇u|2 dx dτ,

the function ψ ≥ 0, we have

lim inf
n→∞

∫ T

0

(∫ t

0

∫
Ω

|∇un|2 dx dτ
)
ψ dt

≥
∫ T

0

(
lim inf
n→∞

∫ t

0

∫
Ω

|∇un|2 dx dτ
)
ψ dt ≥

∫ T

0

∫ t

0

∫
Ω

|∇u|2 dxdτψ dt.

The third term is simple — weak convergence is enough and the last term

goes to
∫ T

0
− 1

2 ‖u(0)‖
2
2 ψ dt, due to the completeness of the orthogonal

system
{
wi

}∞
i=1

in L2
0,div(Ω). Altogether we have∫ T

0

[1
2
‖u(t)‖22 + ν

∫ t

0

∫
Ω

|∇u|2 dxdτ −
∫ t

0

〈f,u〉 dτ

−1

2
‖u0‖22

]
ψ(t) dt ≤ 0 ∀ψ ∈ C∞

0 (0, T ), ψ ≥ 0 in [0, T ] .
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By a suitable choice ψ = ωε — mollifier in time — after the limit ε→ 0+

we get

1

2
‖u(t)‖22 + ν

∫ t

0

∫
Ω

|∇u|2 dxdτ ≤ 1

2
‖u0‖22 +

∫ t

0

〈f,u〉 dτ

for a.a. t ∈ (0, T ), which is the energy inequality.

Step (vi) Let us now check in which sense the initial condition is satisfied. We pro-
ceed as in the existence proof. However, we take ψ ∈ C∞ [0, T ], ψ(T ) = 0,
we integrate by parts over the time interval (0, T ) and get

−
∫ T

0

∫
Ω

un ·wj ∂ψ

∂t
dxdt−

∫
Ω

un(0) ·wjψ(0) dx

+

∫ T

0

∫
Ω

(un · ∇un) ·wjψ dxdt

+ν

∫ T

0

∫
Ω

∇un : ∇wjψ dxdt =

∫ T

0

〈
f,wj

〉
ψ dt.

We let n → ∞. Due to the completeness of {wj}∞j=1 we get (actually, we
proceed in two steps, as in Step (iv))

−
∫ T

0

∫
Ω

u ·ϕϕϕ∂ψ
∂t

dxdt−
∫
Ω

u0 ·ϕϕϕψ(0) dx+

∫ T

0

∫
Ω

(u · ∇u) ·ϕϕϕψ dxdt

+ν

∫ T

0

∫
Ω

∇u : ∇ϕϕϕψ dxdt =

∫ T

0

〈f,ϕϕϕ〉ψ dt.

Recall now that∫ T

0

〈∂u
∂t
,ϕϕϕ

〉
ψ dt =

∫ T

0

d

dt
〈u,ϕϕϕ〉︸ ︷︷ ︸

= d
dt

∫
Ω
u·φφφ dx

ψ dt

= −
∫ T

0

(∫
Ω

u ·ϕϕϕdx
)∂ψ
∂t

dt−
∫
Ω

u(0) ·ϕϕϕdxψ(0)︸ ︷︷ ︸
u∈C([0,T ];(L2

w(Ω))N )

.

Choosing ψ(0) 6= 0 it yields∫
Ω

u(0) ·ϕϕϕdx =

∫
Ω

u0 ·ϕϕϕdx,

thus, as u ∈ C([0, T ]; (L2
0,div(Ω))w),

u(t) ⇀ u0 in (L2(Ω))N for t −→ 0+.

In particular,

lim inf
t→0+

‖u(t)‖22 ≥ ‖u0‖22 .
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On the other hand, the energy inequality yields

lim sup
t→0+

‖u(t)‖22 ≤ ‖u0‖22 =⇒ lim
t→0+

‖u(t)‖22 = ‖u0‖22 .

The Hilbert structure of L2(Ω) implies lim
t→0+

‖u(t)− u0‖22 = 0. Note that

in two space dimensions we have due to Lemma 2.2.4 that our solution u ∈
C([0, T ];L2

0,div(Ω)) and thus the strong convergence follows immediately.

Step (vii) Let u1,u2 be two different solutions to the Navier–Stokes equations in
two space dimensions, corresponding to the initial condition u0 and the
right-hand side f. Then〈∂ui

∂t
,ϕϕϕ

〉
+ ν

∫
Ω

∇ui : ∇ϕϕϕdx+

∫
Ω

(ui · ∇ui) ·ϕϕϕdx = 〈f,ϕϕϕ〉 ,

i = 1, 2.

Subtracting yields〈∂(u1 − u2)

∂t
,ϕϕϕ

〉
+ ν

∫
Ω

∇(u1 − u2) : ∇ϕϕϕdx

+

∫
Ω

(u1 · ∇u1 − u2 · ∇u2) ·ϕϕϕdx = 0.

Recall that the difference u1 − u2 belongs to L2(0, T ; (W 1,2
0,div(Ω))

N ) ∩
L∞(0, T ; (L2(Ω))N ). It can be shown as above that the time derivative
∂
∂t (u1 − u2) ∈ L2(0, T ; (W 1,2

0,div(Ω))
∗) and thus

u1 − u2 ∈ C([0, T ];L2
0,div(Ω)) and

d

dt
‖u1 − u2‖22 = 2

〈∂(u1 − u2)

∂t
,u1 − u2

〉
,

see Lemma 2.2.4. Thus the function u1 −u2 can be used as test function.
It reads

1

2

d

dt
‖u1 − u2‖22 + ν

∫
Ω

|∇ (u1 − u2)|2 dx

=

∫
Ω

(u2 · ∇u2 − u1 · ∇u1) · (u1 − u2) dx.

Let us rewrite the right-hand side

(R.H.S.) =

∫
Ω

−
(
u2 · ∇(u1 − u2)

)
· (u1 − u2) dx︸ ︷︷ ︸

=0

+

∫
Ω

(u2 − u1) · ∇u1 · (u1 − u2) dx

≤ ‖u1 − u2‖24 ‖∇u1‖2 ≤ C ‖u1 − u2‖2 ‖∇ (u1 − u2)‖2 ‖∇u1‖2 .

We have

1

2

d

dt
‖u1 − u2‖22 + ν‖∇ (u1 − u2) ‖22 ≤ ν

2
‖∇ (u1 − u2)‖22

+C(ν) ‖u1 − u2‖22 ‖∇u1‖22 , (3.10)
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which yields

d

dt
‖u1 − u2‖22 + ν

∫
Ω

|∇ (u1 − u2)|2 dx ≤ C(ν) ‖u1 − u2‖22 ‖∇u1‖22 .

As ‖∇u1‖22 ∈ L1(0, T ) and (u1−u2)(0) = 0, Gronwall’s inequality implies

‖u1 − u2‖22 (t) = 0 a.e. in (0, T ), i.e., u1 = u2 a.e. in (0, T )× Ω.

Note finally that due to the same arguments as above we can use as test
function in two space dimensions the solutions itself which results into the
energy equality.

�

3.2 Reconstruction of the pressure

The aim of this part is to find out whether the weak formulation did not destroy
the information about the pressure, i.e., whether there exists p ∈ D′((0, T )×Ω)
(or more regular) such that〈∂u

∂t
,ϕϕϕ

〉
+

∫
Ω

(u · ∇u) ·ϕϕϕdx+ ν

∫
Ω

∇u : ∇ϕϕϕdx+ 〈∇p,ϕϕϕ〉 = 〈f,ϕϕϕ〉

∀ϕϕϕ ∈ (C∞
0 (Ω))N and a.a. t ∈ (0, T ). (3.11)

Generally, if only f ∈ L2(0, T ; (W 1,2
0,div)

∗), it is not evident and the pressure may
not exist, see, e.g., paper [35].

We may try to use for f ∈ L2(0, T ; (W−1,2(Ω))N ) the previously proved
lemma about the existence of the pressure in the steady case. Consider the
functional〈

F,ϕϕϕ
〉
=

〈
∂u

∂t
− f,ϕϕϕ

〉
+

∫
Ω

(u · ∇u) ·ϕϕϕdx+ ν

∫
Ω

∇u : ∇ϕϕϕdx.

However, generally it is not clear, whether F is a distribution! The reason is that
the time derivative ∂u

∂t ∈ Lq(0, T ; (W 1,2
0,div(Ω))

∗), but we have no information

about it in the space Lq(0, T ; ((W 1,2
0 (Ω))∗)N ).

Remark . Using other boundary conditions, e.g., if only u · n = 0 (together
with, e.g., the slip boundary condition), we would have

ϕϕϕ ∈ (W 1,2
0 (Ω))N =⇒ ϕϕϕ = ϕϕϕ1︸︷︷︸

∈(W 1,2(Ω))N , divφφφ1=0,φφφ1·n=0 on ∂Ω

+∇π,

〈∂u
∂t
,∇π

〉
= 0,

and now, we have to verify that ϕϕϕ1 is an appropriate test function — considering
u · n = 0 it works. Thus ∂u

∂t is a distribution and we can use Lemma on the
existence of the pressure (Lemma 2.3.4). For the Cauchy problem or for the
periodic boundary conditions we can proceed differently. We can apply on the
momentum equation the operator divergence and get the following equation

∆p = div f− div div(u⊗ u).
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This problem is in the corresponding spaces uniquely solvable. However, e.g.,
for the Dirichlet boundary condition on the velocity we would miss a boundary
condition for the pressure, thus this approach fails. We can see that the Dirichlet
boundary condition complicates the problem of the existence of the pressure.

Nevertheless, it holds

Theorem 3.2.1. Let u be the weak solution to the Navier–Stokes equations
constructed by the Galerkin method, Ω ∈ C0,1, N = 2, 3.

Then there exists P : (0, T ) × Ω → R such that P (t) ∈ L2(Ω) ∀t ∈ (0, T )
and it satisfies∫ t

0

(
− ν

∫
Ω

∇u : ∇χχχdx−
∫
Ω

(u · ∇u) ·χχχdx+ 〈f,χχχ〉
)
dτ

=

∫
Ω

P (t) divχχχdx+

∫
Ω

u(t) ·χχχdx−
∫
Ω

u0 ·χχχdx ∀χχχ ∈ (W 1,2
0 (Ω))N .

Proof. Let us take the formula for the Galerkin approximation, integrate over
the time and the term with the time derivative integrate by parts:∫ t

0

∫
Ω

∂um

∂t
·wi dx dτ =

∫
Ω

um(t) ·wi dx−
∫
Ω

um(0) ·wi dx.

We have ∫ t

0

(
− ν

∫
Ω

∇um : ∇wi dx−
∫
Ω

(um · ∇um) ·wi dx+
〈
f,wi

〉 )
dτ

=

∫
Ω

um(t) ·wi dx−
∫
Ω

um(0) ·wi dx ∀wi , i = 1, ..,m.

By the limit passage m→ ∞ (recall that u ∈ V =
{
v ∈ L2(0, T ; (W 1,2(Ω)N ))∩

L∞(0, T ; (L2(Ω))N ) ∂v
∂t ∈ Lq(0, T ; (W 1,2

0,div(Ω))
∗)
}
↪→ C([0, T ]; (L2

0,div)w)) and

further by the limit passage ”wi → χχχ” we have (we use the density of finite
linear combinations of the basis functions in W 1,2

0,div(Ω))

F (χχχ) =

∫ t

0

{
− ν

∫
Ω

∇u : ∇χχχ−
∫
Ω

(u · ∇u) ·χχχ+ 〈f,χχχ〉
}
dτ

−
∫
Ω

u(t) ·χχχdx+

∫
Ω

u0 ·χχχdx = 0 ∀χχχ ∈W 1,2
0,div(Ω).

Moreover, F (χχχ) is defined ∀χχχ ∈ (W 1,2
0 (Ω))N , ∀t ∈ (0, T ), thus Lemma 2.3.4

yields that

∀t ∈ (0, T ) ∃P (t) ∈ L2(Ω): (3.12)

F (χχχ) =

∫
Ω

P (t) divχχχdx ∀χχχ ∈ (W 1,2
0 (Ω))N , N = 2, 3.

�

Remark . Generally it is not true that P (t) =
∫ t

0
p(τ) dτ , it is not clear that our

”pressure” is really a primitive function to the real pressure. Thus this result is
not very satisfactory.
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In the case when Ω is smooth, it is possible to strengthen this result:2

Theorem 3.2.2. Let Ω ∈ C2, the function u ∈ Lq(0, T ; (Ls(Ω))N ), divu = 0

in the weak sense and the functions Hi ∈ Lqi(0, T ; (Lsi(Ω))N
2

), i = 1, 2 be such
that

−
∫ T

0

∫
Ω

u · ∂ϕ
ϕϕ

∂t
dxdt =

∫ T

0

∫
Ω

(H1 +H2) : ∇ϕϕϕdxdt (3.13)

for all ϕϕϕ ∈ (C∞
0 ((0, T ) × Ω))N with divϕϕϕ = 0. Then there exist scalar func-

tions pi ∈ Lqi(0, T ;Lsi(Ω)), i = 1, 2 and a scalar harmonic function ph ∈
Lq(0, T ;Ls∗(Ω)) with ∇ph ∈ Lq(0, T ; (Ls(Ω))N ), s∗ = Ns

N−s for s < N , s∗ ∈
[1,∞) for s = N a s∗ ∈ [1,∞] for s > N such that

−
∫ T

0

∫
Ω

u · ∂ϕ
ϕϕ

∂t
dxdt =

∫ T

0

∫
Ω

(H1 +HHH2) : ∇ϕϕϕdx dt

+

∫ T

0

∫
Ω

(p1 + p2) divϕϕϕdxdt+

∫ T

0

∫
Ω

∇ph · ∂ϕ
ϕϕ

∂t
dxdt

(3.14)

for all ϕϕϕ ∈ (C∞
0 ((0, T )× Ω))N . Moreover,

‖pi‖Lqi (0,T ;Lsi (Ω)) ≤ C‖Hi‖Lqi (0,T ;(Lsi (Ω))N2 ), i = 1, 2,

‖∇ph‖Lq(0,T ;(Ls(Ω))N ) ≤ C‖u‖Lq(0,T ;(Ls(Ω))N ).

Remark . We can use this theorem in such a way that we take for H1 the
convective term u⊗ u and for H2 the function −ν∇u−F with f = divF. This
theorem can be applied for quite general right-hand sides, however, it shows
again that the pressure does not behave in the way we could naively expect.

Proof. Choose t0 ∈ (0, T ), arbitrarily in such a way that t0 is a Lebesgue point
for u, i.e.,

lim
r→0+

1

2r

∫ t0+r

t0−r

u(τ) dτ = u(t0)

in (Ls(Ω))N . We define for i = 1, 2

H̃i(t) =

∫ t

t0

Hi(τ) dτ

and consider the following Stokes problems

−∆vi = −∇πi − div H̃i(t) in Ω,

divvi = 0 in Ω,

vi|∂Ω = 0.

Due to the regularity of the Stokes problem we have for a.a. t and a.a. h ∈
(0, T − t)

1

h
‖πi(t+ h)− πi(t)‖si ≤

C

h
‖H̃i(t+ h)− H̃i(t)‖si .

2Part of this theorem can be shown also for less regular domains, however, it requires deep
results from the regularity theory for the Stokes problem in Lipschitz domains.



3.2. RECONSTRUCTION OF THE PRESSURE 45

Therefore πi ∈W 1,qi(0, T ;Lsi(Ω)) and it holds∥∥∥∂πi
∂t

∥∥∥
Lqi (0,T ;Lsi (Ω))

≤ C‖Hi‖Lqi (0,T ;Lsi (Ω)).

Further, for a.e. t ∈ (0, T ) we consider the Stokes problem

−∆vh = −∇πh + u(t0)− u(t) in Ω,

divvh = 0 in Ω,

vh|∂Ω = 0.

Again, using the regularity of the Stokes problem and integrating over time

‖∇πh‖Lq(0,T ;Ls(Ω)) ≤ C‖u‖Lq(0,T ;Ls(Ω)).

Evidently, ∆πh = 0 on (0, T ) × Ω. Summing up the Stokes problems above we
have for a.e. t ∈ (0, T )

−∆(v1 + v2 + vh) = −∇(π1 + π2 + πh)− div(H̃1 + H̃2) + u(t0)− u(t). (3.15)

If we take in (3.13) as test function ϕϕϕn ∈ C∞
0 ((0, T )× Ω)N such that ϕϕϕn → ϕϕϕ,

where

ϕϕϕ(τ, x) =

{
ψψψ(x) ∈ (C∞

0 (Ω))N τ ∈ (t0, t),
0 τ ∈ (0, T ) \ (t0, t),

we have ∫
Ω

(u(t)− u(t0)) ·ψψψ dx =

∫
Ω

(H̃1 + H̃2) : ∇ψψψ dx

for allψψψ ∈ (C∞
0 (Ω))N , divψψψ = 0 and due to Lemma 2.3.4 there exists π ∈ Lr(Ω),

r > 1 such that

u(t)− u(t0) = −div(H̃1 + H̃2) +∇π in D′(Ω). (3.16)

Therefore (3.15) and (3.16) imply

−∆(v1 + v2 + vh) = −∇(π1 + π2 + πh − π) in Ω,

div(v1 + v2 + vvvh) = 0 in Ω,

v1 + v2 + vh|∂Ω = 0

and due to the uniqueness of the solution to the steady Stokes problem (for the
pressure up to an additive constant; we assume zero integral mean of each of
them to avoid this problem) we deduce

v1 + v2 + vh = 0 π1 + π2 + πh = π.

Thus in D′(0, T )

p =
∂π

∂t
= p1 + p2 +

∂πh
∂t

,

where pi =
∂πi

∂t . To conclude, we set ph = πh and use its spatial regularity. �
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Let us mention another possibility to reconstruct the pressure. To this aim
we will have to consider the nonstationary Stokes problem

∂u

∂t
− ν∆u+∇p = g in (0, T )× Ω,

divu = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = u0 in Ω.

The weak formulation is analogous to the weak formulation for the Navier–
Stokes equations. We look for u ∈ L2(0, T ;W 1,2

0,div(Ω)) ∩ L∞(0, T ; (L2(Ω))N ),
∂u
∂t ∈ L2(0, T ; (W 1,2

0,div)
∗) such that〈∂u

∂t
,ϕϕϕ

〉
+ ν

∫
Ω

∇u : ∇ϕϕϕdx = 〈g,ϕϕϕ〉 ∀ϕϕϕ ∈W 1,2
0,div(Ω)

and a.a. t ∈ (0, T ),

and
u(t)⇀ u0 in L2

0,div(Ω)

for t → 0+. Indeed, it holds (the proof follows the same ideas as the proof of
the existence of a solution to the Navier–Stokes equations, it is only slightly
simpler)

Theorem 3.2.3. Let g ∈ L2(0, T ; (W−1,2(Ω))N ), Ω ⊂ RN , u0 ∈ L2
0,div(Ω).

Then there exists the unique solution to the nonstationary Stokes problem.
Moreover, u ∈ C([0, T ];L2

0,div(Ω)), hence limt→0+ ‖u(t)− u0‖(L2(Ω))N = 0. �

The following theorem is in the same spirit as Theorem 3.2.2 (for the proof,
see [19]):

Theorem 3.2.4. Let the initial condition be sufficiently smooth, Ω ∈ C2 is
convex and let g = divF, F ∈ (Lp((0, T )× Ω))N

2

, 1 < p <∞.
Then the unique solution to the Stokes problem u ∈ Lp(0, T ;W 1,p

0,div(Ω)) ∩
W

1
2 ,p(0, T ; (Lp(Ω))N ). Moreover, the pressure

π = p1 +
∂P

∂t
,

where P is a harmonic function, p1 ∈ Lp ((0, T )× Ω), P ∈ Lp
(
0, T ;W 2,p(Ω)

)
,

∇P ∈W
1
2 ,p(0, T ; (Lp(Ω))N ) and it holds

‖u‖
W

1
2 (0,T ;(Lp(Ω))N )

+ ‖∇u‖Lp(0,T ;(Lp(Ω))N2 ) + ‖p1‖Lp(0,T ;Lp(Ω))

+ ‖∇P‖
W

1
2 (0,T ;(Lp(Ω))N )

+ ‖∇P‖Lp(0,T ;(W 1,p(Ω))N )

≤ C ‖F‖Lp(0,T ;(Lp(Ω))N2 ) + C1(u0).

Moreover,

‖p‖
W

1− 1
2p

− r
2
,p
(0,T ;W

1
p
+r

p (Ω))
≤ C(u0, ‖F‖Lp(0,T ;(Lp(Ω))N2 )) , r ∈ (0, 1− 1

p ].

�
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The above result seems to be optimal, i.e., we are not able to avoid the
presence of a harmonic part of the pressure which has very low regularity in
time. If f ∈ Lt (0, T ;Ls(Ω)), we get much better result, for the proof see [14]

Theorem 3.2.5 (Solonnikov, Giga, Sohr). Let the initial condition be suffi-
ciently smooth, Ω ∈ C2, and let g ∈ Lt

(
0, T ; (Ls(Ω))N

)
.

Then the unique solution to the Stokes problem satisfies ∇2u, ∂u
∂t , ∇p ∈

Lt(0, T ; (Ls(Ω))k) and it holds(∥∥∇2u
∥∥
X
+

∥∥∥∥∂u∂t
∥∥∥∥
X

+ ‖∇p‖X
)
≤ C (u0, ‖g‖X) ,

where X = Lt
(
0, T ; (Ls(Ω))k

)
, 1 < t, s <∞, k = N2 or N , respectively. �

Remark . This result was originally shown by V.A. Solonnikov for t = s, the
paper cited above is the extension for t 6= s.

We can use these estimates in the following way. We shift the convective
term to the right-hand side. Thus

∂u

∂t
− ν∆u+∇p = f− u · ∇u,

divu = 0, (3.17)

u(0) = u0,

u|∂Ω = 0.

As our solution to the nonlinear problem u exists and the solution to the non-
stationary Stokes problem is uniquely determined, it is clear that we may apply
the estimates from Theorems 3.2.4 a 3.2.5 to our solution. Recall that the result
from Theorem 3.2.4 is not very suitable for us, the pressure is not an Lp-function,
as the harmonic pressure has low regularity in time and cannot be differentiated
with respect to time. Thus we use rather Theorem 3.2.5. The assumptions on f
are not so important, we may take the force term as regular as we need. Let us
check in which spaces we control the convective term:

a) N = 2 ∫
Ω

|u · ∇u|s dx ≤ ‖∇u‖s2 ‖u‖
s
2s

2−s
, 1 < s < 2,

‖u‖ 2s
2−s

≤ C ‖u‖
2−s
s

2 ‖u‖
2s−2

s
1,2 ,

i.e., (∫ T

0

(∫
Ω

|u · ∇u|s dx
) t

s

dτ
) 1

t ≤ C
(∫ T

0

‖∇u‖t+(2s−2) t
s

2 ‖u‖
t
s (2−s)
2

) 1
t

≤ C ‖u‖
1
s (2−s)

L∞(0,T ;(L2(Ω))2) ‖u‖
3s−2

s

L2(0,T ;(W 1,2(Ω))2)

assuming that

t+ (2s− 2)
t

s
= 2 =⇒ 2

t
+

2

s
= 3, s < 2.
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b) N = 3

2s

2− s
≤ 6, i.e., s ≤ 3

2
.

Then

‖u‖ 2s
2−s

≤ C ‖u‖
3−2s

s
2 ‖u‖

3s−3
s

1,2(2− s

2s
=
α

2
+

1− α

6
=⇒ α =

3− 2s

s
, 1− α =

3s− 3

s

)
and (∫ T

0

( ∫
Ω

|u · ∇u|s dx
) t

s dt
) 1

t ≤ C
(∫ T

0

‖u‖t+(3s−3) t
s

1,2 ‖u‖
1
s (3−2s)
2 dt

) 1
t

≤ C ‖u‖
1
s (3−2s)

L∞(0,T ;(L2(Ω))3) ‖u‖
4s−3

s

L2(0,T ;(W 1,2(Ω))3) ,

if

t+ (3s− 3)
t

s
= 2 =⇒ 2

t
+

3

s
= 4, s ≤ 3

2
.

Therefore we have

Theorem 3.2.6. Let u be a weak solution to the Navier–Stokes equations and
let Ω ∈ C2, f and u0 be sufficiently smooth.

Then there exists a scalar function, the pressure, and the Navier–Stokes equa-
tions are satisfied a.e. in the time-space. Moreover,

∇2u,
∂u

∂t
, ∇p ∈ Lt(0, T ; (Ls(Ω))k), 1 < s <

N

N − 1
, k = N2 or N,

2

t
+
N

s
= N + 1, N = 2, 3.

�

Remark . The same result holds true for N > 3.

Let us check, what kind of information we got in three space dimensions for
the pressure. To fix uniquely the pressure, we will suppose that

∫
Ω
p(x, t) dx = 0

for a.a. t ∈ (0, T ). We know that

∇p ∈ Lt (0, T ;Ls)
2

t
+

3

s
= 4 , s <

3

2
,

i.e.,

p ∈ Lt(0, T ;Ls∗(Ω)), s∗ =
3s

3− s
,

2

t
+

3

s∗
=

2

t
+

3− s

s

=⇒ 2

t
+

3

s∗
= 3.

If we want to have t = s∗ ⇒ 2
t + 3

t = 3 ⇒ t = 5
3 , i.e., p ∈ L

5
3 ((0, T )× Ω) .

(Check that for N = 2 we have p ∈ Lq ((0, T )× Ω) for any q < 2!)
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3.3 Regularity (N = 2)

Let us show now that our uniquely determined weak solution to the Navier–
Stokes equations in two space dimensions is more regular provided the data are
so. We will prove the following

Theorem 3.3.1. Let Ω ∈ C2, u0 ∈W 1,2
0,div(Ω), f ∈ L2(0, T ; (L2(Ω))2).

Then the weak solution to the Navier–Stokes equations in two space dimen-
sions fulfils

∇2u,
∂u

∂t
,∇p ∈ L2(0, T ; (L2(Ω))k),∇u ∈ L∞(0, T ; (L2(Ω))4), k = 4or 2,∥∥∇2u

∥∥
L2(0,T ;(L2(Ω))4)

+

∥∥∥∥∂u∂t
∥∥∥∥
L2(0,T ;(L2(Ω))2)

+ ‖∇p‖L2(0,T ;(L2(Ω))2)

+ ‖∇u‖L∞(0,T ;(L2(Ω))4) ≤ C(‖f‖L2(0,T ;(L2(Ω))2) , ‖u0‖1,2).

In particular, u ∈ C([0, T ]; (W 1,2(Ω))2). If u0 ∈ L2
0,div(Ω) only, then the above

mentioned estimates hold true on [δ, T ], δ > 0, arbitrarily small.

First, let us prove one lemma

Lemma 3.3.1. Denote by P the projector from (L2(Ω))N to L2
0,div(Ω) (it is

sometimes called the Leray projector). Let Ω ∈ C2.
Then

∃C1, C2 : ∀u ∈W 1,2
0,div(Ω) ∩ (W 2,2(Ω))N

it holds
C1 ‖u‖2,2 ≤ ‖P∆u‖2 ≤ C2 ‖u‖2,2 .

Proof. Let us consider the Stokes problem:

−∆u+∇p = f in Ω,

divu = 0 in Ω,

u|∂Ω = 0.

Without loss of generality we assume f ∈ L2
0,div(Ω). The problem can be equiv-

alently rewritten as

−P∆u = f in Ω,

divu = 0 in Ω,

u|∂Ω = 0.

Due to the regularity of the solutions to the Stokes problem we know that

‖u‖2,2 ≤ C ‖f‖2
and thus

‖u‖2,2 ≤ C ‖f‖2 = C ‖P∆u‖2 .

On the other hand, as P is the projector,

‖P∆u‖2 ≤ ‖∆u‖2 ≤ C ‖u‖2,2 .

�
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Proof (of Theorem 3.3.1). Recall that we constructed the solution by the
Galerkin approximation. Take the j-th equation, multiply it by ċmj (t), sum over
j and integrate over time (i.e., we use as test function for um the time derivative
∂um

∂t ). We have ∫ t

0

∫
Ω

∣∣∣∣∂um

∂t

∣∣∣∣2 dx dτ +
1

2
ν

∫ t

0

d

dt

∫
Ω

|∇um|2 dx dτ

=

∫ t

0

∫
Ω

f · ∂u
m

∂t
dxdτ −

∫ t

0

∫
Ω

(um · ∇um) · ∂u
m

∂t
dxdτ.

Next, multiply the j-th equation by λjc
m
j (t), sum over j and integrate over time.

Recall that ∫
Ω

∇wj : ∇ϕϕϕdx = λj

∫
Ω

wj ·ϕϕϕdx ∀ϕϕϕ ∈W 1,2
0,div(Ω),

i.e., we use as test function −P∆um. We have

1

2

∫ t

0

d

dt

∫
Ω

|∇um|2 dxdτ + ν

∫ t

0

∫
Ω

∇um :
( m∑

j=1

cj(τ)λj∇wj
)
dxdτ

=

∫ t

0

∫
Ω

f ·
m∑
j=1

cj(τ)λjw
j

︸ ︷︷ ︸
=−P∆um

dx dτ −
∫ t

0

∫
Ω

(um · ∇um) ·
( m∑

j=1

cj(τ)λjw
j
)
dxdτ.

Compute ∫ t

0

∫
Ω

(
∇um :

m∑
j=1

cj(τ)λj∇wj
)
dxdτ

= −
∫ t

0

∫
Ω

(
∆um :

m∑
j=1

cj(τ)λjw
j
)
dxdτ︸ ︷︷ ︸

−
∫ t
0

∫
Ω
(P∆um+∇z)(

∑m
j=1 cj(τ)λjwj) dx dτ

.

Altogether,∫ t

0

∥∥∥∂um

∂t

∥∥∥2
2
dτ + ν

∫ t

0

∥∥∇2um
∥∥2
2
dτ + ‖∇um‖22 (t)

≤ C
(∫ t

0

∥∥∥∂um

∂t

∥∥∥2
2
dτ + ν

∫ t

0

‖P∆um‖22 dτ +
1

2
(1 + ν) ‖∇um‖22 (t)

)
≤ C

∫ t

0

‖f‖2
(∥∥∥∂um

∂t

∥∥∥
2
+ ‖P∆um‖2

)
dτ (3.18)

+C

∫ t

0

(∫
Ω

|∇um|2|um|2 dx
)1/2(∫

Ω

((∂um

∂t

)2

+ (P∆um)
2
)
dx

)1/2

dτ

+C‖∇um(0)‖22 ≤ 1

2

∫ t

0

∥∥∥∂um

∂t

∥∥∥2
2
dτ +

1

2
ν

∫ t

0

∥∥∇2um
∥∥2
2
dτ

+C(ν)

∫ t

0

‖f‖22 dτ + C ‖∇um(0)‖22 + C(ν)

∫ t

0

∫
Ω

|∇um|2 |um|2 dx dτ︸ ︷︷ ︸
I

.
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We need to estimate the convective term

I ≤ C

∫ t

0

‖∇um‖24 ‖u
m‖24 dτ ≤ C

∫ t

0

‖∇um‖1,2 ‖∇um‖22 ‖u
m‖2 dτ

≤ 1

4
ν

∫ t

0

∥∥∇2um
∥∥2
2
+ C(ν)

∫ t

0

‖∇um‖42 dτ.

Thus

1

2

∫ t

0

∥∥∥∂um

∂t

∥∥∥2
2
dτ +

ν

4

∫ t

0

∥∥∇2um
∥∥2
2
dτ + ‖∇um‖22 (t)

≤ ‖∇um(0)‖22 + C(ν)

∫ t

0

‖f‖22 dτ + C(ν)

∫ t

0

‖∇um‖22 ‖∇um‖22 dτ.

It follows from the integral form of the Gronwall lemma

f(t) ≤ f(0) +

∫ t

0

g(τ) dτ +

∫ t

0

h(τ)f(τ) dτ =⇒

f(t) ≤
(
f(0) +

∫ t

0

g(τ) dτ
)
e
∫ t
0
h(τ) dτ ,

choosing f = ‖∇um(t)‖22 , h = ‖∇um(t)‖22 ∈ L1(0, T ) that

sup
(0,T )

‖∇um(t)‖2 ≤ C
(
‖∇um(0)‖2 , ‖f‖L2(0,T ;(L2(Ω))2), T

)
.

Substitute it back to the estimate above,∫ T

0

∥∥∥∂um

∂t

∥∥∥2
2
dτ + ν

∫ T

0

∥∥∇2um
∥∥2
2
dτ + sup

(0,T )

‖∇um(t)‖22

≤ C
(
‖∇um(0)‖2 ,

∫ T

0

‖f‖22 dτ, T
)
≤ C (u0, f, T ) ,

as

‖∇um(0)‖2 ≤ ‖∇u0‖2 .

Now, use Lemma 3.3.1 and pass with m → ∞. If the information about the
initial condition is not sufficient, take

g(t) := 0 0 < t <
δ

2
,

g(t) := 1 t > δ,

g ∈ C1 ([0, T ]) , g ≥ 0

and before integrating over time, multiply the inequality by g. Then∫ t

0

g(τ)
d

dt
‖∇um(τ)‖22 dτ = g(t) ‖∇um(t)‖22 −

∫ t

0

g′(τ) ‖∇um(τ)‖22 dτ.

We transfer the second term on the right-hand side and continue as above.
Due to the properties of g we ”lose” the information about the behaviour for
times near zero, on the other hand, we do not need to know anything about the
gradient of the initial condition. The theorem is proved. �
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We could also study higher regularity. It is possible to show that for divu0 =
0, u0 = 0 on ∂Ω and f ∈ (C∞ (

(0, T )× Ω
)
)N , Ω ∈ C∞ also the solution u ∈

(C∞ (
(0, T )× Ω

)
)2, p ∈ C∞ (

(0, T )× Ω
)
— attention, not up to time instant 0

— this requires certain compatibility conditions between u0 and f and regularity
of u0. We will not continue in this direction, we rather switch to the regularity
and uniqueness problem in three space dimensions.

3.4 Uniqueness (N = 3)

First, let us recall that we do not know whether all weak solution to the Navier–
Stokes equations in three space dimensions satisfy the energy inequality. How-
ever, it holds

Lemma 3.4.1. Let u be a weak solution, which additionally belongs to the space
L4

(
0, T ; (L4(Ω))N

)
. 3

Then u fulfils the energy equality.

Proof. Let us show that if u is a weak solution to the Navier–Stokes equations
and belongs additionally to L4

(
0, T ; (L4(Ω))N

)
, then ∂u

∂t ∈ L2(0, T ; (W 1,2
0,div)

∗).
Indeed,

sup
φφφ∈L2(0,T ;W

1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

〈∂u
∂t
,ϕϕϕ

〉
dτ

∣∣∣ =
sup

φφφ∈L2(0,T ;W
1,2
0,div

(Ω))

∥φφφ∥≤1

∣∣∣ ∫ T

0

(
− ν

∫
Ω

∇u : ∇ϕϕϕdx+ 〈f,ϕϕϕ〉 −
∫
Ω

(u · ∇u) ·ϕϕϕdx
)
dτ

∣∣∣
≤ sup

φφφ∈L2(0,T ;W
1,2
0,div

(Ω))

∥φφφ∥≤1

∫ T

0

(
‖∇u‖2 ‖∇ϕϕϕ‖2 + ‖f‖−1,2 ‖ϕϕϕ‖1,2 + ‖∇ϕϕϕ‖2 ‖u‖

2
4

)
dτ

≤ C.

Thus we are allowed to take as test function the solution u itself as all integrals
are finite. It yields (see also Lemma 2.2.4)

1

2

d

dt
‖u‖22 + ν

∫
Ω

|∇u|2 dx = −
∫
Ω

(u · ∇u) · udx︸ ︷︷ ︸
=0

+ 〈f,u〉 .

Moreover, u ∈ C([0, T ];L2
0,div(Ω)), and thus, integrating over time

1

2
‖u(t)‖22 + ν

∫ t

0

∫
Ω

|∇u|2 dx dτ =
1

2
‖u0‖22 +

∫ t

0

〈f,u〉 dτ ∀t ∈ [0, T ] .

�
3This conditions has been in a certain sense relaxed, see [5]. The condition on the addi-

tional regularity can be expressed using the Sobolev–Slobodetskii spaces, i.e., with noninteger
derivative, however it is on a weaker scale than the condition from our theorem.
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Remark . Recall that in two space dimensions the weak solution to the Navier–
Stokes equations belongs to u ∈ L4(0, T ; (L4(Ω))2) and thus it satisfies not only
the energy inequality, but also the energy equality.

It is generally not known whether the class of weak solutions in three space
dimensions is also the uniqueness class. However, we have

Theorem 3.4.1. Let u, v be two weak solutions to the Navier–Stokes equations
corresponding to the same data. Let u satisfy the energy inequality and let v
satisfy additionally

v ∈ Lt(0, T ; (Ls(Ω))3),
2

t
+

3

s
= 1, s ∈ [3,∞] .

Then u = v a.e. in (0, T )× Ω.

Remark . It is a uniqueness result of the type strong solution = weak solution.
It indicates that the uniqueness and the regularity are closely connected. The
conditions on v from Theorem 3.4.1 are often called the Prodi–Serrin conditions.

Proof (of Theorem 3.4.1). We will perform the proof for s > 3. The case
L∞(0, T ; (L3(Ω))3) is technically more complicated. Let us first proceed for-
mally.

Take as test function for u and v the difference u − v (which we are not
allowed to) and subtract the resulting inequalities. We have

1

2

d

dt
‖u− v‖22 + ν

∫
Ω

|∇(u− v)|2 dx =

∫
Ω

(v · ∇v− u · ∇u) · (u− v) dx

=

∫
Ω

(v · ∇v) · (u− v) dx−
∫
Ω

(u · ∇(u− v)) · (u− v) dx︸ ︷︷ ︸
=0

(3.19)

−
∫
Ω

(u · ∇v) · (u− v) dx = −
∫
Ω

((u− v) · ∇v) · (u− v) dx

=

∫
Ω

(u− v)⊗ v : ∇(u− v) dx.

We estimate the term on the right-hand side

|C.T.| ≤
∫
Ω

|∇(u− v)|︸ ︷︷ ︸
2

|u− v|︸ ︷︷ ︸
2s

s−2

|v|︸︷︷︸
s

≤ ‖∇(u− v)‖2 ‖u− v‖ 2s
s−2

‖v‖s

≤ ‖∇(u− v)‖
s+3
s

2 ‖u− v‖
s−3
s

2 ‖v‖s ,

‖u− v‖ 2s
s−2

≤ ‖u− v‖
s−3
s

2 ‖u− v‖
3
s
6 ,

=⇒ |C.T.| ≤ 1

2
ν ‖∇(u− v)‖22 + C(ν) ‖u− v‖22 ‖v‖

2s
s−3
s .

(If s = 3, this proof does not work.) For s = ∞ the convective term can be
estimated by

‖v‖∞ ‖u− v‖2 ‖∇(u− v)‖2 ≤ 1

2
ν ‖∇(u− v)‖22 + C(ν) ‖u− v‖22 ‖v‖

2
∞ .
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Thus, altogether
d

dt
‖u− v‖22 ≤ C ‖u− v‖22 ‖v‖

t
s ,

and as (u− v)(0) = 0, it follows from Gronwall’s lemma that u− v = 0.

Let us now try to deduce relation (3.19) rigorously; as a matter of fact, we
deduce the form integrated over time and the equality will be replaced by in-
equality. However, it will be sufficient to conclude the proof.

The first relation we have at our disposal is the energy inequality for u:

1

2
‖u(t)‖22 + ν

∫ t

0

∫
Ω

|∇u|2 dx dτ ≤ 1

2
‖u0‖22 +

∫ t

0

〈f,u〉 dτ. (3.20)

Further v ∈ L4(0, T ; (L4(Ω))3), which follows simply by interpolation and thus
according to Lemma 3.4.1

1

2
‖v(t)‖22 + ν

∫ t

0

∫
Ω

|∇v|2 dx dτ =
1

2
‖u0‖22 +

∫ t

0

〈f,v〉 dτ. (3.21)

We have to show that we can take as a test function for v the function u and vice
versa. From the proof of Lemma 3.4.1 we know that ∂v

∂t ∈ L2(0, T ; (W 1,2
0,div)

∗),

thus we may use u ∈ L2(0, T ;W 1,2
0,div(Ω)) as test function. We have

−
∫ t

0

〈∂v
∂t
,u

〉
−
∫ t

0

∫
Ω

(v · ∇v) · u dxdτ − ν

∫ t

0

∫
Ω

∇v : ∇udxdτ

= −
∫ t

0

〈f,u〉 dτ. (3.22)

It remains the last step, to test the equation for u by the function v. Let us

show first that ∂u
∂t ∈

(
L2(0, T ;W 1,2

0,div(Ω)) ∩ Lt(0, T ; (Ls(Ω))3)
)∗

:∫ T

0

〈∂u
∂t
,ϕϕϕ

〉
dτ = −ν

∫ T

0

∫
Ω

∇u : ∇ϕϕϕdx dτ −
∫ T

0

∫
Ω

(u · ∇u) ·ϕϕϕdxdτ

−
∫ T

0

〈f,ϕϕϕ〉 dτ.

The first and the third term are estimated in a standard way, for the convective
term we have (see above)∣∣∣ ∫ T

0

∫
Ω

(u · ∇u) ·ϕϕϕdxdτ
∣∣∣ ≤ ∫ T

0

‖∇u‖2 ‖ϕϕϕ‖s ‖u‖ 2s
s−2

dτ

≤
(∫ T

0

‖∇u‖22 dτ
) s+3

2s
(∫ T

0

‖ϕϕϕ‖
2s

s−3
s dτ

) s−3
2s ‖u‖1−

3
s

L∞(0,T ;(L2(Ω))3) .

The case s = ∞ is left as an exercise to the kind reader.
Thus we may test the equation for u by the function v:

−
∫ t

0

〈∂u
∂t
,v

〉
dτ −

∫ t

0

∫
Ω

(u · ∇u) · v dx dτ

−ν
∫ t

0

∫
Ω

∇u : ∇v dxdτ = −
∫ t

0

〈f,v〉 dτ. (3.23)
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If we proceed as in the proof of Lemma 2.2.4, we can show (by means of a
suitable approximation; see also remark before the proof of the lemma)∫ t

0

(〈∂u
∂t
,v

〉
+
〈∂v
∂t
,u

〉)
dτ =

∫ t

0

d

dt

∫
Ω

u · v dxdτ

=

∫
Ω

(u · v)(t) dx−
∫
Ω

(u · v)(0) dx. (3.24)

Note that u ∈ C([0, T ]; (L2
0,div(Ω))w) and v ∈ C([0, T ];L2

0,div(Ω)), hence the
value at zero is well-defined. If we sum (3.20)–(3.23) and use (3.24), we get

1

2
‖u− v‖22 (t) + ν

∫ t

0

∫
Ω

|∇(u− v)|2 dxdτ ≤
∫ t

0

∫
Ω

(v · ∇v) · u dx dτ

+

∫ t

0

∫
Ω

(u · ∇u) · v dxdτ

and we proceed further as in the formal part of the proof. �

3.5 Global-in-time conditional regularity
(N = 3)

We aim to prove the following

Theorem 3.5.1. Let Ω ⊂ R3, Ω ∈ C2, let u be a weak solution to the Navier–
Stokes equations with the initial condition u0 ∈ L2

0,div(Ω) and the right-hand

side f ∈ L2(0, T ; (L2(Ω))3). Let additionally u ∈ Lt(0, T ; (Ls(Ω))3), 2
t +

3
s ≤ 1,

s > 3 or ‖u‖L∞(0,T ;(L3(Ω))3) be sufficiently small.

Then the weak solution u ∈ L2(ε, T ; (W 2,2(Ω))3) ∩ L∞(ε, T ; (W 1,2(Ω))3),
∂u
∂t ∈ L2(ε, T ; (L2(Ω))3) ∀ε > 0. If u0 ∈W 1,2

0,div(Ω), then we may take ε = 0.

We prove the theorem in two steps. Consider the problem

∂v

∂t
+ u · ∇v− ν∆v+∇π = f, (3.25)

divv = 0,

v(0, x) = u0(x),

v|∂Ω = 0

(in the weak sense). We first prove

Lemma 3.5.1. Let u, u0, f and Ω fulfil the assumptions of Theorem 3.5.1. Let
u ∈ L2(0, T ;W 1,2

0,div(Ω)) ∩ L∞(0, T ;L2
0,div(Ω)).

Then there exists a solution to (3.25) in the weak sense. Furthermore, v ∈
L2

(
ε, T ; (W 2,2(Ω))3

)
∩ L∞ (

ε, T ; (W 1,2(Ω))3
)
, ∂v

∂t ∈ L2(ε, T ; (L2(Ω))3). If u0 ∈
W 1,2

0,div(Ω), then we may take ε = 0.

Next we show

Lemma 3.5.2. Let u be a weak solution to the Navier–Stokes equations corre-
sponding to the data u0, f and let v be a weak solution to (3.25) corresponding
to the same data. Let the assumptions of Theorem 3.5.1 be fulfilled.

Then u = v a.a. in (0, T )× Ω.
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Indeed, Lemma 3.5.1 and Lemma 3.5.2 imply the proof of Theorem 3.5.1.
Recall only (see [8], [9], [29]) that for Ω = R3, Ω = R3

+ or Ω ∈ C2 it is enough
to assume u ∈ L∞(0, T ; (L3(Ω))3). We will prove our theorem for s > 3, the
case s = 3 with additional smallness assumptions follows the same lines and is
left as an exercise for the kind reader. Note also that having proved Theorem
3.5.1, we could proceed as in the two-dimensional case and get the full regularity.
In particular, if the right-hand side and the domain Ω are C∞, then also the
solution is C∞, however, in general not up to the time instant 0.

Proof (of Lemma 3.5.1). The existence of a solution is shown by means of
the Galerkin method. We take the basis formed by eigenvectors of the Stokes
problem and we construct the weak solution as in the proof of the existence of
a solution to the Navier–Stokes equations. We show (

∫
Ω

(
u · ∇vk

)
· vk dx = 0!)

that ∥∥vk
∥∥
L∞(0,T ;(L2(Ω))3)

+ ν
∥∥∇vk

∥∥
L2(0,T ;(L2(Ω))3×3)

≤ C
(
‖f‖L2(0,T ;(L2(Ω))3), ‖u0‖2

)
.

Moreover, as shown several times before, we can prove that∥∥∥∂vk

∂t

∥∥∥
L2(0,T ;(W 1,2

0,div(Ω))∗)
≤ C

(
‖f‖L2(0,T ;(L2(Ω))3), ‖u0‖2

)
.

Next, exactly as in the proof of the regularity in two space dimensions, we use

as test functions ∂vk

∂t and −P∆vk (i.e., we multiply the j-th equation by λjc
k
j (t)

and d
dtc

k
j (t)), respectively. We get (see the 2D case)

1

2

d

dt

∥∥∇vk
∥∥2
2
+ ν

∥∥P∆vk
∥∥2
2
=

∫
Ω

(
u · ∇vk

)
· P∆vk dx−

∫
Ω

P∆vk · fdx

1

2
ν
d

dt

∥∥∇vk
∥∥2
2
+
∥∥∥∂vk

∂t

∥∥∥2
2
= −

∫
Ω

(
u · ∇vk

)
· ∂v

k

∂t
dx+

∫
Ω

f · ∂v
k

∂t
dx.

The term with f does not cause any troubles, we have to estimate the convective
term. ∫

Ω

(
u · ∇vk

)
· a dx ≤ ‖a‖2 ‖u‖s

∥∥∇vk
∥∥ s−3

s

2

∥∥∇vk
∥∥ 3

s

1,2

≤ ε ‖a‖22 + ε
∥∥P∆vk

∥∥2
2
+ C(ε) ‖u‖

2s
s−3
s

∥∥∇vk
∥∥2
2
,(1

2
+

3

2s
+

1

q
= 1 ⇒ q =

2s

s− 3

)
.

Thus

d

dt

∥∥∇vk
∥∥2
2
+ ν

∥∥P∆vk
∥∥2
2
+
∥∥∥∂vk

∂t

∥∥∥2
2
≤ C1 ‖u‖

2s
s−3
s

∥∥∇vk
∥∥2
2
+ C2 ‖f‖22 .

Now, as in the two-dimensional case, we deduce from the Gronwall inequality
(we use a suitable cut-off function in time) the estimates for ∇vk, P∆vk and
∂vk

∂t on (ε, T ). The limit passage in the equations is simple as we have stronger
estimates than for the Navier–Stokes equations and our system is only linear. If
u0 ∈W 1,2

0,div(Ω), then we may take ε = 0. �
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Proof (of Lemma 3.5.2). We take ε > 0 fixed. Then∫ t

ε

∫
Ω

∂v

∂t
·ϕϕϕ1 dx dτ + ν

∫ t

ε

∫
Ω

∇v : ∇ϕϕϕ1 dx dτ +

∫ t

ε

∫
Ω

(u · ∇v) ·ϕϕϕ1 dx dτ

=

∫ t

ε

∫
Ω

f ·ϕϕϕ1 dxdτ ∀ϕϕϕ1 ∈W 1,2
0,div(Ω). (3.26)

The assumptions on u ensure that u ∈ (L4((0, T ) × Ω))3, hence u fulfils the
energy equality. Thus

1

2
‖u(t)‖22 −

1

2
‖u(ε)‖22 + ν

∫ t

ε

‖∇u‖22 dτ =

∫ t

ε

∫
Ω

f · udxdτ. (3.27)

Further,∫ t

ε

d

dt

(∫
Ω

u ·ϕϕϕ2 dx
)
dτ −

∫ t

ε

∫
Ω

u · ∂ϕ
ϕϕ2

∂t
dxdτ + ν

∫ t

ε

∫
Ω

∇u : ∇ϕϕϕ2 dxdτ

+

∫ t

ε

∫
Ω

(u · ∇u) ·ϕϕϕ2 dxdτ =

∫ t

ε

∫
Ω

f ·ϕϕϕ2 dxdτ (3.28)

∀ϕϕϕ2 ∈ L2(ε, T ;W 1,2
0,div(Ω) ∩ (W 2,2(Ω))3);

∂ϕϕϕ2

∂t
∈ L2(ε, T ; (L2(Ω))3).

Choosing

ϕϕϕ1 := v− u,

ϕϕϕ2 := −v,

and summing up (3.26) + (3.27) + (3.28), we have for w := u− v

1

2
‖w(t)‖22 + ν

∫ t

ε

∫
Ω

|∇w|2 dxdτ =
1

2
‖w(ε)‖22

(as ∫ t

ε

∫
Ω

[(u · ∇v) · (v− u)− (u · ∇u) · v] dxdτ

=

∫ t

ε

∫
Ω

[u · ∇v− u · ∇u] · (v− u) dx dτ =

∫ t

ε

∫
Ω

(u · ∇w) ·wdxdτ = 0

and the term is well defined.). Now we pass with ε → 0+. As u satisfies the

energy (in)equality, lim
ε→0+

‖u(ε)‖22 = ‖u0‖22 . Note that due to the construction

we also have (v fulfils the energy inequality) lim
ε→0+

‖v(ε)‖22 = ‖u0‖22 . Thus, using
also the weak continuity, lim

t→0+
‖u(t) − u0‖2 = lim

t→0+
‖v(t) − u0‖2 = 0 which

implies lim
ε→0+

‖(u− v)(ε)‖22 = 0, i.e., w = 0 a.e. in (0, T )× Ω. �

3.6 Local-in-time regularity, regularity for small
data and concluding remarks (N = 3)

Let f ∈ L2(0, T ; (L2(Ω))3), u0 ∈W 1,2
0,div(Ω). Let us show that ∃T ∗ > 0 such that

the solution to the Navier–Stokes equations belongs to L∞(0, T ∗;W 1,2
0,div(Ω)) ∩

L2(0, T ∗; (W 2,2(Ω))3) and ∂u
∂t ∈ L2(0, T ∗; (L2(Ω))3) (similarly for ∇p).
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Theorem 3.6.1. Let Ω ⊂ R3, Ω ∈ C2, u0 ∈ W 1,2
0,div(Ω), f = 0 (for simplic-

ity). Then ∃T ∗ = T ∗(ν, ‖u0‖1,2 ,Ω) such that on (0, T ∗) there exists exactly one

”regular” solution to the Navier–Stokes equations, especially T ∗ ≥ Cν3

∥∇u0∥4
2

, C =

C(Ω). Moreover, ∃G = G(ξ), ξ > 0 such that for ‖u0‖2 ≤ G (‖∇u0‖2), T ∗ can

be arbitrary large number. For Ω bounded G = Cν2

∥∇u0∥2
, C = C(Ω).

Remark . The second result of this theorem can be interpreted in two ways.
The conclusion holds true, if either the initial condition in L2(Ω) is sufficiently
small or the viscosity ν is sufficiently large.

Proof. a) ”short time”
We proceed as in the construction by means of the Galerkin method in
the last theorem. We have

1

2

d

dt

∥∥∇uk
∥∥2
2
+ ν

∫
Ω

∣∣P∆uk
∣∣2 dx =

∫
Ω

(
uk · ∇uk

)
P∆uk dx.

Let us estimate the convective term:

|C.T.| ≤
∥∥uk

∥∥
6

∥∥∇uk
∥∥
3

∥∥P∆uk
∥∥
2
≤ C̃(Ω)

∥∥∇uk
∥∥ 3

2

2

∥∥P∆uk
∥∥ 3

2

2

≤ 1

2
ν
∥∥P∆uk

∥∥2
2
+
C(Ω)

2
ν−3

∥∥∇uk
∥∥6
2
.

If we set y =
∥∥∇uk

∥∥2
2
, we have

dy

dt
≤ C(Ω)ν−3︸ ︷︷ ︸

K

y3 ⇒ 1

y2
= −2Kt+

1

y20
⇒ y2 =

y20
1− 2Kty20

.

The solution exists, provided

1− 2KT ∗y20 > 0 ⇒ T ∗ <
1

2Ky20
=

ν3

2C(Ω) ‖∇u0‖42
.

Testing by ∂uk

∂t and using the estimate on ∆uk we get the required esti-
mates on the time derivative.

b) ”long time”
We now estimate the convective term differently

|C.T.| ≤
∥∥uk

∥∥
3

∥∥∇uk
∥∥
6

∥∥P∆uk
∥∥
2
≤ C

∥∥uk
∥∥ 1

2

2

∥∥∇uk
∥∥ 1

2

2

∥∥P∆uk
∥∥2
2
,

1

2

d

dt

∥∥∇uk
∥∥2
2
+

(
ν − C(Ω)

∥∥uk
∥∥ 1

2

2

∥∥∇uk
∥∥ 1

2

2

)∥∥P∆uk
∥∥2
2
≤ 0.

If ν − C(Ω) ‖u(t)‖
1
2
2 ‖∇u(t)‖

1
2
2 > 0, then∥∥∇uk(t)

∥∥
2
≤ ‖∇u0‖2 .

But as ∥∥uk(t)
∥∥
2
≤ ‖u0‖2 ,

from the assumption

ν − C(Ω) ‖u0‖
1
2
2 ‖∇u0‖

1
2
2 > 0



3.6. LOCAL-IN-TIME REGULARITY (N = 3) 59

the inequality

ν − C(Ω)
∥∥uk(t)

∥∥ 1
2

2

∥∥∇uk(t)
∥∥ 1

2

2
> 0 ∀t > 0

follows.

Thus we get the estimate for ∇uk in L∞(0, T ; (L2(Ω))3×3) and for uk

in L2(0, T ; (W 2,2(Ω))3). The estimate for the time derivative can be shown
easily as mentioned above.

�

Remark . If Ω ∈ C∞, u0 ∈ (C∞(Ω))3 and f ∈ C∞([0,∞) × Ω)3, then u ∈
C∞ (

(0, T )× Ω
)
(and it is enough u0 ∈ W 1,2

0,div(Ω) for local regularity in time).

However, we cannot expect that u ∈ C∞ (
[0, T )× Ω

)
. Why?

u|∂Ω×(0,T ) = 0, thus necessarily on ∂Ω

∂u0

∂t︸︷︷︸
=0

+u0 · ∇u0︸ ︷︷ ︸
=0

−ν∆u0 +∇p(0, x) = f(0, x).

Simultaneously it must hold in Ω

∆p(0, x) = −div div (u0 ⊗ u0) + div f(0, x),

and at ∂Ω
∂p(0, x)

∂n
= ∆u0 · n+ f(0, x) · n

and there is no reason to hold on ∂Ω: −ν∆u0 +∇p(0, x) = f(0, x)! The elliptic
problem would be overdetermined.

Remark . Inequality of the type

1

2
‖u(t)‖22 + ν

∫ t

σ

‖∇u‖22 dτ ≤ 1

2
‖u(σ)‖22

for a.a. σ ≥ 0, including σ = 0, and for all t ∈ (σ, T ] is called the strong energy
inequality (before we had σ = 0). For example, for bounded domains such a
solution exists and we could basically get it by our construction, but we would
have to be more careful in the limit passage in the energy inequality. In such a
case it holds

Theorem 3.6.2. Let Ω ∈ C∞, let u be a weak solution to the Navier–Stokes
equations corresponding to f = 0 and let u fulfil the strong energy inequality.

Then there exists T — a union of disjoint time intervals such that

(a) |(0,∞) \ T|1 = 0
(
H

1
2 ((0,∞) \ T) = 0

)
,

(b) u ∈ (C∞(T × Ω))3,

(c) ∃T ∗ ∈ (0,∞) : (T ∗,∞) ⊂ T,

(d) If u0 ∈W 1,2
0,div(Ω), then ∃T1 > 0 : (0, T1) ⊂ T.



Chapter 4

Appendix: Solvability of
problem divu = f

4.1 Integral operators

Before we start with the proof of Lemma 2.3.2, we recall several basic results
concerning integral operators.

Definition 4.1.1. Let Ω be a bounded domain and let

K(x, x− y) =


Θ
(
x, x−y

|x−y|
)

|x− y|λ
, (x, y) ∈ Ω× Ω, x 6= y,

0, otherwise,

where Θ ∈ L∞(Ω× ∂B1). Let 0 < λ < N . Then

T : f 7→
∫
Ω

K(x, x− y)f(y) dy

is called a weakly singular integral operator.

It holds (see [37] or [12])

Theorem 4.1.1. Let 1 < q < ∞, Ω ⊂ RN be a bounded domain. Then T :
Lq(Ω) → Lq(Ω) and

‖Tf‖q ≤ C(N,λ, q)|Ω|
N−λ
N ‖Θ‖L∞(Ω×∂B1)‖f‖q.

Definition 4.1.2. Let

K(x, z) =
Θ(x, z

|z| )

|z|N
,

where Θ ∈ L∞(RN × ∂B1). Let∫
|z|=1

Θ(x, z) dSz = 0 ∀x ∈ RN .

Then

[Tf ](x) = lim
ε→0+

∫
|x−y|≥ε

K(x, x− y)f(y) dy

60



4.2. BOGOVSKII OPERATOR IN BOUNDED DOMAINS 61

is called a singular integral operator of Calderón–Zygmund type, K is a singular
kernel of Calderón–Zygmund type.

It holds (see [37])

Theorem 4.1.2. Let 1 < q < ∞ and let T be a singular integral operator of
Calderón–Zygmund type. Then T : Lq(RN ) → Lq(RN ) and

‖[Tf ]‖q ≤ C(q,N)‖Θ‖L∞(RN×∂B1)‖f‖q.

4.2 Bogovskii operator in bounded domains

4.2.1 Homogeneous boundary condition

We consider problem

divv = f in Ω,

v = 0 at ∂Ω,

where Ω is a bounded domain. We assume f ∈ Lq(Ω) for a certain q > 1 and Ω
sufficiently regular; hence∫

Ω

divv dx =

∫
∂Ω

v · n dS = 0,

i.e., ∫
Ω

f dx = 0

is the necessary condition for the existence of a solution to our problem.
Denote

Lp(Ω) =
{
f ∈ Lp(Ω);

∫
Ω

f dx = 0
}
.

The main result is

Theorem 4.2.1. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary.
Then there exists a linear operator BΩ = (B1

Ω,B
2
Ω, . . . ,B

N
Ω ) such that:

(i)

BΩ : Lp(Ω) → (W 1,p
0 (Ω))N , 1 < p <∞

(ii) For f ∈ Lp(Ω)

div(BΩ(f)) = f a.e. in Ω

(iii) ∃C = C(p,N,Ω): ∀f ∈ Lp(Ω) we have

‖∇BΩ(f)‖p ≤ C‖f‖p, 1 < p <∞

(iv) If f = div g, g ∈ Ep
0 (Ω), then

‖BΩ(f)‖p ≤ C(p,N,Ω)‖g‖p, 1 < p <∞
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(v) If f ∈Wm,p
0 (Ω) ∩ Lp(Ω), m ≥ 0, then

‖∇BΩ(f)‖m,p ≤ C(p,N,Ω)‖f‖m,p, 1 < p <∞

(vi) If f ∈ C∞
0 (Ω) (and, indeed,

∫
Ω
f dx = 0), then BΩ(f) ∈ (C∞

0 (Ω))N .

Remark . Note that Lemma 2.3.2 is a direct consequence of the theorem above.
Note also that from the proof it follows that the operator BΩ is linear and
independent of p.

Instead of Theorem 4.2.1 we prove another result, where the assumption
about the Lipschitz boundary is replaced by the assumption that Ω is star-
shaped with respect to a ball BR. More precisely,

Lemma 4.2.1. Let Ω ⊂ RN be star-shaped with respect to a ball BR(x0), where
BR(x0) ⊂ Ω. Then there exists a linear operator

BΩ : C∞
0 (Ω) = {f ∈ C∞

0 (Ω);

∫
Ω

f dx = 0} → (C∞
0 (Ω))N

such that

divBΩ(f) = f, f ∈ C∞
0 (Ω)

‖∇BΩ(f)‖q ≤ C(q,N,Ω)‖f‖q, 1 < q <∞.

Moreover, if f = div g, g ∈ (C∞
0 (Ω))N , then

‖BΩ(f)‖q ≤ C(q,N,Ω)‖g‖q, 1 < q <∞.

The constant C has the form

C = C0(q,N)
(diam Ω

R

)N(
1 +

diam Ω

R

)
,

where diam Ω = supx,y∈Ω |x− y|.

Remark . Theorem 4.2.1 can be shown using Lemma 4.2.1 as follows. Due to
Lemma 2.3.1 we decompose Ω ∈ C0,1 into several subdomains which are star-
shaped with respect to balls, lying inside these subdomains. We decompose
function f ∈ C∞

0 (Ω) with zero mean into a sum of functions fi ∈ C∞
0 (Ωi) with

zero mean over Ωi and in each Ωi, we construct BΩi
. Then

BΩ(f) =

r+m∑
i=1

BΩi
(fi)

and due to Lemma 2.3.1 the estimates from Lemma 4.2.1 remain valid in the
Lipschitz domain. Finally we use the density of compactly supported smooth
functions in Lq(Ω) or in Ep

0 (Ω), respectively. Analogously, using the density of
these functions in Wm,q

0 (Ω) and after a minor change of the proof of Lemma
4.2.1 we show also the estimate for higher order derivatives, i.e.,

Lemma 4.2.2. Let f ∈ Wm,q
0 (Ω) ∩ Lq(Ω), where Ω ⊂ RN is star-shaped with

respect to a ball BR(x0) such that BR(x0) ⊂ Ω Then the operator BΩ from
Lemma 4.2.1 also satisfies

‖∇BΩ‖m,q ≤ C(q,N,Ω)‖f‖m,q, m ∈ N0, 1 < q <∞.
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Proof. The proof is a homework for the kind reader; it is just a modification
of the proof of Lemma 4.2.1 below. �

Proof (of Lemma 4.2.1). The operator div is invariant on translations. Thus it
is enough to consider domain Ω, star-shaped with respect to a ball BR(0) (with
the center at the origin). The candidate for the solution is

v(x) = BΩ(f)(x) =

∫
Ω

f(y)
x− y

|x− y|N
[ ∫ ∞

|x−y|
ωR

(
y + s

x− y

|x− y|

)
sN−1 ds

]
dy,

(4.1)
where

ωR(x) =
1

RN
ω
( x
R

)
,

and ω is the standard mollifier, i.e., ω ∈ C∞
0 (RN ), suppω ⊂ B1(0) and∫

RN

ω dx = 1.

Then suppωR ⊂ BR(0),
∫
Ω
ωR dx = 1 and

‖ωR‖C0(RN ) ≤
1

RN
‖ω‖C0(RN ), ‖∇ωR‖C0(RN ) ≤

1

RN+1
‖∇ω‖C0(RN ).

We rewrite (4.1) into several equivalent forms. Using the change of variable
r = s

|x−y| we have

v(x) =

∫
Ω

f(y)(x− y)
(∫ ∞

1

ωR

(
y + r(x− y)

)
rN−1 dr

)
dy, (4.2)

and the change of variables s = |x− y|+ r leads to

v(x) =

∫
Ω

f(y)
(x− y)

|x− y|N
(∫ ∞

0

ωR

(
x+ r

x− y

|x− y|

)
(|x− y|+ r)N−1 dr

)
dy. (4.3)

As f ∈ C∞
0 (Ω), we can replace the integration over Ω by the integration over

RN . The change of variables z = x− y in (4.2) gives

v(x) =

∫
RN

f(x− z)z
(∫ ∞

1

ωR(x− z + zr)rN−1 dr
)
dz. (4.4)

In the proof we can use any of the above given equivalent forms. Taking
arbitrary derivative with respect to x in (4.4) it follows that we have BΩ(f) ∈
(C∞(Ω))N . Let us show that suppBΩ(f) ⊂ A, where

A = {z ∈ Ω; z = λz1 + (1− λ)z2, z1 ∈ supp f, z2 ∈ BR(0), λ ∈ [0, 1]}.

(Recall that Ω is star-shaped with respect to all points z2 and thus the line
(z1, z2) is contained in Ω.) Let x ∈ Ω \A. Then y + r(x− y) /∈ BR(0) for r ≥ 1,
y ∈ supp f , as for w = y+r(x−y) we have x = y(1− 1

r )+w
1
r . Thus BΩ(f)(x) = 0

for x ∈ Ω \A. As A is a compact set, we have shown that BΩ(f) ∈ (C∞
0 (Ω))N .
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We now compute derivatives.

∂vj(x)

∂xi
=

∫
RN

∂f(x− z)

∂xi
zj

(∫ ∞

1

ωR(x− z + zr)rN−1 dr
)
dz

+

∫
RN

f(x− z)zj

(∫ ∞

1

∂ωR

∂xi
(x− z + rz)rN−1 dr

)
dz

=

∫
Bε(0)

{∂f(x− z)

∂xi
zj

(∫ ∞

1

ωR(x− z + zr)rN−1 dr
)

+f(x− z)zj

(∫ ∞

1

∂ωR

∂xi
(x− z + rz)rN−1 dr

)}
dz

+

∫
Bε(0)

f(x− z)
{
δij

(∫ ∞

1

ωR(x− z + zr)rN−1 dr
)

+zj

(∫ ∞

1

∂ωR

∂xi
(x− z + rz)rN dr

)}
dz

+

∫
∂Bε(0)

f(x− z)zj
zi
|z|

(∫ ∞

1

ωR(x− z + zr)rN−1 dr
)
dSz

= (I1ε )ij(x) + (I2ε )ij(x) + (I3ε )ij(x).

Evidently
lim

ε→0+
(I1ε )ij = 0.

In the second integral, we use change of variables y = x− z and then similar
procedure as from (4.1) to (4.3):

(I2ε )ij(x) =∫
Bε(x)

[
f(y)

δij
|x− y|N

(∫ ∞

0

ωR

(
x+ r

x− y

|x− y|

)
(|x− y|+ r)N−1 dr

)]
dy+∫

Bε(x)

[
f(y)

xj − yj
|x− y|N+1

(∫ ∞

0

∂

∂ξi
ωR

(
x+ r

x− y

|x− y|

)
(|x− y|+ r)N dr

)]
dy.

We rewrite the term (|x− y|+ r)N and analogous term in the first integral by
means of binomial theorem. We write separately the term without |x− y|. As

0 < r < (R+ diamΩ) ≤ 2diamΩ, |x− y| < diamΩ,

it is possible to estimate∫ ∞

0

∂

∂ξi
ωR

(
x+ r

x− y

|x− y|

)
rN−k|x− y|k−1 dr ≤ C max

x∈BR

|∇ωR|(diamΩ)N ,∫ ∞

0

ωR

(
x+ r

x− y

|x− y|

)
rN−1−k|x− y|k−1 dr ≤ C max

x∈BR

|ωR|(diamΩ)N−1.

Altogether,

(I2ε )ij =

∫
Bε(x)

Kij(x, x− y)f(y) dy +

∫
Bε(x)

Gij(x, y)f(y) dy,

where Kij(x, z) =
Θij(x,

z
|z| )

|z|N with

Θij

(
x,

z

|z|

)
= δij

∫ ∞

0

ωR

(
x+ r

z

|z|

)
rN−1 dr +

zj
|z|

∫ ∞

0

∂

∂ξi
ωR

(
x+ r

z

|z|

)
rN dr
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and

|Gij(x, y)| ≤
C(N)

|x− y|N−1

(diamΩ)N−1

RN

(
1 +

diamΩ

R

)
, (4.5)

x, y ∈ Ω.
We can rewrite the third integral

(I3ε )ij(x)

=

∫
∂Bε(0)

(f(x− z)− f(x))zj
zi
|z|

(∫ ∞

1

ωR(x− z + rz)rN−1 dr
)
dSz

+f(x)

∫
∂Bε(0)

zj
zi
|z|

(∫ ∞

1

ωR(x− z + rz)rN−1 dr
)
dSz.

First, let us look at the second term. We change the variables z = εw

2(I
3
ε )ij = f(x)εN

∫
∂B1(0)

wjwi

(∫ ∞

1

ωR(x− εw + rεw)rN−1 dr
)
dSw

[ε(r − 1) = t] = f(x)εN−1

∫
∂B1(0)

wjwi

(∫ ∞

0

ωR(x+ tw)
( t
ε
+ 1

)N−1

dt
)
dSw

= f(x)

∫
RN

wiwj

|w|2
ωR(x+ w) dw + o(1) for ε→ 0+.

As the first term contains additional term tending to zero (|f(x−z)−f(x)| ≤
C|z| → 0 for ε→ 0+), we have

lim
ε→0+

(I3ε )ij(x) = f(x)Hij(x),

where

Hij(x) =

∫
RN

wiwj

|w|2
ωR(x+ w) dw.

Altogether

∂vj(x)

∂xi
= lim

ε→0+

∫
Bε(x)

Kij(x, x−y)f(y) dy+
∫
RN

Gij(x, y)f(y) dy+f(x)Hij(x),

x ∈ Ω. As

d

dr

[
ωR

(
x+ r

x− y

|x− y|

)
(|x− y|+ r)N

]
=
xk − yk
|x− y|

∂

∂ξk
ωR

(
x+ r

x− y

|x− y|

)
×

×(|x− y|+ r)N +NωR

(
x+ r

x− y

|x− y|

)
(|x− y|+ r)N−1,

we get

(I2ε )ii(x)

=

∫
Bε(x)

f(y)

|x− y|N
(∫ ∞

0

d

dr

[
ωR

(
x+ r

x− y

|x− y|

)
(|x− y|+ r)N

]
dr

)
dy

= −ωR(x)

∫
Bε(x)

f(y) dy −→
ε→0+ − ωR(x)

∫
Ω

f(y) dy = 0.



66 CHAPTER 4. APPENDIX

Further

Hii(x) =

∫
RN

ωR(x+ w) dw = 1,

and thus

divv(x) = f(x), x ∈ Ω.

It remains to show the estimates. Due to (4.5) Gij is a weakly singular kernel

and due to Theorem 4.1.1 (|Ω| 1
N ≤ diamΩ)

∥∥∥∫
RN

Gij(·, y)f(y) dy
∥∥∥
q
≤

∥∥∥∫
Ω

Gij(·, y)f(y) dy
∥∥∥
q

≤ C(q,N)
(diamΩ

R

)N(
1 +

diamΩ

R

)
‖f‖q.

Next ∫
|z|=1

Θij(x, z) dSz

=

∫
|z|=1

(
δij

∫ ∞

0

ωR(x+ zr)rN−1 dr + zj

∫ ∞

0

∂

∂ξi
ωR(x+ rz)rN dr

)
dSz

=

∫
RN

[
δijωR(x+ y) + yj

∂

∂yi
ωR(x+ y)

]
dy = 0.

Similarly as in the estimates of the weakly singular integrals

sup
x,z∈RN

∣∣∣Θ(
x,

z

|z|

)∣∣∣ ≤ C(N)‖ω‖C1(RN )

(diamΩ

R

)N(
1 +

diamΩ

R

)
;

hence

lim
ε→0+

∥∥∥∫
Bε(·)

Kij(·, · − y)f(y) dy
∥∥∥
q

≤ C(q,N, ω)
(diamΩ

R

)N(
1 +

diamΩ

R

)
‖f‖q.

The last term

sup
x∈Ω

|Hij(x)| = sup
x∈Ω

∫
RN

wiwj

|w|2
ωR(x+ w) dw ≤

∫
RN

ωR(y) dy = 1,

and thus the estimate

‖∇BΩ(f)‖q ≤ c0(q,N)
(diamΩ

R

)N(
1 +

diamΩ

R

)
‖f‖q

is proved.

It remains to show the estimate for f = div g, g ∈ (C∞
0 (Ω))N . We plug in
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the form of f to (4.4). We have

vj(x) =

∫
Bε(0)

divx g(x− z)zj

(∫ ∞

1

ωR(x− z + rz)rN−1 dr
)
dz

+

∫
Bε(0)

divx g(x− z)zj

(∫ ∞

1

ωR(x− z + rz)rN−1 dr
)
dz

=

∫
Bε(0)

divx g(x− z)zj

(∫ ∞

1

ωR(x− z + rz)rN−1 dr
)
dz

+

∫
Bε(0)

g(x− z)
[
δij

∫ ∞

1

ωR(x− z + rz)rN−1 dr

+zj

∫ ∞

1

∂

∂ξi
ωR(x− z + rz)(r − 1)rN−1 dr

]
dz

+

∫
∂Bε(0)

(
gi(x− z)zj

zi
|z|

∫ ∞

1

ωR(x− z + rz)rN−1 dr
)
dSz

= (J1
ε )ij(x) + (J2

ε )ij(x) + (J3
ε )ij(x), ε > 0.

Similarly as above we conclude

vj(x) = lim
ε→0+

∫
Bε(x)

Kij(x, x− y)gi(y) dy+

∫
RN

G̃ij(x, y)gi(y) dy+Hij(x)gi(x),

x ∈ Ω, where Kij is the same as above, G̃ij is a weakly singular kernel satisfying
the same estimate as Gij . Hence we get the same estimate as in the previous
case. �
Remark . In our case, i.e., for a bounded domain, we can show for p < N
estimate

‖v‖ Np
N−p

≤ C‖f‖p, 1 < p < N,

hence (for p ≥ N using Friedrichs inequality)

‖v‖1,p ≤ C‖f‖p, 1 < p <∞.

However, the constant C depends on Ω through the constant from Friedrichs

inequality or from the embedding L
Np

N−p (Ω) ↪→ Lp(Ω).

4.2.2 Inhomogeneous boundary condition

We solve the problem
divu = f in Ω,
u = a on ∂Ω

(4.6)

with the compatibility condition∫
Ω

f dx =

∫
∂Ω

a · n dS.

Theorem 4.2.2. Let Ω ∈ C0,1 be a bounded domain. Thus there exists a linear
operator B̃Ω = (B̃1

Ω, B̃
2
Ω, . . . , B̃

N
Ω ) such that for f ∈ Lp(Ω), a ∈ (W 1− 1

p ,p(∂Ω))N ,
satisfying the compatibility condition∫

Ω

f dx =

∫
∂Ω

a · n dS
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it holds
div B̃Ω(f,a) = f a.e. in Ω, T (B̃Ω(f,a)) = a,

where T is the trace operator. Moreover, there exists a constant C, dependent
only on the dimension N , exponent p and domain Ω such that

‖B̃Ω(f,a)‖1,p ≤ C(N, p,Ω)
(
‖f‖p + ‖a‖1− 1

p ,p,∂Ω

)
, 1 < p <∞.

Proof. We denote by A the extension of a to (W 1,p(Ω))N due to the inverse
trace theorem, i.e., TA = a, ‖A‖1,p,Ω ≤ C(p,N,Ω)‖a‖1− 1

p ,p,∂Ω
. We set

v = B̃Ω(f,a) = BΩ(f − divA) +A,

i.e., we look for the solution in the form v = w+A, where divw = f − divA,
w = 0 at ∂Ω. Evidently

divv = f, Tv = TA = a

and it holds

‖v‖1,p ≤ C(p,N,Ω)
(
‖A‖1,p,Ω + ‖f − divA‖p,Ω

)
≤ C(p,N,Ω)

(
‖f‖p + ‖a‖1− 1

p ,p,∂Ω

)
.

�

Recall that for the inhomogeneous boundary condition the Lipschitz bound-
ary is important in order to define the trace of a function. For the homogeneous
boundary condition certain regularity is also needed. The following construction
is due to Luc Tartar and shows that for domains with cusps the solution may
not exist, even for p = 2.

Consider Ω ⊂ R2 with the boundary formed by two parabolas y = x2 and
y = −x2, 0 < x < 1, and by the arc of the circle y2 + (x− 1)2 = 1, 1 ≤ x ≤ 2.
Let u = (u1, u2) be a solution to

divu = f,

where f ∈ L2(Ω). We show that in general, |∇u| may not be in L2(Ω). Assume
the contrary and we aim to get a contradiction. We set

g(x) =

∫ x2

−x2

(∂u1
∂x

+
∂u2
∂y

)
dy =

∫ x2

−x2

∂u1
∂x

(x, y) dy,

as u2 ∈W 1,2
0 (Ω). Further we define for a.a. x ∈ (0, 1)

A(x) =

∫ x2

−x2

u1(x, y) dy.

Then, since u1 ∈W 1,2
0 (Ω),

d

dx
A(x) =

∫ x2

−x2

∂

∂x
u1(x, y) dy + 2x(u1(x, x

2) + u1(x,−x2))

=

∫ x2

−x2

∂

∂x
u1(x, y) dy.
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Thus g(x) = A′(x). But A(0) = 0, hence

A(x) =

∫ x

0

g(s) ds. (4.7)

Further, as u1(x,−x2) = 0 for a.a. x ∈ (0, 1),

u1(x, y) =

∫ y

−x2

∂

∂τ
u1(x, τ) dτ.

Using Fubini’s theorem

A(x) =

∫ x2

−x2

(∫ y

−x2

∂

∂τ
u1(x, τ) dτ

)
dy =

∫ x2

−x2

(∫ x2

τ

∂

∂τ
u1(x, τ) dy

)
dτ

=

∫ x2

−x2

(x2 − τ)
∂

∂τ
u1(x, τ) dτ,

thus

|A(x)| ≤ 23/2

31/2
x3

(∫ x2

−x2

(∂u1
∂y

(x, y)
)2

dy
) 1

2

.

Therefore
A(x)

x3
∈ L2(0, 1),

as ∫ 1

0

(A(x)
x3

)2

dx ≤ 8

3

∫ 1

0

∫ x2

−x2

(∂u1
∂y

(x, y)
)2

dy dx

and u1 ∈W 1,2(Ω).
Take f(x) = xα, x ∈ (0, 1), extended into Ω in such a way that it holds∫

Ω
f(x, y) dxdy = 0. As f ∈ L2(Ω), we must have∫ 1

0

∫ x2

−x2

x2α dy dx <∞,

i.e., ∫ 1

0

x2α+2 dx <∞,

and thus 2α+ 2 > −1. Hence our f belongs to L2(Ω) if and only if α > − 3
2 .

On the other hand,

g(x) = −
∫ x2

−x2

divu(x, y) dy =

∫ x2

−x2

f(x, y) dy = 2xα+2

for x ∈ (0, 1). Hence, due to (4.7),

A(x) =

∫ x

0

2yα+2 dy =
2

α+ 3
xα+3

if α > −3 which is fulfilled due to assumptions on f . The condition A(x)
x3 ∈

L2(0, 1) gives
xα ∈ L2(0, 1)

which is fulfilled for α > − 1
2 and this is a stronger restriction than the condition

following from f ∈ L2(Ω) (i.e., α > − 3
2 ). It means that the condition f ∈

L2(Ω) is not sufficient to guarantee the existence of u ∈ (W 1,2
0 (Ω))2 solving our

problem.
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4.3 Unbounded domains

Denote for 1 ≤ p <∞

D1,p
0 (Ω) = {u ∈ C∞

0 (Ω)}
∥∇· ∥p

.

Note that for Ω bounded we get the space W 1,p
0 (Ω), hence a nontrivial situation

appears for Ω unbounded. Further, for 1 ≤ p < N and ∂Ω ∈ C0,1 (if non-empty)
we have (see, e.g., [12])

D1,p
0 (Ω) = {u ∈ L1

loc(Ω);∇u ∈ (Lp(Ω))N ;u ∈ L
Np

N−p (Ω); Tu|∂Ω = 0}.

If p ≥ N , then

D1,p
0 (Ω) = {u ∈ Lp

loc(Ω);∇u ∈ (Lp(Ω))N ; Tu|∂Ω = 0}.

For Ω = RN , p ≥ N it is

D1,p
0 (RN ) = {u = {ũ+ C}C∈R; ũ ∈ Lp

loc(R
N );∇ũ ∈ (Lp(RN ))N}.

4.3.1 Whole space

In this case the solution to divu = f is extremely simple. We can look for the
solution in the form u = ∇ψ, i.e.,

∆ψ = f in RN ;

hence
BRN (f) = ∇E ∗ f,

where E is the fundamental solution to the Laplace equation.
We have (the proof is easy and is left as exercise)

Theorem 4.3.1. The operator BRN : Lp(RN ) → (D1,p
0 (RN ))N , 1 < p < ∞.

For f ∈ Lp(RN ) it holds

divBRN (f) = f a.e. in RN

and
‖∇BRN (f)‖p ≤ C(p,N)‖f‖p, 1 < p <∞.

If f ∈ C∞
0 (RN ), then BRN (f) ∈ (C∞(RN ))N and

|BRN (f)|(x) ≤ C(p,N,R)

|x|N−1

for all x ∈ BR(0), R > 0.

4.3.2 Exterior domains

Theorem 4.3.2. Let Ω be an exterior domain with Lipschitz boundary. Then
there exists a linear operator BΩ = (B1

Ω,B
2
Ω, . . . ,B

N
Ω ) such that

(i) BΩ : Lp(Ω) → (D1,p
0 (Ω))N , 1 < p <∞



4.3. UNBOUNDED DOMAINS 71

(ii) divBΩ(f) = f a.e. in Ω, f ∈ Lp(Ω)

(iii) ‖∇BΩ(f)‖p ≤ C(p,Ω)‖f‖p, 1 < p <∞

(iv) If f ∈ C∞
0 (Ω), then BΩ(f) ∈ (C∞(Ω))N and |BΩ(f)|(x) ≤ C(p,N,R)

|x|N−1 for

x ∈ BR(0), R > R0 such that Ωc ⊂ BR0(0).

Proof. Without loss of generality assume f ∈ C∞
0 (Ω), i.e., we use the density

property. We extend f by zero in such a way that f ∈ C∞
0 (RN ). We set

v = u+w,

where

u =


∇E ∗ f, 1 < p < N

∇E ∗ f − 1

|ΩR0 |

∫
ΩR0

∇E ∗ f dx, N ≤ p <∞

 ∈ (D1,p
0 (R))N ,

i.e., divu = f in RN . Thus divw = 0 in Ω and we have to choose w to eliminate
the nonzero value of u at ∂Ω. Hence

divw = 0 in ΩR0
= Ω ∩BR0

(0),
w = −u at ∂Ω,

w = 0 at ∂BR0
(0).

As ∫
∂Ω

u · n dS +

∫
∂BR0

0 dS = −
∫
∂Ωc

u · n dS = −
∫
Ωc

divu dx = 0,

the compatibility condition is fulfilled and w exists due to Theorem 4.2.2. We
extend w by zero outside BR0

(0). We have fulfilled (ii), (iv) and it remains to
show the estimates. Evidently,

‖∇u‖p,RN ≤ C‖f‖p.

Further, due to the Poincaré inequality,

‖∇w‖p,RN ≤ ‖∇w‖p,ΩR0
≤ C(p,N,ΩR0)‖Tru‖1− 1

p ,p,∂Ω

≤ C‖u‖1,p,ΩR0
≤ C‖∇u‖p,ΩR0

≤ C‖f‖p.

�

4.3.3 Domains with noncompact boundaries

Consider the domain

Ω = {x ∈ RN ;xN > F (x1, . . . , xN−1) = F (x′)},

where F is globally Lipschitz function. Without loss of generality assume F (0) =
0. As an example we may take

Ω = {x ∈ RN ;xN > (|x′|+ 1)α − 1}, α ≤ 1.

Hence domain Ω contains inside a cone. Denote for M > 0

C+
ϑ = {x ∈ RN ;xN > M |x′|}.

Due to assumptions above domain Ω contains such a cone for a certain M . It
holds (the following theorem is taken from [36])
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Theorem 4.3.3 (Solonnikov). Let Ω be a domain of the type above. Then there
exists operator BΩ = (B1

Ω,B
2
Ω, . . . ,B

N
Ω ) such that

(i) BΩ : Lp(Ω) → (D1,p
0 (Ω))N , 1 < p <∞

(ii) divBΩ(f) = f a.e. in Ω, f ∈ Lp(Ω)

(iii) ‖∇BΩ(f)‖p ≤ C(p,N)‖f‖p, 1 < p <∞

(iv) If f ∈ C∞
0 (Ω), then BΩ(f) ∈ (C∞(Ω))N and |BΩ(f)|(x) ≤ C(p,N,Ω)

|x|N−1 for

x ∈ ΩR, R > 0.

Proof. Set Cx = C−
x,ϑ = {y ∈ RN ; y− x ∈ C−

0,ϑ = −C+
0,ϑ}. Then Cx ⊂ RN \Ω.

Let f ∈ C∞
0 (Ω). Extend f by zero outside Ω and set

v(x) = BΩ(f)(x) =

∫
Cx

x− y

|x− y|N
ω
( x− y

|x− y|

)
f(y) dy

=

∫
C+

0,ϑ

z

|z|N
ω
( z

|z|

)
f(x− z) dz,

where ω ∈ C1
0 (∂B1(0) ∩ C+

0,ϑ),
∫
∂B1(0)

ω dS = 1.

The rest of the proof is analogous as above and thus it is left as exercise for
interested reader. �

4.3.4 Applications

We want to prove the density of smooth functions with compact support in
W 1,p

0,div(Ω); for Ω exterior domain the proof is more complicated than for Ω

bounded domain. We give the proof for Ω = RN , when all complications coming
from unboundedness of the domain appear, we only save the problems near the
boundary which we have solved in the case of bounded domain before.

Let u ∈ W 1,p
0,div(R

N ). Take R � 1 and set uR = uηR, where ηR is a cut-off
function such that

ηR(x) =

{
1 x ∈ BR(0),
0 x ∈ B2R(0),

0 ≤ ηR ≤ 1, ∇ηR ≤ C
R . Evidently, limR→∞ uR = u in (W 1,p(RN ))N . The func-

tion uR has already compact support, but it has generally non-zero divergence.
Hence we set

divvR = divuR in B2R(0) \BR(0),
vR|∂BR(0) = vR|∂B2R(0) = 0.

Such a solution evidently exists and fulfils

‖∇vR‖p,B2R(0)\BR(0) ≤ C‖ divuR‖p,B2R(0)\BR(0),

where C is independent of R. Thus

‖∇vR‖p,B2R(0)\BR(0) ≤ C‖u · ∇ηR‖p,B2R(0)\BR(0) ≤
C

R
‖u‖p,B2R(0)\BR(0).

The Poincaré inequality implies

‖vR‖p,B2R(0)\BR(0) ≤ CR‖∇vR‖p,B2R(0)\BR(0) ≤ C‖u‖p,B2R(0)\BR(0).
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Set wR = uR − vR. Thus wR has compact support (B2R(0)), fulfils

divwR = divuR − divvR = 0

in RN and it holds

‖wR − u‖1,p,RN ≤ ‖u(1− ηR)‖1,p,B2R(0)\BR(0) + ‖vR‖1,p,B2R(0)\BR(0)

≤ C‖u‖1,p,B2R(0)\BR(0) −→ 0

for R→ +∞. Now it is enough to take mollification

wR,n = ω 1
n
∗wR.

For a suitable sequence Rn → +∞ we have wRn,n ∈ (C∞
0 (RN ))N , divwRn,n =

0 (the mollification commutes with the divergence), and

lim
n→∞

wRn,n = u

in (W 1,p(RN ))N .
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[31] A. Novotný, I. Straškraba: Mathematical Theory of Compressible
Flows, Oxford Science Publications, 2004.

[32] C.W. Oseen: Neuere Methoden in der Hydrodynamik, Leipzig, Akad.
Verlagsgesellschaft M.B.H., 1927.

[33] J.C. Robinson, J.L. Rodrigo, W. Sadowski: The Three-Dimensional
Navier–Stokes equations: Classical theory. Cambridge University Press,
2016.
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