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Chapter 1

Introduction

We meet the fluids basically everywhere. The water forms 80% of the human
body, without drinking we would die in three days. However, how much do we
know about the fluids?

We skip all very important facts coming from chemistry, physics and other
sciences and we immediately start with the mathematical description. It appears
that we know very little about the almost simplest model of a viscous fluid....

1.1 The equations

We assume that the fluid occupies at the time instant ¢ the region Q(¢) ¢ RY.
Typically, we take N = 2,3, as these are the most interesting cases. We will
work with the following quantities

e density 7p(t,x) = lim,_ %” with M (¢, B) denoting the mass of

the fluid contained at the time instant ¢ in the ball B
e velocity field u(¢, x)

We assume that we can specify these two quantities at each time instant ¢ at
any point = € (t). For more details about the assumptions used in continuum
mechanics and more detailed explanation, see, e.g., [16].

Let B C RY be a fixed domain such that B C Q(¢). Then the mass of the
fluid remains conserved, i.e., the change of the mass of the fluid contained in B
is either due to the changes of the density or due to the convection through the
boundary, i.e.,

%M(t,B) = %/Bp(t, ydx = —/aB p(t,)u(t,-) -n(-) dsS,

where n(z) denotes the outer normal to B at the point « € dB. The Gauss the-
orem implies the following integral form of the conservation of mass (continuity
equation)

/B (%p(t, )+ div(pu)(t, .)) da =0, (1.1)

provided the corresponding derivatives exist.
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Next, we formulate the Newton law saying that the change of the linear
momentum is proportional to the force, in the language of the continuum me-
chanics. We have

d
E/B(pu)(t,-)dx= —/aB(pu®u)(t,~)n(-) dS +Fp,

where the boundary term denotes again the flux of the momentum through the
boundary and the last term denotes the force applied on the part of the fluid
B. In continuum mechanics we consider two kinds of forces, the volume forces
(e.g., the gravity force or any other force which acts similarly) and the surface
forces (i.e., the tension). Thus

FB:/B(pf)(t,-)dm—i—/aBt(t,-) ds.

It is possible to show that under quite general hypothesis the tension can be
written in the form

N
t(t,z,n) = T(¢, z)n(x) ( = ZTij(t,x)nj(a:)).

Thus
d

= /B (pu)(t,) d = - /@ (puew(t,n() ds
+/ (pf)(t,-) dz + T (¢, )n(-) dS,
B

OB

which after the application of the Gauss theorem (again, if the derivatives exist)
leads to the integral form of the balance of linear momentum

/ (%(pu) (t, ) + diV(Pll X 11)(t7 ) _ (pf)(t’ ) —div T(t’ )) dx = 0. (1.2)
B

Next, we could consider also the balance of the angular momentum and
energy. However, the balance of the angular momentum, assuming no internal
momenta in the fluid, leads to the fact that T is a symmetric tensor. Further, we
neglect any changes of the internal energy, i.e., the balance of the total energy
is just the balance of the kinetic energy which is formally (if all quantities are
sufficiently smooth) the consequence of the balance of linear momentum.

We return to system (1.1)—(1.2) and assume that all quantities are smooth
enough. Multiplying each equation by &ﬁ‘ and letting |B| — 07 we get the
differential form of the balance equations

dp
— +div(pu) =0,
ot (1.3)
E(pu) +div(pu ® u) = pf + div T.
From now on, we will assume that the fluid is incompressible, i.e., if we follow
any part of the fluid, its volume remains unchanged. It means

)
— dX(t) = 0;
dt V(t) ( )
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here we integrate at time instant ¢ over the volume which is occupied by the fluid
particles which occupied initially (at ¢ = ty) the fixed volume By, . It follows by
the transport theorem (which is basically the change of variables) that

divu = 0. (1.4)
Moreover, we assume that the density is initially spatially constant, i.e.,
p(0,z) = po = const.

Then it follows by (1.3); and (1.4) that p = const and thus (1.3); is reduced to
(1.4).

Finally, we have to specify the stress tensor. It is the moment, when mod-
elling starts to play an important role, especially for more complex fluids. First,
we write the stress tensor in the form

T=—-pIl+S8S,

where the scalar function p = —1 tr T (i.e., trS = 0). The so-called viscous part
of the stress tensor, the quantity S, must be modelled.

Assuming that the fluid has no memory and the response on the shear is
instantaneous (first order), we get

S =S(Vu).

Moreover, using the material frame indifference (i.e., the Galilean invariance),
it can be shown that
S = S(D(u))

with D(u) = (Vu+Vu®), the symmetric part of the velocity gradient. Further,
as the fluid has the full group of symmetry, the tensor function S fulfils

QS(D(u)Q" = S(QD(u)Q")

for any orthogonal matrix Q with det Q = 1. This leads in three space dimen-
sions to the representation

S(D(u)) = agl + a1D(u) + asD(u)?,

where the scalars ag, oy and ay depend on the invariants of D(u). Note that in
three space dimensions, the invariants of a matrix A are:

o tr(A)=Y7, Ay
o tr (AAT) = |A)?
o det A

For more details see, e.g., [22].
We further linearize, i.e., we assume that the dependence of S on D(u) is
linear, which, together with the incompressibility condition (1.4) leads to

S(D(u)) = a1D(u),
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where o is a constant. Thus we arrive at

divua =0,

0 1.5
Poa*ltl + podiv(u®u) + Vp — pAu = pof, (15)

where we used the fact that
1 1
div(e1D(u)) = P! div(Vu 4 vul) = 5041(A11 + Vdivu) = pAu,

and we denoted by p = %al the viscosity. In order to formulate correctly our
problem, we must specify the boundary and the initial conditions.
The initial condition can be formulated only for the velocity field u, i.e.,

u(ty, z) = uo(z). (1.6)

In what follows, we will take ty = 0.

Concerning the boundary conditions, the situation is more complex. One
can consider problem (1.5)—(1.6) in the full space, i.e., it is enough to specify
the behaviour of the solution at infinity. Another possibility is to consider the
problem in the space periodic cells and assume that all functions are space pe-
riodic. Both these conditions simplify the study considerably, as they avoid any
troubles near the boundary. However, we will consider more realistic situation
when Q(¢) = Q is a fixed bounded domain. We will mainly consider the case of
the homogeneous Dirichlet boundary condition, i.e.,

u(t,z) =0, t>0,x on 9. (1.7)

Note that condition (1.7) means that the fluid does not penetrate through the
boundary (i.e., the normal part of the velocity is zero) and that the fluid adheres
at the boundary (i.e., the tangential part is also zero). We could also study more
general conditions. Keeping the no-penetration condition

u(t,z) -n(zx) =0, t>0,zatdQ,

we can assume

(T(t,z)n(x)) -7(x) + fult,z) -7(x) =0
for t > 0, z at 02 and T any tangent vector. Here, § > 0. Note that the case
B = 0 corresponds to the full slip at the boundary while letting S to infinity we
recover (1.7). Indeed, we can also study situations with prescribed flux at the
boundary, i.e., the normal velocity component non-zero.

However, we restrict ourselves only on the homogeneous Dirichlet condition,
i.e., on problem (1.5)—(1.7). The classical formulation of the problem reads as
follows:

For a given T € (0,00], ug and f find!

ue (C2((0,7) x )V N (C(0,T) x 2)~, u=0o0n09,
p € C%L((0,T) x Q) such that in (0,7) x Q,
divu = 0, (1.8)
ou .
— +divlu®u)+Vp—rvAu="=

ot

Note that we denoted v = p% and we redefined the pressure p.

1By C*#((0,T) x ) we mean the set of all functions which are a-times continuously
differentiable in the time- and S-times continuously differentiable in the space variables.
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1.2 Historical remarks

Equations (1.5) were firstly derived by the French engineer C.M.L.H. NAVIER
in 1822. However, his assumptions, under which he deduced the system from the
molecular physics, appeared to be unrealistic. Surprisingly, G. STOKES obtained
in 1845 exactly the same system using more or less similar approach as presented
above. However, between these years the same model has been proposed by S.D.
Porsson (1829) and A.J.C.B. DE SAINT-VENANT (1843). Unfortunately, these
names did not enter into the name of this system of equations.

Modern mathematical attempts to study this system go back to twenties
of the last century. Swedish mathematician and physicist C.W. OSEEN [32]
studied mostly the linearized version of our system, but he was also the first one
who proposed a weaker version of the formulation to our problem. In the next
decade, French mathematician J. LERAY followed Oseen’s ideas in his doctoral
thesis and proved existence and uniqueness of a classical solution in the case
when Q = R?, see [25]. However, he failed in the case Q2 = R? and therefore
he proposed another approach, which is nowadays known as weak formulation.
In [26], he proved existence of such solutions for = R?. However, he was
not able to decide, whether these solutions are unique and whether they are
smooth if data are so. He called these solutions turbulent as he believed that
the turbulence is responsible for possible irregularities in the flow.

After the second world war J. LERAY abandoned the field of mathematical
fluid mechanics. However, a new generation represented by E. Hopr [17], O.A.
LADYZHENSKAYA [21] or J.-L. LIONs [27] studied carefully our problem and
extended the previous results to many other boundary value problems, with
similar results as for the Cauchy problem: in two space dimensions regularity and
uniqueness, in three space dimensions only weak solutions with partial results
in the direction of regularity and uniqueness.

An interesting idea how to localize the problem of the regularity goes back
to early eighties of the last century. Based on the attempts of W. SCHEFFER, in
their seminal paper [4], L. CAFFARELLI, R. KOHN and L. NIRENBERG proposed
the suitable weak solution, whose existence they were able to show, together with
its partial regularity. We will not treat this problem here, note only that the
question whether any weak solution is necessarily a suitable weak solution is
still open.

In 2000, inspired by the hundred years old talk of D. HILBERT, the Clay
Mathematical Institute [6] offered 1 million US $ for solution of seven open prob-
lems in mathematics. And the question, whether weak solutions for the Navier—
Stokes equations in three space dimensions are necessarily smooth provided the
data are so, was among them. This offer attracted several mathematicians to the
problems of mathematical fluid mechanics. It lead to several interesting partial
results by P.-L. Lions [28], J. NECAS ET AL. [30], V. SVERAK, G. SEREGIN
[8], [9], [34] ...but the millennium problem remains still open. More complete
list of new results can be found in the recent monographs [23], [24], [33] or [40].

Let us finally mention several very recent results. For so-called very weak
solution (a solution for which even the first spatial derivatives may not exist)
T. BUCKMASTER a V. VICOL in [2] showed that this definition of a solution
is too weak and there may exist many such solutions; even uncountably many.
This result is closely connected with similar results for Euler equations of C.
DE LELLIS and L. SZEKELYHIDI (the original paper is [7]).
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Moreover, V. SVERAK and H. JIA pointed out the possibility [18] that non-
smooth initial conditions may generate more than one weak solution of the
Navier—Stokes equations. The proof of this property is based on a certain con-
dition. The fact that this condition may be fulfilled was shown ”numerically” in
[15]. It is not yet an analytical proof, but it shows that this scenario is possible.

1.3 Weaker notion of a solution

Let as briefly explain the main idea how to weaken the formulation of our
problem. Take the momentum equation

({;—?+div(u®u)+Vp71/Au:f,

multiply it scalarly by a smooth function ¢ such that dive = 0, p(z,T) = 0
and ¢ = 0 at the boundary. Finally, apply the Gauss theorem. We consider each
term separately:

/ / 5 pdudt = / / dxdt—/ﬂuo(.).(p(o,.)dx
/ /(u-Vu)-tpdxdt:/ /div(u@u)-cpdxdt
/ /u®u Vgoda:dtJr/ /a (uu)n) - dSdt

/ / —Au-pdxdt = / /Vu V(pdacdt—/ @ dSdt
0 0 0 Jon (?n \/
/ /Vp pdrdt = / /p(p ndSdt — / /p d1v<p dx dt

and we get

T
// —(u®u) : Vo+uVu : ch)dxdt //fcpdxdt—i-/ wo - dz
0

(1.9)
for all ¢ € (C32([0,T) x ©2))" such that dive = 0 in (0,T) x €.

Later on, we will slightly modify the definition of our weak solution. Let us
now emphasize two important things. Firstly, we separated the pressure from
the formulation, which simplifies considerably the situation. We will return to
the question if we can reconstruct it when we prove the existence of a weak
solution to our problem. Secondly, our solution has much less regularity than
the classical solution, thus we have better chance to construct it. Note that we

need only Vu € (L'((0,7) x Q))N2 such that u € (L?((0,T) x Q))N

Remark. Note that we started with integral formulation of the balance laws,
then switched, assuming that the solution is sufficiently smooth, to the classical
formulation and finally relaxed the regularity assumption to get weak formula-
tion. Is this approach correct, in view of the fact that classical solutions may not
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exist? Fortunately, we can get the weak formulation without necessity to work
with classical solutions. The proof is slightly technical, but can be done using
standard methods from the measure theory. C.W. OSEEN (see [32]) has already
observed this fact, however, he worked with Riemann integral rather than with
the Lebesgue one. For another approach, see [11].

The plan of the Lecture notes is following:

e we introduce the function spaces which we will use later on, part of the
results without the proof, part will also be proved

e we prove existence of a solution to our problem, in bounded two- and
three-dimensional domains

e we show that to a given weak solution the pressure exists

e for two space dimensions, we prove uniqueness and regularity of the solu-
tion

e in three space dimensions we show uniqueness under additional regularity
assumptions, under similar assumptions also higher regularity

e we prove short time regularity as well as global-in-time regularity for small
data



Chapter 2

Basic function spaces

2.1 Lebesgue and Sobolev spaces

We use standard notation for:
Sobolev space: ~ WkP(Q),
o1

eEN,1<p<oo
Lebesgue space:  L1(Q) < o0

k
<q

We assume that the theory of these fundamental spaces is known to the
reader. It can be found in many textbooks on partial differential equations (see,
e.g., [10]) or in special monographs (see, e.g., [1] or [20]).

Let us only mention the following well known interpolation inequalities:

a) Lebesgue:

Lemma 2.1.1. Let f € LP(Q)NLIQ), 1 < p < q < oo, Q C RN, Then
fELT(Q):pSTS(L and

1 « 11—«

11l < IR A1l rso T @S [0,1]. (2.1)

Proof. It is left as an exercise for the kind reader. [ |

b) Lebesgue, Sobolev:

Let f € LI(Q) N WHs(Q), 1 < ¢ < co. Is it possible to show inequalities of
the type

11l < ClAl 11T s

for certain 7, ¢ a s? The answer is affirmative.

Theorem 2.1.1. Let Q € C%! be a bounded domain in RN, f € W1*(Q)n
L1(Q), 1 < g < oo.

10
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a) If s < N, then f € L"(Q), r < ]\],st and for ¢ < r < ]\J[vis there exists
C=C(Q,N,s,q,7):

£l < CUAIT SNl e € [0,1],

La(l- 3t

b) If s =N we can take in (2.2) ¢ <r < oo andr < oo for s> N.

Proof. The idea of the proof is based on the following two steps:

a) we show that (2.2) holds true for f € C§°(RY), basically using Gagliardo-
Nirenberg type inequalities

b) we use the extension theorem (therefore Q € C%!!) and density of smooth
functions or properties of the mollifier to transfer these results to bounded do-
mains.

Remark: If @ = RN or f € Wy*(Q), we can take in (2.2) instead of | f]|1.s
only [V s .

Remark: We show only two special cases of (2.2) which will be important for
us:

1 1 1 1

N=2r=4,s=q=2 404(22>+(1a):>a2,
1 1 1 3

hr=ds=q 1 0‘(2 3>+( a)g Ta=gp

e, 3C = C(N):Vu e WH2(Q) : [ulls < C Jullz, [ull2, 2 C R?,
3 1
[ulla < Clulli [ulls, @ C R

Let us prove these inequalities:

a) N=2 Letue C°(R2). Then |Julls < v2||Vul|Z||ull.
Proof. The Gagliardo—Nirenberg inequality tells us for v € C§°(R?)

lollz < 170

Take v = |u|?. It implies

fult < [ 1V de <2 [ ul|Val do < 2l Tl
R? R?

ie.,
1 1
lulls < V2lull3 [[Val3-

(The constant is not optimal — see R. TEMAM [38]: C' = 23 .)

3
1

3 1
b) N =3: Letu e C°(R?). Then ||ulls < (g) R EMES
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Proof. Analogously as above
lolly < 1901

Choose v = |u|3. Then

8 8 8 5
||uuzs/ |ku|§\dxs—/ Vallul? dz
R3 3 Jrs

8 50 _a)B 8 4 1
=3 /R [Vallul$[ul=% dz < S Vullo|lull [lu]}5-
(As % + % + 5(16_a) =l=a= %) Altogether

3
8\ * 3 1
full < (§) 1wl

(The constant can be decreased to C' = v/2, see [38].)

Especially, if u € WO1 2 (), then the inequality holds with the same constant,
it is enough to use the density of smooth functions with compact support. In
the general case one applies the extension theorem and instead of the norm of
gradient the whole W' 2-norm appears. |

2.2 Bochner spaces

We will be interested in functions u: I C R — X, where X is a Banach space.
The proofs of the following results can be found, e.g., in [20].

Definition 2.2.1. a) A function f: I — X is called a simple function, if
its range is finite, i.e., there exist ¢1...,cx € X and Oq,...,0, C I,

k
0,N0; =0 i+#j, O; measurable such that f(t) = 3 cixo,(t).
i=1

b) A function f: I — X is called strongly measurable if there exists a sequence
of simple functions f,, such that lim || f,(t) — f(t)]|lx =0 for a.e. t € 1.
n—oo

Lemma 2.2.1. Let f be strongly measurable. Then || f(*)||x: I — R is measur-
able in the Lebesque sense.

Definition 2.2.2. A function f: I — X is Bochner integrable, if there exists a
sequence of simple functions {f,},—, such that

. li_>m | fn(t) — f(®)||x =0 for a.a. t € I (i.e., f is strongly measurable),
o lim [fu() = f()lxdt=0.
n—oo I
If J C I and f is Bochner integrable over I, then

kn
/fdt = nlgréo/XI(t)fn(t) dt = nlgréozgcl |Oz N J|7
I =

J

where f, fulfils the assumptions stated above.
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Theorem 2.2.1 (Bochner). A strongly measurable function f: I — X is Boch-
ner integrable over I < ||f(-)||x has finite Lebesgue integral over I.

Corollary 2.2.1. Let I be a bounded open interval in R. If f € C (T; X), then
it is Bochner integrable <= ||f(-)||x has finite integral over I.

Lemma 2.2.2. If f is Bochner integrable over I, then

a) | IffdtHX < If £l dt,

b) |J|~>(1)1£n, JC,!fdt =0¢€ X (null element).

Remark. It follows from the definition that for n € X* and ¢ Bochner inte-
grable over I it holds

<’77 / (1) dt>X*,X = / (1, 0(t)) x- x dt.

I I

2.2.1 Spaces LP([; X)

Definition 2.2.3. Let X be a Banach space, 1 <p < oo, I C R. We denote by
LP(I; X) the set of all strongly measurable functions f: I — X such that

a) 1<p<oo

J st < .
b) p=oc

esssup /(0 < oc.

O

Theorem 2.2.2. The spaces LP(I; X) are linear spaces. We set fr = fa if
f1(t) = fa(t) for a.a. t € I (in the sense of X ). Then LP(I; X) are Banach
spaces endowed with the norms

1/p
fla = ([ 150 a) " 1<p<oc
I
Pl = esssup [ Oll,  p=co.

Note that if I is a bounded interval, then
o IP(I;X)— LIYI; X), 1< q<np,

o I FOdtlx < [IFOlx At < I lro 1>
( If()llx € LY*(I) = f is Bochner integrable.)
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Theorem 2.2.3. Let X be a reflexive Banach space, let X* denote its dual, 1 <
p < 0o. Then each continuous linear functional on LP(I; X) can be represented
as

(@, )L 1;x)) Lo (1;x) = /<<p(t)7f(t)>X*7X dt, fe LP(I;X), p € Lp,(I;X*)-
T

Moreover, if 1 < p < oo, then LP(I; X) is a reflexive Banach space.

Let I = (0,T), T < 0. Extend f € LP(I; X) by the null element of X
outside of I. For w(-) the standard mollifier denote

Fult) = %/w (t;) F(s) ds.
R

freC>(0,T];X).

Then

If felLP([;X)forl<p< oo,
fn— fin LP(0,T; X),
and for any 1 < p < o0
I fullzro,msx) < 1fllLr0,15x)-
As a consequence we have

Theorem 2.2.4. Let 1 < p < oo, X be a separable Banach space. Then also
L?(I; X) is a separable Banach space.

Proof. It is similar to the case X = R.
In particular, for 1 < p < oo, the functions from C§° ((0,7T); X) are dense

in L?(0,T; X).

2.2.2 Spaces with time derivative

We now define the weak derivative with respect to the variable t. The situation
is similar to the definition of the weak derivative for Sobolev spaces.

Definition 2.2.4. Letu € L}, .(0,T;X), g € L},.(0,T; X). Theng = (= 2%),
if

T T
/u(t)<p’(t) dt = —/g(t)go(t) dt Ve e D(0,T).
0 0
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Lemma 2.2.3. Let X be a Banach space, X* its dual. Let u,g € L*(0,T; X).
Then the following assertions are equivalent:

¢

u(t) =€+ /g(s) ds fora.a. t€[0,T], &€ X, (2.3)
T T

Vo € D(0,T): u(t — [ g®)p(t) dt, (2.4)
[rowoe=]

Vi€ X* %mum,x = (0.9)x- x inD'(0.7). (25)

If (2.3)-(2.5) holds true, then u =1 a.e. in [0,T], where u € C([0,T]; X).

Proof.

First note that the mapping ¢t — fo s)ds is absolutely continuous on [0, 7]
with values in X. Thus:

(2.3) = (2.4): multiply (2.3) by ¢'(¢t) € D(0,T) and (2.4) is a consequence of
the integration by parts.

(2.3) = (2.5): first apply n € X* to (2.3), then proceed as above.

(2.5) = (2.4): we know that Vo € D(0,T)

T

T
/(mwx*,xsddt:—/<n,g>x*,xwdt,
0

0

n € X*. As 1 is independent of ¢, the linearity of the integral implies

T T
"at dt> —0 VpeXx*
<n,/us0 +/g<p o x nex”,
0 0

)

which gives (2.4).
(2.4) = (2. ) we may assume, without loss of generality, that g = 0. Indeed, we

set ug(t) = fg(s) ds and v = u(t) — ug(t). Clearly, ug € AC ([0,T]; X), uy’ =g
0

a.e. in I. Let

T
/ng’dtzO Vo € D(0,T).
0

We show that then v = const € X. Each function ¢ € D(0,T) can be written
as

T
©=Apo+, A=/<p(8)ds,
0

where g € D(0,T) is a fixed function, for which

T
/900d5:17
0
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and ¢ € D(0,T) is a primitive to ¢ — Apg such that (0) = 0. We have

/ (v(t) — €) @(t) dt = 0 Vip € D(O.T), & = / o(s)po(s) ds.
0 0

Now, using standard argument (mollification in time) it follows that v(t) —& =
a.e. in (0,7). ]

Consider two separable Hilbert spaces, V (e.g., Wy >(Q)) and H (e.g., L*(Q)).
Using the Riesz representation theorem we identify H = H*. Let us consider
the Gelfand triple

Vs, H=H" ,50, V* (2.6)

densely densely

(we prove the dense embedding of the dual spaces later on, see Lemma 2.2.6).
Consider our spaces V = W,>(Q) a H = L?(Q). The embedding of V into H
represents the identity operator I: W, *(€2) — L2(£2). Let us look at the identi-
fication of H and H*. To any ® € (L2(Q))* Jlg € L?(Q): (Rg, ) (12(Q))*,L2(0) =
Jogedz, [|[®]l(L2(0))+ = llgllL2(0)- This functional belongs to (Wy2(2))* in the
sense

(D9, %) (w2 (e w2 () = /ng/de Vb € Wy (Q).
Thus for g € Wy*(Q)

def
<ng>(W01’2(Q))*7W01'2(Q) = <(I)gv¢>(L2(§z))*1L2(Q) :/ng/)d:c \AUS W()LQ(Q)-

In the general case, we have for u, v € V. — H

(Tu, Iv)g = <<I>1u7IU>H*’H,

where I is the identity mapping representing the embedding V' — H and ®(,
plays, as above, the role of the Riesz representation theorem. Then

(u,v)v=v & (Pry, IV) g+ g = (Tu, Iv)g Yv € V.

In this sense we also understand the embedding V < V*. We can proceed
analogously for V only a reflexive Banach space.

Remark. For spaces V and H as above we can define the time derivative of a
function u € LP(0,T;V) lying in L2(0,T;V*) as follows: we require that

T T
/ (W )y ypdt = 7/ (Tu, Tv) g’ dt
0 0
Yo € V and Vo) € C5°(0,T). If moreover u,v € LP(0,T; V), v/, v’ € LV (0,T;V*)
and ¢ € C§°(0,T), 2 < p < oo, then
T T
/ ((u’,v}v*y + <’Ul,u>v*,v>’l,/) dt = —/ (u,v) gy’ dt.
0 0

The proof follows the same lines as the proof of the lemma below.

In what follows, we skip writing the identity operator I.
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Lemma 2.2.4. Let V be a reflexive Banach space and H a Hilbert spaces, V*
and H* be the corresponding dual spaces. Let V ,52, H = H* 2, V*. Let

densely
u € LP(0,T;V), v € LPI(O,T; V*), 1 <p<oco. Then u is equal a.e. in (0,T)
to a continuous function from [0,T] to H. Moreover,

d .
" ullf; =2 (', u)y. o, in D'(0,T). (2.7)
Proof. The proof will be performed in three steps.

Step 1. Let us show (2.7). From Lemma 2.2.3 we know that w € C ([0, T]; V*).
Namely, as V < V*, the functions u,u’ € L'(0,T;V*). Further,

1
U, 3 U >V*,V elL (OaT)v
€L>(0,T;V*) €Lr(0,T;V)

lullfr = (u,u) g = (u, ) gy gy =

ie., u € L?(0,T; H). Now, let u,, be the mollification of @ (& = u in [0, 7],
otherwise 4 is equal to 0 € V), u,, € C* ([0,T];V),

Uym — win LP(0,T;V),

W, — win L (0,T;V*),

Uy — win L*(0,T; H).

Hence

d 2
e lwm s = 2 (s i) g = 2 (Ugs Umn )y Ym € N,

thus
T 9 T
[l et =2 [ i)y et Vo€ DO.T)
0 0 N——

€L1(0,T)

The limit passage m — oo gives

T T
—/ \|u||§{<p/dt=2/ (W uy it Vg € DO, T),
0 0

which is equality (2.7), where we used that the function: ¢ — (u',u)y. i (t) €
L'(0,T). This is a consequence of the fact that v’ € L”/(O,T; V*) and u €

LP(0,T; V),
T T
|y ars [
0 ' 0

and therefore uw € L*(0,T;H). Moreover, u € C([0,T];V*) and |u||% €
c([o,T]).

v lully, dt < 400

Step 2. It holds:

Lemma 2.2.5. Let X,Y be Banach spaces. Let X be reflexive and X ,52, Y.
Let ¢ € L>=(0,T; X)(C([0,T];Yw). Then ¢ € C([0,T]; Xy).
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The proof of Lemma 2.2.5 will be given later on. Just recall (at the endpoints,
the limits are one-sided):

¢ € C(0T]:Y) = lim |lo(t) - ¢(to)lly =0 Vo €[0,T],
¢ € C(0T]:Yw) < lim (n,0(t)) - (1, ¢(to))
= lim (n,¢(t) — @(tg)) =0 Vn e Y™, Vi, € [0,T].
t—to
Evidently, ¢ € C([0,7];Y) = ¢ € C ([0,T];Y.), the opposite implication

holds true only for Y finite dimensional. Therefore we have v € C([0,T];V*),
which implies v € C(]0,T);V,}) and due to Lemma 2.2.5 and identification

w

H = H* we know that u € C ([0,T]; Hy)-

Step 3. Let us show that u € C ([0,7T]; H). Let to € I. Compute

lu(t) = u(to) 7 = llu(®)llr — 2 (u(t), ulto))  + lulto)llz -

Thus, due to the fact that ||u(-)||% € C([0,T]) and u(t) — u(toy) for t — ty (at
the endpoints the limits are one-sided),

. 2
i Jlu(t) - u(to)|

1 2 T 2
~lm Ol - Bm o 2O.t0), o)l
—lu(to) % —2(u(to),u(to)) due to Step 2

2 2 2
= llu(to)lly — 2 lluto) 7 + lluto) 7 = 0.
|
It remains to prove Lemma 2.2.5. First, recall that

Lemma 2.2.6. Let X be a reflerive Banach space, Y a Banach space and let
X S Y. Then Y™ S, X*.

densely densely

Proof. Denote
i: X —Y
the mapping defining the embedding X — Y, i.e., a continuous injective map-

ping from X to Y, defined on the whole X. According to our assumptions we
know that i(X) is dense in Y. Define

YT — X
as follows:
(" (y*), 2)x=x o= (Y i(z))y=y.

We show that i* defines the embedding Y* to X ™, i.e., it is a continuous injective
mapping defined on the whole Y*, such that i*(Y*) is dense in X*.

Let i*(y*) =0, i.e., (y*,i(z))y~y =0 for all x € X. As i(X) is dense in Y,
we get y* = 0. Now, let X be a reflexive Banach space. Suppose that Y* £ X*.
Then 3 2™ € X*™: V y* € V" is (",i"(y")) xr x- = 0, but 2** # 0. Due
to the reflexivity of X there exists © € X: 2™ = J(x) (J(z) is the canonical
mapping) such that

() @) e x =0 VW €Y =
W i@)y.y =0 V" €Y = i(x) =0,

hence, as i is injective, = 0, which contradicts to Y* # X*. |
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We can now prove Lemma 2.2.5 which is of independent interest.

Proof (of Lemma 2.2.5). As X 52, Y, it is Y* 52, X*. Due to the as-
sumptions we know that

me)y-y = Me(to)y-y YneY™

We aim to show that
(o) x- x = (p(to))x- x Yne X

Define ¢(t) € X as follows

_ ] ) 1 t+h
OO ) - =limint 3 [ o)y ds

h—0
t+hel

Evidently, the right-hand side is bounded by [[¢| (o r,x) [#llx- and thus
d(p(t)) € X**. Due to the reflexivity of X, ¢(¢t) € X is uniquely defined.
Moreover,

[e()llx = sup (u,(t)) < sup ||90||Loo(o,T;X) lellx- < ||SD||Loo(o,T;X)'
lleall e <1 llll = <1

In particular, for p € Y*( .52, X*) we see that $(t) = o(¢) in [0,7]. Thus
le@lx < llellpe@rx) ¥t € [0,T]. As Y™ is dense in X*, Vi € X* and
Ve >0 3p. € Y*: ||pe — p - < €. Fix € > 0. Therefore
(s 0(t) = p(to)) x- x = (b — pz, () — p(to)) x- x + (ke () — @(t0)) x+ x -
Now, for € chosen appropriately, the first term
| (1 — e, p(t) — @(to)) x- x | .
p(t) = olto)llx < 2Ml¢ll = orx) € < 5

<l — pel| -

The second term is small for ¢ sufficiently close to ¢y, as us € Y*:

€
e, 0(1) = p(t0)) x- x | = {nz, (1) = p(t0))y v [ < 5
Thus, to any € >0 35 > 0 Vt € Us(to): | (1, ¢(t) — ¢(t0)) x- x | < & [ |

We will need the compact embedding of the space
W =W ={ve L*(0,T; Xo);v" € L (0,T; X1)}
into a suitable space L*(0,T; X). Set

vl = ||v||Lao(o,T;X0) + ||’U/||La1(o,T;X1) :
It holds

Theorem 2.2.5 (Aubin-Lions). Let Xg, X1, X be three Banach spaces sat-
isfying Xo —— X — Xy. Let Xo, X1 be additionally reflexive. Further, let
l1<ao; <o0,1=0,1.

Then for 0 < T < oo, W << L*(0,T; X).
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Remark. It is possible to take a; = 1, but the proof is more complicated and
we need neither complications nor the strength of this assertion.

We first prove:

Lemma 2.2.7. Let Xg, X1, X be Banach spaces such that Xg —— X — Xj.
Then ¥n > 0 de, such that Vv € Xg

[ollx <nllvlx, +enllvllx, - (2.8)

Proof. We prove the lemma by contradiction. Let (2.8) be not satisfied, i.e.,
In > 0: Ym € N Jw,, € Xy that

lwmllx > nllwmllx, +mllwnllx, -

We set
Wy,
U = T,
Wil x,

thus
||Um||x >n+m ||Um||x1 .

As [lvmllx, =1, vm is bounded in X (due to the embedding) and
vl x, — 0 for m — oc.

Further, there is a subsequence v,,, strongly convergent in X (X, —<— X) and
thus v,,, — 0 in X. But ||vp,, ||y > 1 > 0, which leads to the contradiction. W

Proof (Aubin-Lions). We proceed in four steps.

Step 1. Let u,, be a bounded sequence in W. We aim to show that there is a
subsequence uy,, , strongly convergent in L* (0,T; X). As Xo, X; are reflexive,
1 < a; < oo, W is also reflexive a thus there is a u € W such that

Uy, — w in W,
therefore

U, — win L¥(0,T;Xo),
u,  — o in L*(0,T; X1).

mp

We have to show that vy,, = tm,, —u — 0 in L*(0,T;X).
Step 2. It is enough to show that v,, — 0 in L*(0,T; X;). Indeed, in such
a case

[V, HLO‘O(O,T;X) <0 lvm, ”Lao(o,T;XO) + ¢ [[om, ||L0<0(07T;X1) )

and due to the boundedness of v"™* in W we have

[ ”Lao(oyT;X) < Cn+cy|lom, ||L<¥0(0$T;X1) .

£

To any € > 0 there is n > 0: Cn < § and there is ng: Vmy > ng we have
e [0 | oo (0,7, x,) < §- Thus

[ ||Lao(0,T;X) <e€
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and as € > 0 was arbitrary, the assertion of the theorem is proved.

Step 3. Let us show that W — C ([0,T]; X1). We know that each element
from W belongs (after a possible change on a subset of [0, 7] of measure zero)
to C'([0,7]; X1) due to Lemma 2.2.3. The continuity of the embedding is im-
mediate, as Lemma 2.2.3 implies

u(t) = u(0) + /0 u'(s)ds

and thus
lu@®)llx, < luO)lx, + 1l o.r5x) -
Integrating the equality over (0,T") reads
T [lu(0)llx, < llullprorix,y + T 1wl romxy)
< Cllullpaorixgy + T L2070
= max lu@®)llx, <Cllully -

tel0,T

Step 4. We know that ||vy,, ()| x, < C Vt € [0,T] and to be able to apply
the Lebesgue dominated convergence theorem, it is enough to show that

Um, (t) — 0 strongly in X;.

Choose, e.g., t = 0. Then

Vs (0) = v, (£) — /O o, (7)dr.

Integrate this equality from 0 to s:

v, (0) = i{/osvmk(t)dt—/os(/Otv;m(T)dT) at)

1 [® 1 /[°
= f/ Vi, (8) At — f/ (5 = Ty, (7)dT := Gy, + bpn,-
0 0

S S

Choose € > 0. We easily see that [|by, [y, < Js 1o, (7')HX1 dr < § for s
sufficiently small (a7 > 1!). We know that v,,, — 0 in L*°(0,T; X,) and thus
Ay, = %fos U, (£) dt — 0 in Xo; whence a,,,, — 0 in X;. As s is fixed, for ng
sufficiently large (|am, [y, < § Vmg > no. |

2.3 Spaces with zero divergence

2.3.1 Temam spaces

We define

Definition 2.3.1. Let Q C RY be a bounded domain. We set for 1 < p < oo
B7(Q) = {g € (L"()V;div g € L"(Q)},
gl (@) = llgllp + [ div gllp,

Eg(Q) _ WH : HEP(Q)-
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Evidently, both spaces are Banach spaces which are for 1 < p < oo reflexive.
We would like to show that the smooth functions up to the boundary are dense
in EP(Q). To this aim we need the notion of a star shaped domain.

Definition 2.3.2. A domain Q C RY s called star-shaped with respect to a
point xg € Q, if there is a continuous positive function h: 0B1 — R such that

Q= {xGRN;\x—xO| <h(|i:i2|)}

A domain Q C RN is called star-shaped with respect to a ball B C §, if it is
star-shaped with respect to all points x € B.

Domains with Lipschitz boundary can be decomposed into star-shaped do-
mains. It holds (see [12]):

Lemma 2.3.1. Let Q@ C RY be a bounded domain with Lipschitz boundary.
Then there exists a family of bounded domains

§={G1,Gq,...,Gr,Gry1,...,Grym}, r,meN
such that
(i) Qc UL Gi,
(ii) o C U;_, G;,
(iii) there exists a family of balls
B={B1,Ba2,...,Brim}
such that each domain
Q;, =QNdG,;, i=1,....,r+m
is star-shaped with respect to the ball B;.
Further, let f € C§°(Q) and fQ fdx =0. Then there is a family of functions

F={ftseeesfrsfritseos frim}
such that
(i) fi € CF(Q). [y, fidr =0,
(ii) f(x) = S5 file),

(iii)
||fz |k,q,Q,', S O(maQ7Qh .. '7QT+maQ)||f|
1<g<oo, k=0,1,....

k,q,Q25

It holds

Theorem 2.3.1. Let Q € C%1, 1 < p < oo.

Then E?(Q) = (Co=(@)N =@
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Proof. We will only sketch the main ideas of the proof:

a) Q=RY" the result follows by standard mollification
b) Q=% bounded domain

we use local description of the boundary and partition of unity
m

QcvulJv
i=1

on V — we use standard mollification

on V; — by translation and additional partition of unity we can decompose Vf
(i.e., V;N Q) into domains, which are star-shaped with respect to the origin, see
Lemma 2.3.1 (here we use that Q € C%!!). On the star-shaped domain we ”shift
out” the function by

uﬂm)zu(%), A>1

and we regularize this shifted function. Passing A — 1% and A — 0" (mollifica-
tion factor) we show that u,, — u in EP(2), u, € (C>*(Q))", where

u,(z) = (u,\n)hn .

The precise proof can be found in book [39]. |

2.3.2 Sobolev spaces with zero divergence

For 1 < p < oo we will consider spaces of the type
W (@) = {ue (W7 (@) :diva =0},

and

Wk (9) ={ue (Coe@) dva =0} ",

respectively. We will show that for Q € C%! the spaces coincide. This is based
on the following result

Lemma 2.3.2 (Bogovskii, Solonnikov, Ladyzhenskaya, Borchers, Sohr, and oth-
ers). Let Q € C%! be a bounded domain in RN. Let f € W™ (Q), m > 0,
l1<g<oo, [ fdr=0. Then v e (W (Q))N, a solution to

dive = f inQQ,

vogo = 0
such that

IVl g S C Nl s
where C is independent of f. In particular, if f € C§°(Q), then also v €
(CE ()N,

If f =divg, g€ E}(Q), then also

[vllg < Cllgllg-

Moreover, the operator T: {f € Wi (Q): [, fdz =0} — (W h Q)N such
that Tf = v is linear (the same holds also in the case when f = divg with
g€ Ej(Q)).
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Proof. The proof can be found in the book of NOVOTNY, STRASKRABA [31] or
GALDI [12], or also in Appendix to these Lecture notes. |

Lemma 2.3.3. Let Q € C%!, 1 < p < oco. Then W()l”giv(Q) = Wolé’w(Q)

Proof. Evidently, Woly’piv(Q) C Wol,’é’iv(Q). Let us show the opposite inclu-
sion. Let u € WL (). As WP (Q) = Co() 7, there exists {u,}32, €
(Cs°(2))N such that ||u, — ull, , =% 0. However, generally divu, # 0. On

the other hand, divu, 7, divu = 0. It follows from Lemma 2.3.2 that the
problem

divv,, =divu,,
Vnlao = 0,
vaan <C Hdivuan (2.9)

(and due to the boundary condition also [[v, |, < C(€2) [[Vv,]|,) has a solution
(the compatibility condition 0 = [, divu, dz = [, u, -ndS is trivially satis-
fied) such that v,, € (C§°(Q))N. Moreover, as divu,, — 0 in LP(Q), u,, # v,
for infinitely many n € N. Set w,, = u,, — v,,. Then

a) divw, =divu, —divv, =0,
b) [lw, — uH1,p < flu, — u||1,p + ||Vn||1,p — 0,
c) wn € (G5 ()Y,

ie,ueWyh (Q). ]

Remark. With a certain modification of the proof the same result holds also
for Q exterior domain or Q = RY, see Appendix. However, there are domains,
e.g., domains with several exists to infinity, where the spaces differ.

2.3.3 Decomposition of (L?(Q2))". Existence of the pres-
sure.

We will consider spaces of the type

I3 () = fu e (CR@)Nidivu =0}

Our aim is to characterize this space and to show that (L*(Q))N = L2 . (Q)®P,
where we further characterize the orthogonal complement P. 7

Let 1 < p < oo. Denote by Wlf%’p(aﬂ) the range of the trace operator
from W1P(Q). Recall that our space W'owP (09)) — with non-integer derivative
— is something like intermediate space between LP(9Q) and WP(99), more
precisely

_ [u(a) — u(y)P :
ol -5 gy = Voo + ([ [ EEE as.as,)".

except for the case u = 0 which does not require any approximation, or if, by chance,
divu, = 0 for all n, where we do not need any correction

1
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Denote W™ # 7 (9Q) = (W'~ 5P(0Q))*, p' = 27 Let u € (C"O(ﬁ))N,
v e C®(Q), Qe C%. Then

/u-Vvdm—i—/vdivudac:/ (u-n)vdS.
Q Q a0

As Q € C%!, the normal vector n exists a.e. at 0. The left-hand side makes
also sense for u € EP(Q), v € W1P (Q2)2. On the right-hand side, function

1 ./
v € WP (9Q); in a certain sense we will be able to extend this Green
formula also for functions with only the above mentioned regularity.

Theorem 2.3.2. Let Q € C%', 1 < p < 0o0. Then there exists a continuous
1 /
linear operator vy, from EP(Q) to W 7%”’(89) = (W' ¥ P (8Q))* such that

Yntt = u-nlpg for uec (CQ)N.

For we EP(Q), v e W' (Q) it holds

/u-Vvdx+/vdivudx:<ynu,Tv> 1, N
Q Q W P(o),w »t T (09)

where Tw is the trace of the function v (Tv € e (09) ).

Proof. Let ¢ € Wl_ﬁ’p/(aﬂ), v e W' (Q) so that ¢ = Tw. For u € EP(Q)
we set

Xu(ap):/(vdivu—i—u-Vv)dx.
Q

The value X, () does not depend on v, it depends only on its trace Tv = .
Indeed, let vy, v € WHP (Q) be such that Tv; = Ty = ¢. Set v = v; — vo. We
show

/ (vdivau+u-Vov)dz = 0.
Q

For v € Wol’pl(Q), there exists v, € C5°(€2) such that v,, — v in W' (Q),
for u € EP(Q), there exists u,, € (C*°(Q))Y such that u, — u in EP(Q).
Therefore

O:/(vmdivum+um~va) dr =% /(vdivu—l—u-Vv)dx.
Q Q

Due to the inverse trace theorem we have for suitable v (we may take any v, in
particular we take that one from the inverse trace theorem)

Xa(#) < 16l ey [0l ) < Co lull oy 191 o

2In fact it is enough to have divu € (W1P(Q))* and u € (LP(Q))V, if we understand the
duality in the sense

(div u, (’0>(W1’P/(Q))*,W1vp/(ﬂ) = — /Q u-Vodz+ (u-n,v)

=~

_1 1 0/ )
worPeo.w P (@)

this is, however, not the same as the claim of the theorem.
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For fixed u € EP(Q) the functional Xy(:) € (Wlfﬁ’p,(aQ))* and thus there
exists g = g(u) € Wﬁi’p(aQ) such that

1

Xulp) = {9,¢) Yo e WP (69).

_1 1
w B e),w P (90)

The mapping u — g(u) is evidently linear, ||g||W < Collullgegy - It

1
- “EPe0)
remains to show that for u € (C*(Q))"Y we have g(u) = u - nlsn. Let u €
(Coo(ﬁ))N, v € C*(Q). Then

Xu(Tv):/Qdiv(vu)dx:/anu~ndS:/ém(Tv)u~ndS:<u~n,Tv>.

As T (C*(2)) is dense in Wlfﬁ’p,(afl) (W“ﬁ’p'(ag) = T(W'(Q)) and
C>(Q) is dense in W' (12)), the equality

1 ’
= . , 1-=p 0
Xu(p) = (u n,<P>W_%,p(m),W1_p%,p (o0 Yo e W " (0Q)

holds true. Therefore
g(u) =u-nlpg forue (C’Do(ﬁ))N.
]

Before we characterize the space Lg,div (©), we need to prove the following
lemma which basically gives the existence of pressure for steady problems. It
holds

Lemma 2.3.4. Let Q € C%', 1 < ¢ < oo and let G € ((Wol’q(Q))N)*
(= (W‘l’q/(Q))N) be such that

<G7 (p)«WOL(I(Q))N)*)(Wolyq(Q))N = <G7 (p> =0 V(p € W()l,,ctizlv(Q)

Then A p € [f;’(Q) = {ue L7 (Q); Joudz =0} such that
(G, ) :/pdivcpdx Yo € (Wol’q(Q))N.
Q

To prove it, we need the following lemma (see, e.g., [3, Théoreme I11.18]).

Lemma 2.3.5. Let A: X — Y be a bounded linear operator, D(A) = X, A~}
exist and be continuous. Let XY be reflexive Banach spaces.
Then

R(A*) = (ker A)"3 = {f € X*; (f,u) =0 Yu € ker A}.

Shere the annihilator
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Proof (of Lemma 2.3.4). Take A: (W9 (Q)N — Za(Q), Av = divv. We
consider a special branch of A~!, so called ”Bogovskii operator”, i.e., the special
solution operator to the problem

divw = divv in Q,
wlan 0,
Iwily, < Cldivvl,,

given by Lemma 2.3.2. This operator is linear and bounded, thus also continuous.
Therefore we know

(ker A)" = R(A").

Evidently
ker A= {u e (Wol’q(Q))N; divu =0},

thus G € (ker A)" = R(A*). As Y = ﬁ(QL we have
Y = {LQ’(Q)|R}4.

Then, by virtue of (A*v,u) . y = (v, Au)y.. y , it holds

<G,(p>=/ D Atpdx:/pdivcpdx.
0 =~ Q

peL (Q)

We are now ready to characterize L2 ;; (Q):

Theorem 2.3.3. Let Q € COL,
Then

L3 (@) = {we (L))" divu =0 in D'(9); 7u(w) = 0 (= L3 ()

(m)LS = {" e (12()" s v="Vp,pe WLQ(Q)} (= P).

Proof. Step 1. Let v € P. Then Vw € {w € (C{)’O(Q))N ;divw =0}

/V-dez/W-Vpdx:—/pdivwd:r:O,
Q Q Q

SN 1L
e, ve (Ladiv(Q)) . Conversely, let v € (Lg,div(Q)> . Then

/Qv-wdac =0 VYw e L§ 4, (D),

4the quotient space (and can be represented by L4’ (£2))
5here the orthogonal complement
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-1 —
in particular also Vw € {w € (C°(Q))V;divw = 0}‘ ?c L 4iy (). Due to

:Wol,giv(ﬂ)

Lemma 2.3.4 there exists p € L2 (Q), for which it holds

/V-dez—/pdivwdx Yw € (C(Q)N.
Q Q

1
This implies that v = Vp in D'(Q), i.e., p € W12(Q). Thus (Lg,div(Q)) cP
L
which gives (L(Q),div(Q)> =P

Step 2. Let u € Ladiv(Q). Then there exists a sequence u,, € (C§°(Q))V
with div u,, = 0: u,, — u in (L?(Q))". Further

Oz/divumwdx:—/um-Vgodx Yo € C5° (),
Q Q

hence for m — oo
O:—/u-Vgadx Yo € C5° ().
Q

Thus divu = 0 in D’(). We have u € E?(Q), i.e., (recall that u,, — u in
E2(Q))
0=n () — 1m(u) = 0= u € L§ 4;,(Q).

Conversely, let Ladiv Q) ¢ L%,div (Q). Let u € H, where H denotes the orthog-

onal complement of L 4. () to L§ 4, (€2) (both spaces are closed!). According
to Step 1 there exists p € W12(£2) such that u = Vp. Therefore,

divu=div(Vp) = Ap=0 in D'(Q),
0
u-njpn = a—i =0 in the sense of the operator v, (u),

(m(u) € H~2(09)).

In Wh2(Q), there exists a solution to this problem, unique up to an additive
constant. This solution is p = const, i.e., u =0 and H = {0}. Thus L2 ;, () =
Ladiv(Q)' |

2.4 Stokes problem

Consider the problem:
Find u € (C2(Q))N N (C(Q)N, p e CHQ):

—Au+Vp = f inQ,
diva = 0 in,
u‘ag = 0.

We have two possibilities for the weak formulation:
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8) we Wi (), p e LA(Q), fe (LAQ)Y (or fe (W2(Q))V):

/vu;wdx—/pdiv<pdx=/f.<pdx Vo € (CP ()Y
Q Q Q

Lo or(f,p)
(or Y € (Wy*()Y),

together with

/ u-Vyder =0 Vi € WH3(Q).
Q

b) u € Wyt (), f€ (L2(Q)N (or f€ (WL2(Q)N):

/Vu:chdz:/f-cpdx Vo €V ={w c (C(Q)Y;divw = 0}
Q Q

or(f,p)
(or Vo € Wy2. ().

A question appears, whether weak formulation b) does not destroy the informa-
tion about the pressure. Fortunately, it is not the case. We have from Lemma
2.3.4 for

Co) = [ (Vu:Tp-fp)ds
! (2.10)
that
.« Ge(Wr2@)y
o (G,p) =0 Yp Wi (),

and thus 3'p € L*(Q), [, pdz = 0:

/(Vu:V(p—f-cp) da::/pdivcpdx Yo € (W2 ()Y,
Q Q

which is precisely the weak formulation as in a). Thus formulation b) is more
suitable, due to

Theorem 2.4.1. Let fe (W=12(Q))V.
Then there exists the unique weak solution to the Stokes problem in the sense
b) above. Moreover,
IVl
I[Pl

ClAl 12
ClAl 12

where p is the pressure constructed above.

<
<

Proof. The existence of the unique u, satisfying weak formulation b), together
with the estimate, is a consequence of the Lax—Milgram lemma (do the proof
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carefully!), the existence of the pressure follows from Lemma 2.3.4. Moreover, if
we use as test function in weak formulation a) function ¢, solution to

divp = p,
ploa = 0

from Lemma 2.3.2 — check carefully the details! — we have

[rar=—@e)+ [ VuiVpds = lpll, < C(IMIy, +[Vul,)

Remark. If we take f € (WOI’;V(Q))*, then the existence of the unique weak
solution according to formulation b) can be shown as above, but it is not clear
whether the pressure exists!

Generally (for the proof see, e.g., [12]):

Theorem 2.4.2. Let m > —1, 1 < q¢ < oo. Let f € (W™I(Q)N, Q €
Cmax{m-{-Q,Z}’ u, € (Wm+27%,q(aQ))N7 faﬂ u, -ndS =0.

Then there exists the unique weak solution to the Stokes problem with non-
homogeneous boundary condition w, such that

u e (WrQ)y,
p € Wm+1’q(Q),/pdx:0
Q
(2.11)

and 3C = C(Q, N, q) such that

Hu||m+2,q + ||p||m+1,q < C(Hf”m,q + ||U*Hm+27%,q,6ﬂ)'
]
Remark. The function u € (WH4(Q))V is a (¢g-)weak solution to the Stokes
problem if u — u, € (Wy9(Q))" and
/ Vu: Vedz = (fp) Vo eV={we (C(Q)";divw=0}.
Q
Let us return to the case ¢ = 2. Denote by A the solution operator with
homogeneous boundary condition, i.e.,
A L§ i () = Wi () € Wy (@),

such that
Af = u,

where u is a weak solution to the Stokes problem. (Recall that arbitrary f €
(L?(2))" can be decomposed

f=f +Vn,

where f; € L§ 4, (Q) and 7 can be absorbed into the pressure, thus assuming
the right-hand side directly from Ladiv(Q) makes sense).
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Lemma 2.4.1. The operator A is as operator from L%,div(Q) to Ladiv(Q) self-
adjoint and compact.

Proof. The operator is evidently linear and bounded, D(A) = Ladiv(ﬂ), further
R(A) C W()lﬁiv(ﬂ) = L 4, () and thus it is compact.
Let u,v € L(2)7div(Q)' Then for Au = f, Av = g it holds

Av=g Au=f

/Au~vdx:/f-vdx = /Vf:nga: = /u-gdxz/u-Avdx.
Q Q Q Q Q

Thus we have for all u, v € LadiV(Q) = D(A) that
(Au, V)Lg,div(sz) = (u, AV)LgTdiv(Q)a

ie., D(A) C D(A*). As D(A) = LadiV(Q), we know that D(A*) = LadiV(Q).
Hence A is selfadjoint. |

Remark. The eigenfunctions of A form an orthonormal basis of the space
L(Q),div(Q)’

1.

ijlew], jEN, Aj =00 for j— o0.
J

Evidently,

/ij:Vvdx:)\j/Wj~VdI VVGW&ﬁiv(Q)a
Q Q 7

and
/ wl . wide = dij = / Vw’ : Vwide = Ajlij,
Q Q

and thus {wj }]Oil form an orthogonal system in Wolﬁiv(Q). Moreover, it is also

a basis in Wolﬁiv(Q) (JoVW" : Vepdr =0 Vn= [(w"-@=0 VYn=¢=0).
Further, due to the regularity of the Stokes problem, if € C™*2, then

wi € (WmT22(Q)N m >0 (and also w? € (C(Q))" for arbitrary € open).



Chapter 3

Weak solution to
evolutionary Navier—Stokes
equations

3.1 Existence of a weak solution

Let us recall the classical formulation

ou

E+u~Vu—uAu+Vp = f in (0,7) x Q,
divu = 0 in (0,7) x Q,

ulpgo = 0 in (0,7,

u(0,z2) = wup(z) in .

We get the weak formulation by multiplying the momentum equation by ¢ €
(C5°(2))N, dive = 0 and integrating over €2, together with the Gauss formula:

/a—u-goda:—l—/(u-Vu)wpda:—&—u/Vu:V(pdx—i—/pdiV(pdx:/f-(pdx.
o Ot Q Q Q Q

First, recall that the pressure term is equal to zero. Further, we will not be able
to show that %—‘t‘ € L} (Qr), thus we replace the scalar product by the duality.

loc
One possible representation of this duality was shown in Chapter 1. We will also

consider more general right-hand side. We get

Definition 3.1.1. Let Q@ ¢ RN, N = 2,3. Let f € L*(0,T;(W, 3, (Q)*),
Uup € Ladiv(Q)'

Then the function uw € L*(0,T; W(}y’;v(ﬂ)) N L>(0,T; Ladiv(ﬂ)) with %7; €
LY(0,T; (Woliv(Q))*) is called a weak solution to the Navier—Stokes equations

32
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corresponding to the data f and ug, if

<8u7<P> +/ (u-Vu)-(pdx—i-u/Vu:V(pdx
ot (Wo 2o ()" Wy 3, () Q Q

0,div 0,div
={f, S0>(Wol,ﬁiv((z))*vW()l,'jiv(Q) Yy € W&ﬁiv(Q) and a.a. t € (0,T),
lim [ w(t,-)- -pde= / ug - pdx Vo € LE 4iv ().
=0t Jo Q ’

O

Remark. The case N > 3 can be considered analogously; we will not do it
here. It is necessary to take ¢ smooth, so that the convective term makes sense,
and consider the time derivative in another spaces.

Remark. Set V. =W,7 (Q), H = L 4iv(Q). According to results of Chapter
2, after possible changé on a subset of the time interval of measure zero, u €
C([0,T];V*) N L>(0,T; H), and we have u € C([0,T]; H,), due to Lemma
2.2.5. Thus we understand the initial condition in this sense, assuming to have
changed the function u on a set of measure zero, if necessary. Due to Theorem
2.3.3 we even have u € C([0,T); ((L?(R2))™).,). We will see later that for the
initial condition we prove a stronger result, i.e., t£%1+ [u(t) — uoll, = 0.

Remark. Consider a ”sufficiently smooth” solution to the Navier—Stokes equa-
tions. Multiply the classical formulation by u and integrate over €2 (or set ¢ := u
in the weak formulation)

/@-udm+/(u-Vu)~udx+V Vu: Vudz = (f u),
o Ot ) Q

1d
2 dt
1
2nd term: /(u~Vu)-udx= f/ u- Viu|®dz
0 2 Ja

1 1
:ff/divu|u|2d:r+f/ u-njul® ds.
A R

1st term: Hqu

Integrating over time

t t
/|u(t)|2d:1:+21// / \vU|2dsz:/ |u0\2d9:+2/ (fu) dr,  (3.1)
Q 0 JQ Q 0

i.e., we got the so called energy equality. However, for N = 3 we get only a
weaker result, the energy inequality, namely

t t
/ lu(t))? d:r:+2u/ /|Vu|2dxd7' S/ \u0|2dx+2/ (f,u) dr (3.2)
Q 0o Jo Q 0

for a.a. t € (0,7).

Definition 3.1.2. We call u the Leray—Hopf weak solution to the Navier—Stokes
equations, if w is a weak solution and moreover, it satisfies for a.a. t € (0,T)
inequality (3.2). O
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We aim to prove the following results

Theorem 3.1.1 (weak solution, N = 2). Let Q C R? be a bounded domain, f
and ugy satisfy the assumptions of Definition 3.1.1 and 0 < T < co. Then there
exists exactly one weak solution to the Navier—Stokes equations. This solution is
also the Leray—Hopf weak solution and it fulfils the initial condition in the sense
tliré1+ Ju(t) = uoll, = 0. Moreover, u € C([0,T]; L§ 4, () and due to Theorem

2.8.3 also w € C([0,T]; (L3(R))?) and it fulfils also energy equality (3.1).

Theorem 3.1.2 (weak solution, N = 3). Let Q C R? be a bounded domain, f
and wy satisfy the assumptions of Definition 3.1.1 and 0 < T < co. Then there
exists at least one Leray—Hopf weak solution to the Navier—Stokes equations.
This solution fulfils the initial condition in the sense tlilgl+ llu(t) — uoll, = 0.

The proof of both theorems will be performed parallelly. Only at the end,
we prove the stronger result in two space dimensions. We proceed as follows

(i) Galerkin approximation — formulation

(ii) solvability of Galerkin approximation + a priori estimates of u”
(iii) a priori estimates of the time derivative
(iv
(v

(vi) initial condition

)
)
) limit passage

) energy inequality

)

(vii) uniqueness and energy equality for N = 2

oo

., the orthogonal basis of the space Wol”dziv(Q) formed by the
eigenfunctions of the Stokes operator. We further assume that the func-

tions {wi}z1 are normalized in (L?(Q))".

-

Definition 3.1.3. A function u"(t,x) = > c(t)w'(z) is called the n-th

i=1

Galerkin approximation, if
/aiﬂwjder/ (u"~Vu”)~wjdx+V/Vu":ijdw
o Ot o . Q
u"(0,2) = Zaiwi(sc),
i=1

where a; = [, uo(x) - w'(x)dx (i.e., w"(0, ) is the projection of ug(x) to
Lin {wl}:l:1 in Lg,div(Q))' O

Equality (3.3) can be rewritten to a system of ordinary differential equa-
tions for {¢]'(¢)}!" ;. Recall that [, w’-w’dz = d;;'.

c?(t)—l—c%(t)c?(t)/ (wk . le)~wj dztv N (t) = (fwly, j=1,.,n,
Q ~——
not summed

(3.4)

1We use the summation convection, i.e., we sum over twice repeated indeces, e.g., u; B =
i

N ou;
Yot Uiggs or cp(ywh(z) = h_; R (HwF(@).
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ci(0) = a;.

To simplify the notation, in what follows, we skip the upper index n at

i (t).

We may apply the Carathéodory theory to the system of ordinary differ-
ential equations (3.4) (and if f € C([0, T]; (Wy>(2))*)"), we could even
use the classical theory). Thus there exists (locally in time) exactly one
generalized solution — ¢; € AC'[0,T) — to system (3.4) Yn € N. If the
time interval [0,7)*) on which this solution exists is such that TF < T,
then necessarily max;cfi2,...ny ¢ (t)| @)~ + 0o. We will exclude this
possibility and thus our solution exists on (0,7"). Furthermore, as we shall
later, the solution can be extended up to ¢t = T. Multiply (3.4); by ¢;(t)
and sum over j = 1,...,n. Integrate over (0,¢) (formally it means the
same as to take as test function in (3.3) the solution u™). It yields

t1 " d : |
A §Za|cj|2d7—+/0 CkCleA(Wk.vwl),WjdxdT
J=1
t n t ‘
+1//0 Z|cj|2)\jd7:/0 (£, c;w?)dr,
j=1

or, equivalently

‘1d n 2 ! n n n
éaﬂu ®)||5 dr + (u"-Vvu")-u"dz dr
0 0 Jo
=0

t t
—|—1// / Vu"? d:ch:/ (f,um) dr
0 JQ 0

and thus

1 n 2 ¢ ni2
31w O3 +v [ 19u3 ar

n 1 n 2
lu ||L2(07t;W1’2 @y T 9 [u™(0)]|5 -

0,div

< ||f||L2(0,t;(W[},‘jW(Q))*)

The first term on the right-hand side can be estimated by virtue of the
Friedrichs and Young inequalities by

2 1 2
CONEN L2 0,60m2:2, ) + 37 IV [L20,0:22(0))

and thus we have

t
™ ()5 + V/O IVu™ (|3 dr < C(fuy), (3.5)

as Hu"(O)Hé =Y ai< ||u0||§. It follows from here that ¢;(-) are bounded
j=1

in time and thus 7)) = T for all n € N as well as that ¢; € ACI0,T],
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7 =1,2,...,n. Moreover,

T
sup [l (1)]]5 + V/ Va3 dr < C (f,uo). (3.6)
te[0,T) 0

It means that the sequence u” is bounded in spaces L>°(0,T; (L?(2))V)
and L2(0,T; (WH2(2))N) uniformly with respect to n.

Estimate (3.6) is not sufficient for the limit passage. We have at our dis-
posal the Aubin-Lions lemma, however, to apply it, we need an estimate
of the time derivative. We will get different estimates in different space
dimensions, thus we first compute the simpler twodimensional case, for
N = 3 we only show the main difference. Let ¢ € L?(0,T; Wolﬁiv(Q)).

Then we can write p(t,z) = kijl ar(t)W(z), ar(t) = [ e(t, z) wh(z) dz.

Denote ¢"(t,z) = 3. a(t)w”*(x). It is easy to see that (do it carefully!)
k=1

o™ 20, 7wz, ) = el zo w2, () -

0,div 0,div
Thus
oun T r oun
% = e[ G e
Ellrwiz @) werzomwiz, @) ' Jo Ja O
llell<1
T n
u
= sup ‘/ /7"pndzdt‘ —~
ot
WELQ(OvT?W(},giV(Q)) 0 Q we can use Definition 3.1.3
llell <1
T T
- sup ‘/ (£.0") dt—/ /(“"'Vu")~<p"dxdt
¢EL2(0,T;W&:§W(Q)) 0 0 @
llell <1
T
—I// /Vu" : Vgond.%'dt’
0 Q
< sup [( ”fHL2(O,T;(W01’§;V(Q))*)
@EL2(0, T Wy R () ’
llell<1

+v ||vun||L2(0,T;(L2(Q))N) ) HSon||L2(07T;(W1,2(Q))N) + CT }

Let us estimate the convective term (C.T.)

T T

‘—/ /(u”~Vu”)'¢P”dxdt = ‘/ /u”-(u”-V<p") dxdt‘
0 Q 0 Q
T T

S/O IVg" [, a3 dtSC/O V™ o [[Va® (|, [lu™[], dt

< Cla™| Lo 0,75 L2(00)2) IV 20,75 L2000y VO | 20,75 (L2(00))8) -
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Altogether we have

T
ou”
supy ’/0 /Qﬁgo dxdt

@ELZ(0,TsWy 5, ()
llell <1
. n
< sup C (180 2o 222 pm) + ¥ IV |z rygzzcanys
PEL2(0, T3 Wy 15, () '

llell<1

HIVA 2o 7220y ||“”||L°°<07T;<L2<ﬂ>>2>) 0™ |20, mm22, o)
S C(f, uo),

and hence

ou"
ot

< C(f,up). (3.7)

v |
L2(0,T5(Wy 5, (2))%)

In three space dimensions, the only change appears in the convective term.
Hence

T T
n|2 n n n 2
[ [ erveriasae < [ 9ot ju de
0 Q 0
T 1 3
<c [ 19" a1 10w a
< Cl Eoe 0,752200y3) IV | 220,722 (0))9) V" a0, 7522(2))9)
and we replace the above estimate by

T n
sup ‘/ / u ~pdzdt| < C(f ug),
1,2 0 Q at

@ELA(0,TsWy 5, ()
llell <1

< O (f,up). (3.8)

4 1,2
L3(0,T5(Wy 5, (2))%)

ou"
N-3 Hat

As we will see later, the lower power (in the integrability over the time

variable) in this estimate has big consequences. It was explained above

that it corresponds to lower integrability in time of the convective term.

We are now ready for the limit passage. Due to the a priori estimates

we know that there exists u € L%(0,T; Wol’inV(Q)) N L0, T; (L2 (2))N)
. 1,2

with 2% ¢ L9(0,T; (Wo.aiv (2))7) (g=2for N =2, g= 3 for N = 3)

ot
such that for a suitable subsequence ny:

u™ = ou o in L(0,T; (LA(Q)Y),

u™ = uin L30T Wy'g, (),

our ou 1,2
N q . s *
8t at in L (0’ T7 (WO,div(Q)) )
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If we take in the Aubin-Lions lemma X, = Wolﬁ’jiv(Q), X = Lg,div(Q) and
X1 = (Wolﬁiv(Q))*, then for 2 bounded

Xg 5= X — Xy,
hence, additionally (generally for another subsequence),
F—su in L2(0,T; (L*(Q)N).

Moreover, due to the a priori bounds of u™ in L*°(0, T; (L?*(22))") and in
L2(0,T; (WH2(Q))N), we have

u™ —u in L90,T;(L*(Q)N) Vg < oo,

u™ —su in  L2(0,T;(LP(Q))N)
Vp < oo for N=2, Vp<6for N=3.

Now, take equality (3.3) for a fixed function w’. Multiply it by ¢ €
C§°(0,T) and integrate over (0,7). We have (instead of nj we write again

n)
au n n
/<8— wJ ¢dt+// Vu") - w dz b dt
0

—|—1// /Vu”:VWjdxwdtz/ (£ w?)pdt,
0o Jo 0
where

our ou 9
<L’W1>:<L’W1> — L w’ dz ¥n € N.
ot ot W d @) Wi, @) Jo Ot

We now let n — oo. There is no problem in the linear terms, weak conver-
gence is enough. Thus, let us look at the convective term. We have, due
to the strong convergence (we proceed for N = 3, for N = 2 the situation

is simpler)
’/T/ [(u" - Vu") - w/ — (u-Vu) - w/] dmwdt’
_’/ / VWJ ( "-ij)~u"} dxz/)dt‘
< ’/ /(Uz—uf) 81;}%uk7/fd$dt‘
AL [

< / Hu—u"||3||u||6HW!|2|w|dt

)z/;dxdt’

T
+/0 u— w5 [l [[ 7w |, o] dt <

< la=a 20,7513 0% ||VWJH(L2(Q))9 11l oo 0,7y %

(Hu||L2(OT(L6(Q) + [[u” ||L2(OT(L6(Q)) )) — 0.
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The limit function u fulfils

/ <8—“ w wdt—i—// V) - w dzep dt
0

+1// / Vu VWJ) dxy dt = / <f, wJ>1/)dt (3.9)
VjeN, Vi € C5°(0,7).
Now, let ¢ € Wolﬁiv(Q), thus ¢ € Lin{wJ }j’;l and therefore (formally,
it is just another limit passage w", n — o0) equality (3.9) is satisfied

for all test functions from Wo dw(Q). As the equality is satisfied for all
¥ € C§°(0,T), it holds

0
<l,¢>+/ (u~Vu)-<pdx+V/Vu:V(pdxz(f,go)
Y € VVolﬁiv(Q) for a.a. t € (0,7).

Take the equality

TL n 1 n
sy [ P arar - [ g ar- e =o

multiply it by ¢ € C§°(0,T), » > 0 on [0,T] and integrate over [0,7]. We

have
T 1 5 t 5
| Gweopesy [ [ we? adr
0 0 JQ

t
- [ g dro = 5 w3 0] de =0
0

and let n — oo. The first term goes due to the strong convergence u”™ — u
in L2(0,T;(L*(Q)Y) to fOT : ||u||§wdt. In the second term we use the
lower semicontinuity of the norm and the Fatou lemma. As

t t
liminf/ /|Vu"|2 dxdrz/ /|Vu|2 da dr,
n=oo Jo JQ 0 Ja

the function 1) > 0, we have

T,
liminf/ / /|Vu”|2 dxdT)wdt
n— oo
/ hmmf/ /|Vu”| dzdr 1/)dt>/ //|Vu| dz drep dt.
n—oo

The third term is simple — weak convergence is enough and the last term
goes to fOT —1 ||u(0)||§wdt, due to the completeness of the orthogonal
system {Wi}z1 in L%)div (©). Altogether we have

T 9 t t
| i+ [ [ wupasar— [ g ar
0 0o JQ 0

f%||u0||§}w(t)dt§0 Vg € C°(0,T), ¢ >0in [0,7].
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By a suitable choice 1 = w. — mollifier in time — after the limit ¢ — 0T
we get

1 t 1 t
,||u<t)”§+y/ /|Vu\2 dxdrsfuuou%/ (£ ) dr
2 o Ja 2 0

for a.a. t € (0,T), which is the energy inequality.

Step (vi) Let us now check in which sense the initial condition is satisfied. We pro-
ceed as in the existence proof. However, we take ¢ € C* [0,T], ¥(T) = 0,
we integrate by parts over the time interval (0,7) and get

/ / Wj—dxdt—/ﬂu"(O)-ij(O)dx
/ /Q Y- wiydadt
+u/0 /QVu":ijwdxdt:/0T<f,wj>1/}dt.

We let n — oo. Due to the completeness of {w?}52, we get (actually, we
proceed in two steps, as in Step (iv))

//u <p6 dxdt—/uo (0 dx+//uVu ) - dadt

+1// /Vu Vi dz dt = /0 (f, o) 1 dt.

Recall now that

o T q
/0 <a%‘7so>wdt=/0 o lug) v

=& Jouwedz

/OT(/Qu-cpdx)aaqfdt/Qu(O)-(pdxz[;(O).

ueC([0,T]; (L3, ())N)

w

Choosing 1(0) # 0 it yields
/u(O)'godz:/uowpdx,
Q Q
thus, as u € C([0, TY; (L%)div(ﬂ))w),
u(t) — ug in (L*(Q)N for t — 0.

In particular,

liminf [u(®)|| > [luol? .
im inf [lu(t)]; = [luoll;
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On the other hand, the energy inequality yields

. 2 2 . 2 2
limsup [[u(t)[|5 < [Juoll; = lim [u(®)[l; = [Juol[ -
t—0+ t—0F

The Hilbert structure of L?(€) implies limJr [lu(t) — ung = 0. Note that
t—0

in two space dimensions we have due to Lemma 2.2.4 that our solution u €
c([0,T]; L(2),div (Q)) and thus the strong convergence follows immediately.

Let uy,us be two different solutions to the Navier—Stokes equations in
two space dimensions, corresponding to the initial condition ug and the
right-hand side f. Then

Ou;
< 2 ,<p>+1//Vui:V(pda:—i—/(ui-Vui)-<pdx:<f,<p>,

i=1,2.
Subtracting yields

<8(u1 —uy)

ot 7‘P>+V/QV(U1—112):V<pd$

+/(U1'VU1—U2'Vu2)'(deE:O.
Q

Recall that the difference u; — uy belongs to L2(0,T; (Wol”inv(Q))N) N
L>=(0,T; (L*(Q))N). Tt can be shown as above that the time derivative
2 (a1 —up) € L2(0,T; (W, 5, (2))*) and thus

u —up € C([OaT]§Lg,div(Q)) and
<M
ot

see Lemma 2.2.4. Thus the function u; — us can be used as test function.
It reads

d
a||111—u2||§:2 ,ul—u2>,

1 d|

2 dt

:/ (ug - Vuy —uy - Vuy) - (ug — ug)de.
Q

s el + [ [V (w1 w)f® da
Q

Let us rewrite the right-hand side

(R.H.S.) = /Q—(uQ V(u; —up)) - (ug — up) da

=0
+/ (112 — 111) -Vuy - (111 — 112) dz
Q
< Jluy = w3 Vg [, < Cllug = wal, IV (w1 — ), [V, -

We have
1d
2t
+CO(W) |[uy — a3 |V |3, (3.10)

2 v 2
Juy — w5 + V[V (uy —uwp) [|3 < 5 [V (ur —uz)ll;
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which yields
d
T [ur — us 3 + V/ IV (a1 — u)[* dz < C(v) [Juy — w2l [|Vuyl5 .
Q

As [|[Vuy Hg € LY0,7T) and (u; —u3)(0) = 0, Gronwall’s inequality implies
[lug — uQ||§ (t)=0 a.e.in (0,7), ie., u;y =uy ae. in (0,7) x .

Note finally that due to the same arguments as above we can use as test
function in two space dimensions the solutions itself which results into the
energy equality.

3.2 Reconstruction of the pressure

The aim of this part is to find out whether the weak formulation did not destroy
the information about the pressure, i.e., whether there exists p € D’((0,T) x §2)
(or more regular) such that

0
(Gre)+ [ v pdet [ VaiVpdo s (Tp.0) = (£0)

Ve € (C5°()Y and a.a. t € (0,T). (3.11)

Generally, if only f € L2(0,T; (Wol”jiv)*), it is not evident and the pressure may
not exist, see, e.g., paper [35].

We may try to use for f € L2(0,T;(W~12(Q2))") the previously proved
lemma about the existence of the pressure in the steady case. Consider the
functional

<F7<p>: <(th1—f,<p>+/(u-Vu)-<pdx+u/Vu:V(pdx.
Q Q

However, generally it is not clear, whether F is a distribution! The reason is that

the time derivative %—;‘ € L90,T; (W&’;V(Q))*), but we have no information

about it in the space L2(0, T (W 2(Q))*)N).

Remark. Using other boundary conditions, e.g., if only u-n = 0 (together
with, e.g., the slip boundary condition), we would have

1,2
pe (W) == 01 +Vr,
~—
e(WhH2(2))N,dive1=0,¢1-n=0 on 90
du

<a, V’/T> = 0,
and now, we have to verify that (7 is an appropriate test function — considering
u-n = 0 it works. Thus % is a distribution and we can use Lemma on the

existence of the pressure (Lemma 2.3.4). For the Cauchy problem or for the
periodic boundary conditions we can proceed differently. We can apply on the
momentum equation the operator divergence and get the following equation

Ap = divf — divdiv(u ® u).
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This problem is in the corresponding spaces uniquely solvable. However, e.g.,
for the Dirichlet boundary condition on the velocity we would miss a boundary
condition for the pressure, thus this approach fails. We can see that the Dirichlet
boundary condition complicates the problem of the existence of the pressure.

Nevertheless, it holds

Theorem 3.2.1. Let u be the weak solution to the Navier—Stokes equations
constructed by the Galerkin method, Q € C%', N =2, 3.
Then there exists P: (0,T) x Q — R such that P(t) € L?*(Q) Vvt € (0,T)

and it satisfies

/Ot(—u/Qvu;vxdx_A(u.vu).de+<ﬁx>)dT
:/Qp(t)divde/QU(t)~xdw—/ﬂuo-xdx v € (W2 (@)Y,

Proof. Let us take the formula for the Galerkin approximation, integrate over
the time and the term with the time derivative integrate by parts:

Lroum . A
—  wi'dzdr= [ u"() - w'dz— [ u™(0) w'dz.
0 Ja Ot Q Q

We have
¢
/ (—u/ vu™ : Vwidx—/(um~Vum) -Widx+<f,wi>)d7'
0 Q Q

= / u™(t) ~Wid.'L‘—/ u™(0)-widx Yw',i=1,.,m.
Q Q
By the limit passage m — oo (recall that u € V = {v € L2(0, T; (W*(Q)™))n

L=(0, T3 (L(Q)N) G € L9(0, T Wy i (0))} = C([0,T]; (L§ g3,)w)) and

further by the limit passage "w’ — x” we have (we use the density of finite
linear combinations of the basis functions in VVO1 (iv(ﬂ))

t
F(x) :/ {—1// Vu:Vx—/ (u~Vu)~x—|—<f,x>}dT
0 Q Q
—/ u(t) ~xdx+/ wy - xde =0 Vx € Wy, ().
Q Q
Moreover, F (x) is defined Vx € (VVOM(Q))N7 vt € (0,T), thus Lemma 2.3.4
yields that
Yt € (0,7) 3P(t) € L*(Q): (3.12)
F(x):/P(t)divxdx vx € (W2 ()N, N=2,3.
Q

Remark. Generally it is not true that P(t) = fotp(T) dr, it is not clear that our
"pressure” is really a primitive function to the real pressure. Thus this result is
not very satisfactory.
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In the case when € is smooth, it is possible to strengthen this result:2

Theorem 3.2.2. Let 2 € C?, the function u € L9(0,T; (L*(2))N), divu = 0
in the weak sense and the functions H; € L% (0,T; (Lsi(Q))NQ), i=1,2 be such

that

for all ¢ € (Cgo((O,T) x )N with diV(p = 0. Then there exist scalar func-
tions p; € L%(0,T;L%(R)), i = 1,2 and a scalar harmonic function p;, €
L9(0,T; L% () with Vp, € LI(0,T; (L¥(Q))N), s* = 2= for s < N, s* €
[1,00) for s =N a s* € [1,] for s > N such that

T
/ /u —dmdt / /(H1 + Hy) : Vodrdt
o Ja
T
+/ /(pl +p2)divcpdxdt—|—/ /Vph-%pdxdt
0o Ja 0o Ja t

for all p € (C5°((0,T) x Q). Moreover,

(3.14)

HI%”L‘U(O,T;L%’(Q)) S C”HiHLqi(O,T;(Lsi (Q))N2)a 1= 17 27
VDRl a0, r5Le))v) < Cllull Lago,ricne ) v)-

Remark. We can use this theorem in such a way that we take for H; the
convective term u ® u and for Hy the function —vVu — F with f = divF. This
theorem can be applied for quite general right-hand sides, however, it shows
again that the pressure does not behave in the way we could naively expect.

Proof. Choose tg € (0,T), arbitrarily in such a way that ¢y is a Lebesgue point

for u, i.e.,
1 to+r
m — u(7)dr = u(tp)

1
r—0+ 21 to—r

n (L*(Q))N. We define for i = 1,2

ﬂ:ﬁmmw

and consider the following Stokes problems

—AVZ' = —Vﬂ'i - leII(t) in Q,
divv; = 0 in
Vilon = 0.

Due to the regularity of the Stokes problem we have for a.a. ¢t and a.a. h €
(Oa T— t)

%Hm(ﬂrh)*m(t)llsi_ L (¢ + h) = Hi (1),

2Part of this theorem can be shown also for less regular domains, however, it requires deep
results from the regularity theory for the Stokes problem in Lipschitz domains.
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Therefore m; € W14 (0, T; L% (€)) and it holds

< OlH; | Las 0,750 () -

H on;
L9i(0,T;L% ()

ot

Further, for a.e. t € (0,T) we consider the Stokes problem

—Avy, = =Vm,+u(ty) —u(t) inQ,
divv, = 0 in,
Vilon = 0.

Again, using the regularity of the Stokes problem and integrating over time

V7l Lago,r:Ls () < CllullLago,r;Le ()

Evidently, Am;, = 0 on (0,7) x . Summing up the Stokes problems above we
have for a.e. t € (0,7)

—A(vi+vetvy)=—-V(m + 72 +7p) — div(fi + ﬁ;) +u(tg) —u(t). (3.15)
If we take in (3.13) as test function @™ € C§°((0,T) x Q) such that " — ¢,

where
[ @) e (CR@)Y T (th),
SO(T":U) - { 8 T E (O(ZT)\(tht)v

we have

/(u(t)—u(to)) -¢dx:/(ﬁ1+ﬁ2) : Vipdz
Q Q

for ally € (C$°(R2))N, divep = 0 and due to Lemma 2.3.4 there exists 7 € L"(Q),
r > 1 such that

u(t) —u(ty) = —div(H; + Hy) + Vo in D'(Q). (3.16)

Therefore (3.15) and (3.16) imply

—A(Vl +V2+Vh) = —V(’]Tl +7T2+7Th—7'r) in €,
div(vi +va+wv,) = 0 inQ,
vi+Vva+vplaa = 0

and due to the uniqueness of the solution to the steady Stokes problem (for the
pressure up to an additive constant; we assume zero integral mean of each of
them to avoid this problem) we deduce

vi+ve+vy, =0 T+ Ty + T =T
Thus in D’(0,7)
o n +87rh
pi@t =P1TDP2 o’

where p; = 85?-. To conclude, we set pp, = 7, and use its spatial regularity. W
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Let us mention another possibility to reconstruct the pressure. To this aim
we will have to consider the nonstationary Stokes problem

— —vAu+Vp = g in (0,7) x Q,
divu = 0 in (0,7) x Q,

0 on (0,T) x 09,
u(0) = ug in Q.

=
|

The weak formulation is analogous to the weak formulation for the Navier—
Stokes equations. We look for u € L?(0,T; W&’inv(Q)) N L>=(0,T; (L3(Q)N),
94 ¢ L2(0,T; (Wy's,)*) such that

<@,¢>+V/Vuzv<pdw=<g,so> Vi € Wy i, (2)
ot Q '
and a.a. t € (0,7,

and
u(t) — ug in L 4, (€)

for ¢ — 0T. Indeed, it holds (the proof follows the same ideas as the proof of
the existence of a solution to the Navier—Stokes equations, it is only slightly
simpler)

Theorem 3.2.3. Let g€ L*(0,T; (W= 12(Q)N), Q C RN, ug € L§ 4, (Q).
Then there exists the unique solution to the nonstationary Stokes problem.
Moreover, u € C([0,T]; L§ 45, (), hence limy_o+ [|u(t) — uoll(z2(q)yr =0. M

The following theorem is in the same spirit as Theorem 3.2.2 (for the proof,
see [19]):

Theorem 3.2.4. Let the initial condition be sufficiently smooth, Q € C? is

convez and let g=div F, F e (LP((0,T) x Q)N 1 < p < .
Then the unique solution to the Stokes problem uw € LP(0,T; Wolﬁiv(Q)) N

W%vP(O,T; (LP(Q))N). Moreover, the pressure

oP
7T:P1+Ea

where P is a harmonic function, py € L? ((0,T) x Q), P € LP (O,T; Wva(Q)),
VP e W22(0,T; (LP(Q)N) and it holds

1ellyy 3 o o yyny T IV @ oo, zs(zo () + 1Pl Lo 73200
IVl s o mno@pm) HIVE

( | Lo 0, wrr(2))™)

< CUF o o,r Lo (0ynzy T Crluo).
Moreover,

HpHWl,; < Cluo, HFHLP(O)T;(LP(Q))NQ)) , re(0,1— %}

_r l+7"
20, TWF ()
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The above result seems to be optimal, i.e., we are not able to avoid the
presence of a harmonic part of the pressure which has very low regularity in
time. If f € L* (0,7; L*(2)), we get much better result, for the proof see [14]

Theorem 3.2.5 (Solonnikov, Giga, Sohr). Let the initial condition be suffi-
ciently smooth, Q € C?, and let g € L' (0,T; (L*(Q)V) .

Then the unique solution to the Stokes problem satisfies V2u, %, Vp €
L0, T; (L*(2))*) and it holds

0
(172 + H;Hx FIVDl ) < € (uo.llgly)

where X = L' (0,T; (L*())*), 1 < t,5 < 00, k= N? or N, respectively. [ |

Remark. This result was originally shown by V.A. SOLONNIKOV for ¢ = s, the
paper cited above is the extension for ¢ # s.

We can use these estimates in the following way. We shift the convective
term to the right-hand side. Thus

9

a—l;—VAu—l—Vp — f—u-Vu,
divu = 0, (3.17)
u(0) = uy,
ulpo = 0.

As our solution to the nonlinear problem u exists and the solution to the non-
stationary Stokes problem is uniquely determined, it is clear that we may apply
the estimates from Theorems 3.2.4 a 3.2.5 to our solution. Recall that the result
from Theorem 3.2.4 is not very suitable for us, the pressure is not an LP-function,
as the harmonic pressure has low regularity in time and cannot be differentiated
with respect to time. Thus we use rather Theorem 3.2.5. The assumptions on f
are not so important, we may take the force term as regular as we need. Let us
check in which spaces we control the convective term:

a) N=2
/ lu-Vu|® dz < ||Vul; Hu||é;27 , 1<s<?2,
o =
| 2o < Cllully a5,
ie.,

T . A . t t l
(/0 (/Q |lu- Vul? dx) : dT) ' < C’(/O ||vu”;+(23—2)g ||uH§(2_S)> :

L(2-s) se2
< Clhallz 0,722 @) 1l 0, w2 (y2)

assuming that

t 2 2
t+(2s—2)-=2 = -—+-=3, s<2.
s t s
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b) N=3
2
S <6, he,s<o.
2—5s 2
Then
—3
th<me WMQ
(275_g+1—a$ _3725 1 _3573)
2s 2 6 =5 > *="
and

1
t

1(3-2s)
5 dt)

T i i t+(3s—3)L
([ ([ vurana)’ <o [ s

(3—2s) N
<C Hu||L°c o.1:(L2 @) 18l L0 7w 2@y9) 5
if
2 3

t
t+(Bs—3)-=2=-+—-=4,s5<
S t S

N Lo

Therefore we have

Theorem 3.2.6. Let u be a weak solution to the Navier—Stokes equations and
let 2 € C?, f and uy be sufficiently smooth.

Then there exists a scalar function, the pressure, and the Navier—Stokes equa-
tions are satisfied a.e. in the time-space. Moreover,

Vi, O Vpe L0, T (L)), 1< 5 <

%+E:N+LN:Z&
S

_ A2
N—17k_N or N,

Remark. The same result holds true for N > 3.

Let us check, what kind of information we got in three space dimensions for
the pressure. To fix uniquely the pressure, we will suppose that [, p(z,t) dz = 0
for a.a. t € (0,7). We know that

2 3 3

L' (0,T; L* -+ -=4 —

Vpe (0)7 ) t+8 ?S<27

ie.,
* 3s 2 3 2 3-s
LY0,T;L* (Q * = - +t—-=-
peL(OTLT (@), s 3—s’ P A

2.3

t s*

If we want to have t = s* = 2+ 3 =3 =t =23 ie,p¢c L3 ((0,T) x Q).
(Check that for N =2 we havep € L ((0, ) Q) for any g < 2!)
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3.3 Regularity (N =2)

Let us show now that our uniquely determined weak solution to the Navier—
Stokes equations in two space dimensions is more regular provided the data are
so. We will prove the following

Theorem 3.3.1. Let Q € C?, ug € Wy’ (Q), f€ L*(0,T; (L*(2))?).
Then the weak solution to the Navier—Stokes equations in two space dimen-
sions fulfils

0
V2u, a—;‘ Vp € L*(0,T; (L*(Q))*), Vu € L=(0,T; (L*(Q))*), k = 4or2,
ou
2
HV U’HL2(O,T;(L2(Q))4) + H@t L2(0.TH(L2(2))?) + HVPHL?(O,T;(L"'(Q)V)

HIVUll e 0,7522000)0) = CUAlL20,73 22 (02))2) » w0l 2)-

In particular, w € C([0,T]; (W'(Q))?). If ug € L§ 43, (Q) only, then the above
mentioned estimates hold true on [§,T], 6 > 0, arbitrarily small.

First, let us prove one lemma

Lemma 3.3.1. Denote by P the projector from (L*(Q))N to L 4, (Q) (it is
sometimes called the Leray projector). Let Q € C2.
Then
3C1, Cy: Yu € Wy'k, () N (W22()N

it holds
Ch|ully s < [[PAU|y < Colullyy -

Proof. Let us consider the Stokes problem:

—Au+Vp = f inQ,
divu = 0 in €,
ulpn = 0.

Without loss of generality we assume f € LadiV(Q). The problem can be equiv-
alently rewritten as

—PAu = f inQ,
divu = 0 in €,
u|aQ = 0.

Due to the regularity of the solutions to the Stokes problem we know that
[ally 5 < Clfll,
and thus

[u

22 < Clflly = C||PAul,.
On the other hand, as P is the projector,
[PAuf, < [|Aull, < Cllully, -
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Proof (of Theorem 3.3.1). Recall that we constructed the solution by the
Galerkin approximation. Take the j-th equation, multiply it by é’]”(t), sum over

j and integrate over time (i.e., we use as test function for u™ the time derivative
agt -). We have

2 1 [td
— dmd7+71// 7/ |Vu™[* dadr
27 Jo dt Jq

t m
//f —dxdrf/ /(um.Vum)-a“ da dr.
o Jo ot

Next, multiply the j-th equation by A;cj" (t), sum over j and integrate over time.
Recall that

/ Vw/ : Vepdr = )‘J'/ wiopdr  Vp e Wyt (),
Q Q /

i.e., we use as test function —PAu™. We have

%/0 dt/'vum‘ dxdT—i—u/ /Vu (ch )\Vwﬂ)da:dT
// Zc] )\w dxde// m.vVu™ (an )\W])dICdT.

=—PAum™
Compute
t m 4
/0 /Q (Vum : ; ¢; (T))\jVW]) dx dr
// A11 7” ‘(T)/\jWJ)dl‘dT.
-l fQ(PAuM+Vz)(z;":1 cj(MAjwi) dzdr
Altogether,
[ o [ o oo
0
<c( / H \dTJrV/ | PAu™; d7+2(1+V)||VumH2())
<o [ 18, (| %, + 1Pawrl, ) ar (315)
/2 ou™\ 2 1/2
+C/ /IVu’"I2luml2dx) (/Q((%) +(PA™) ) dz) " dr
rervar ol < [ |2 o g [ vt ar

y)/ ||f\|§dT+C||Vum(0)H§+C(1/)/ /|vum|2|1m2 dzdr.
0 0 Q

I
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We need to estimate the convective term

t t
m|2 m|2 m mi|2 m
ISC/ [Va™ [ [a™ [ dTSC/ [Va™ ||, 5 [Va™[5 [u™]], dr
0 0

t t
< il// ||V2umH§ + C’(u)/ ||Vum\|;l dr.
0 0

1 t
2

t t
< [Vum ()2 + C(v) / 182 dr + C(v) / Va2 Va2 dr.

Thus

ou™ )2 v [ |2 m
WHQ‘“*Z/O V2 dr + Va3 (1)

It follows from the integral form of the Gronwall lemma

t t
0 7)dr h(7)f(7)dr
1)< 10+ [ gr)ar+ [ nosin)ar —
f0 < (10 + [ gryar)eli o
0
choosing f = |[Vu™ ()| , h = |[Vu™(t)|5 € L(0,T) that
sup [[Vu™(#)[l, < C(IVu™O)lly, [Ifll20,1:222))2)5 T)-

)

Substitute it back to the estimate above,
T T
ou |2
/ H— ’ dT-‘rV/ Hv2umy|§ dr + sup HVum(t)Hg
0 ot 2 0 (0,7)

T
<c(Ivw" @, [ 193 anT) < € (0. £7),
as
IV ), < Vo]l

Now, use Lemma 3.3.1 and pass with m — oo. If the information about the
initial condition is not sufficient, take

)
g(t):=0 O<t<§7

g(t) =1 t >4,
geC ([0,T)), g¢>0

and before integrating over time, multiply the inequality by g. Then

t

| a5 19wl dr = a0 90l = [ o) 19wl ar

We transfer the second term on the right-hand side and continue as above.
Due to the properties of g we "lose” the information about the behaviour for
times near zero, on the other hand, we do not need to know anything about the
gradient of the initial condition. The theorem is proved. |
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We could also study higher regularity. It is possible to show that for divug =
0, up =0 on 9Q and f € (C* ((0,T) x Q))N, Q € C* also the solution u €
(C* ((0,T) x Q))2, pe C>= ((0,T) x ) — attention, not up to time instant 0
— this requires certain compatibility conditions between ug and f and regularity
of uy. We will not continue in this direction, we rather switch to the regularity
and uniqueness problem in three space dimensions.

3.4 Uniqueness (N = 3)

First, let us recall that we do not know whether all weak solution to the Navier—
Stokes equations in three space dimensions satisfy the energy inequality. How-
ever, it holds

Lemma 3.4.1. Let u be a weak solution, which additionally belongs to the space
L* (0,7 (L4 (Q)7). 3
Then w fulfils the energy equality.

Proof. Let us show that if u is a weak solution to the Navier—Stokes equatlons
and belongs additionally to L* (0,T; (L*())"), then 2% € L?(0,T; (W0 2%
Indeed,

sup ’/ ,<p>d7‘ =
1,2

<peL2(0,T;W0 Tiv ()
lell <1

sup ’/ fzx/Vu Ve dz + (f, @) — /Q(u-Vu)~<pdx) dT’

@EL2(0,T;Wy 5 ()

llell <1
T 2
< s [ (I9ul Vel + 181y el o + 9l ) dr
‘peLz(o,T;w(}ﬁiv(Q» 0
llell<1

<C.

Thus we are allowed to take as test function the solution u itself as all integrals
are finite. It yields (see also Lemma 2.2.4)

1d

fulff v [ 19 o=~ [ (@ Yw e+ (fu).
2dt o

=0
Moreover, u € C([0,T]; Lg)div(Q)), and thus, integrating over time
1 2 ' 2 1 2 K
= lu@®)|5 +v [Vul*dedr = - ||luglls+ [ (fu)dr  Vtel[0,T].
2 0 Jo 2 0

3This conditions has been in a certain sense relaxed, see [5]. The condition on the addi-
tional regularity can be expressed using the Sobolev-Slobodetskii spaces, i.e., with noninteger
derivative, however it is on a weaker scale than the condition from our theorem.
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Remark. Recall that in two space dimensions the weak solution to the Navier—
Stokes equations belongs to u € L*(0,T; (L*(£2))?) and thus it satisfies not only
the energy inequality, but also the energy equality.

It is generally not known whether the class of weak solutions in three space
dimensions is also the uniqueness class. However, we have

Theorem 3.4.1. Let u, v be two weak solutions to the Navier—Stokes equations
corresponding to the same data. Let u satisfy the emergy inequality and let v
satisfy additionally

ve L'0,T; (L5(Q))?),

| Do
w | W

+-=1, s€[3,)].

Then u=v a.e. in (0,T) x Q.

Remark. 1t is a uniqueness result of the type strong solution = weak solution.
It indicates that the uniqueness and the regularity are closely connected. The
conditions on v from Theorem 3.4.1 are often called the Prodi—Serrin conditions.

Proof (of Theorem 3.4.1). We will perform the proof for s > 3. The case
L°(0,T; (L3(2))3) is technically more complicated. Let us first proceed for-
mally.

Take as test function for u and v the difference u — v (which we are not
allowed to) and subtract the resulting inequalities. We have

%%||ufv||§+1//Q\V(ufv)\zdx:/Q(V~vau~Vu)~(u7v)dx
:/(V~VV)~(ufv)d:cf/(u~V(u7v))~(u7v)dx (3.19)
Q Q

=0

- [ v @=v)de = [ ((@=v)- V¥ (= v)ds
:/Q(u—v)®v:V(u—v)dx.

We estimate the term on the right-hand side

[C.T| S/ (V(u—v)[[u—v| [v| <[[V(u=v)|;[u-v]=2 [V,
Q" °
2 % s
<[V =v)lly* flu=vl* |vl,,

s=8 3
u=vll 2 <Jlu=vly" [lu=vlg,

2s
s5—3
S

1
= |CT] < SvlIVa =[5+ C) lu=v]; v

(If s = 3, this proof does not work.) For s = oo the convective term can be
estimated by

1
IVl lla = vl [V (= V)l < 5w [V =95+ C) Ju = vil; VI, -
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Thus, altogether
2 2 t
3¢ e =vllz < Cllu=viiz vl
and as (u —v)(0) = 0, it follows from Gronwall’s lemma that u — v = 0.
Let us now try to deduce relation (3.19) rigorously; as a matter of fact, we
deduce the form integrated over time and the equality will be replaced by in-

equality. However, it will be sufficient to conclude the proof.

The first relation we have at our disposal is the energy inequality for u:

1 t 1 t
Sla@E+v [ [ [vaPdedr < S uli+ [ €wan @20
2 0 JQ 2 0

Further v € L(0,T; (L*(£2))?), which follows simply by interpolation and thus
according to Lemma 3.4.1

1 ¢ 1 ¢
f||v(t)H§—|—V/ /|VV|2dxdT=fHu0H§+/ (f,v) dr. (3.21)
2 0 Q 2 0

We have to show that we can take as a test function for v the function u and vice
versa. From the proof of Lemma 3.4.1 we know that 9% € L2(0,T; (WO 2 %),

thus we may use u € L?(0, T Wolﬁiv(Q)) as test functlon. We have

—/Ot<g‘t,,u>—/Ot/Q(V~VV)'udxdT—I//Ot/QVV:Vud.TdT
= /0 t (f,u) dr. (3:22)

It remains the last step, to test the equation for u by the function v. Let us
show first that 22 ¢ <L2(O,T; W2 (@) N LH0, T (LS(Q))3)) :

Ou T T
/ < >d7' = —V/ Vu:thdxdT—/ /(u-Vu)-cpdxdT
o \Ot’ 0o Ja 0o Ja
T
_/ <f,90> dr
0

The first and the third term are estimated in a standard way, for the convective
term we have (see above)

\/ /Q V) sodwdfl</ |VU||2||<P||S||UH%dT
S(/ |Vullzd7)+(/ ||<P>3dr)

The case s = oo is left as an exercise to the kind reader.
Thus we may test the equation for u by the function v:

/ de// u-Vu)- vdedr
—u/ /Vu Vvda:dr——/o (f,v) dr. (3.23)

N3)°
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If we proceed as in the proof of Lemma 2.2.4, we can show (by means of a
suitable approximation; see also remark before the proof of the lemma)

[ Gy Gray)ar= [ 5 [wvasar
- [y - [ @v)©d (3.24)

Q

Note that u € C([0,T]; (L§ 4;,(2))w) and v € C([0,T]; L§ 4, (2)), hence the
value at zero is well-defined. If we sum (3.20)—(3.23) and use (3.24), we get

1 t t
f||u—v||§(t)+1// / \V(u—v)\2dxd7§/ /(V-Vv)-udde
2 0o Jo 0o Jo

t
+/ /(u.Vu)~vdasz
0 Jo

and we proceed further as in the formal part of the proof. ]

3.5 Global-in-time conditional regularity
(N =3)

We aim to prove the following

Theorem 3.5.1. Let O C R3, Q € C?, let u be a weak solution to the Navier—
Stokes equations with the initial condition uy € L§ 4;,(Q) and the right-hand
side f € L*(0,T; (L*(Q))3). Let additionally uw € L*(0,T; (L*(Q))3), 2 + 2 <1,
5> 3 or [|ull e o, 7,(13())2) e sufficiently small.

Then the weak solution w € L*(e, T} ngvz(Q))S) N L> (e, T; (WH2(Q))3),
9u c [2(e,T; (L2(Q))%) Ve > 0. If up € WO”inV(Q), then we may take € = 0.

We prove the theorem in two steps. Consider the problem

aa—‘t/ +u-Vv—vAv+Vr = f (3.25)
divv = 0,
v(0,2) = uo(x),
vlga = 0

(in the weak sense). We first prove

Lemma 3.5.1. Let u, ug, f and Q fulfil the assumptions of Theorem 3.5.1. Let
we L2(0,T: Wy 5, () N L=(0,T; L2 41, (Q)).

Then there exists a solution to (8.25) in the weak sense. Furthermore, v €
L2 (2,5 (W22(Q))%) 0 L% (=, T; (WH2(Q))%), 92 € L2(e, T (LA(Q))°). If uo €
Wolﬁiv(Q), then we may take € = 0.

Next we show

Lemma 3.5.2. Let u be a weak solution to the Navier—Stokes equations corre-
sponding to the data ug, f and let v be a weak solution to (3.25) corresponding
to the same data. Let the assumptions of Theorem 8.5.1 be fulfilled.

Then u=v a.a. in (0,T) x Q.
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Indeed, Lemma 3.5.1 and Lemma 3.5.2 imply the proof of Theorem 3.5.1.
Recall only (see [8], [9], [29]) that for @ = R?, Q@ = R3 or Q € C? it is enough
to assume u € L>(0,T;(L3(22))3). We will prove our theorem for s > 3, the
case s = 3 with additional smallness assumptions follows the same lines and is
left as an exercise for the kind reader. Note also that having proved Theorem
3.5.1, we could proceed as in the two-dimensional case and get the full regularity.
In particular, if the right-hand side and the domain €2 are C'°°, then also the
solution is C'*°, however, in general not up to the time instant 0.

Proof (of Lemma 3.5.1). The existence of a solution is shown by means of
the Galerkin method. We take the basis formed by eigenvectors of the Stokes
problem and we construct the weak solution as in the proof of the existence of
a solution to the Navier-Stokes equations. We show ([, (u . Vvk) -vFdz = 0!)
that

HkaLOO 0,15(L2(2))3) TV vakHL2(0,T;(L2(Q))3><3)
< C (Il 20,7522 (92)))» 1ol -

Moreover, as shown several times before, we can prove that

%

Next, exactly as in the proof of the regularity in two space dimensions, we use
k
as test functions % and —PAvV* (i.e., we multiply the j-th equation by /\jc?(t)

and gt 5 (t)), respectively. We get (see the 2D case)

C (1€l 20,7522 (02))2)- luolls) -

L2(0,T5(Wy 5y () )

||Vvk”2+1/||PAka2 /(u~VV) PAvVF dacf/PAv -fdz
2 dt Q

5uaﬂv kHQ—&-H H / V) —d +/f —dx

The term with f does not cause any troubles, we have to estimate the convective
term.

s—3
/Q (u . Vvk) ~adz < |ay [Jull, vak| 5"
<ella?+e || PAVF| + C(e) )27 | Vvh|5,

(1+3+1 1= q= 25)
2 2s 1=573)

Thus

w2 v pavi+ |2 < a2,

Now, as in the two-dimensional case, we deduce from the Gronwall inequality
(we use a suitable cut-off function in time) the estimates for Vv*, PAv* and
aa—": on (¢,T). The limit passage in the equations is simple as we have stronger
estimates than for the Navier—Stokes equations and our system is only linear. If

ug € Wol,’(iv (), then we may take ¢ = 0. |
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Proof (of Lemma 3.5.2). We take € > 0 fixed. Then

t t t
/ /8—V~<p1da?d7+u/ /Vv:Vgoldsch—i—/ /(u-Vv)-(pldxdT
e JQ ot e JQ e JQ

t
:/ /prl dedr Ve € Wi, (). (3.26)
e JQ

The assumptions on u ensure that u € (L*((0,T) x 2))3, hence u fulfils the
energy equality. Thus

1 1 t t
31001 = la@E+v [Ivalar= [ [ fudean @20

Further,

tq t 05 t

/6 a(/@uwmdx)dT—/s /Qu~ﬁdmd7+y/€ /QVu.chgdxdT
t t

+/ /(u-Vu)~<p2dxdT:/ /f~<p2dxd7 (3.28)
e JQ e JQ

Vo € L2 (e, T; Wy, (Q) 0 (W?2(Q))*); % € L?(e,T; (L*(Q))).
Choosing
p1 = v—u,

w2 = Vv,

and summing up (3.26) + (3.27) + (3.28), we have for w:=u—v
1 2 ! 2 1 2
SwE ey [ vwParar = L w2
e JQ
(as
t
/ / [(u-Vv)-(v—u)—(u-Vu)- v]dedr
e JQ

— /:/Q[u.vvu.vu].(vu)dxdT/:/Q(u.Vw)~wdxdTO

and the term is well defined.). Now we pass with ¢ — 07. As u satisfies the
energy (in)equality, lim+ ||u(5)||§ = ||u0||§. Note that due to the construction
e—0

we also have (v fulfils the energy inequality) lim+ Hv(5)||§ = ||u0\|§ . Thus, using
e—0
also the weak continuity, lim |ju(t) — w2 = lim ||v(¢) — ugll]2 = 0 which
t—0t t—0+

implies lim ||(u— v)(5)||3 =0, ie.,w=0a.e. in (0,7) x Q. |
e—=0t

3.6 Local-in-time regularity, regularity for small
data and concluding remarks (N = 3)
Let f € L%(0,T; (L*(Q))3), uo € W(Jl”fiv(Q). Let us show that 37 > 0 such that

the solution to the Navier—Stokes equations belongs to L*°(0,T™; WolﬁiV(Q)) N
L2(0,T*; (W?2(Q))?) and 92 € L2(0,T*; (L*(€2))?) (similarly for Vp).
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Theorem 3.6.1. Let Q C R?, Q € C?, yy € Wol,giv(Q)v f = 0 (for simplic-
ity). Then 3T* = T*(v,||uol|, 5 ,$2) such that on (0,T™) there exists e:r:actly one

"regular” solution to the Navier—Stokes equations, especially T* > ||V |4, C=
C(Q). Moreover, 3G = G(§), &€ > 0 such that for ||u0||2 < G (|Vuoll, ) T* can

be arbitrary large number. For Q bounded G = ”Vu I C=C(Q).

Remark. The second result of this theorem can be interpreted in two ways.
The conclusion holds true, if either the initial condition in L?(Q) is sufficiently
small or the viscosity v is sufficiently large.

Proof. a) ”short time”
We proceed as in the construction by means of the Galerkin method in
the last theorem. We have

3 dt ||V kH2 +1// |PAuk| dx = /Q (uk . Vuk) PAu* dz.
Let us estimate the convective term:

O] < [, [ 9, [Pau], < E@) [[vu|] [|Pav|]

c@)
< Lot S0 ra .
If we set y = HVukH;, we have
% -3,3 iii i 2 _ y(%
dtSC’( Wy éy27 2Kt+yg:>y =T oK

K

The solution exists, provided

1-2KT*y3 >0=T* <

2Kys  2C(Q) |Vuolly

Testing by % and using the estimate on Au* we get the required esti-
mates on the time derivative.

b) ”long time”
We now estimate the convective term differently

1 1
WT|<WfMHWﬁMHHMﬂbSCWﬁMHV“MHPAu

T 2
5 IVt + (v = c@ )3 [ 7u ) [P awt]; <o

If v — C(Q) [u(®)[|2 [Vu(@)]|2 > 0, then
[Vu )], < [[Vuoll, -

But as
[0 @)1, < uolly,

from the assumption

v =C(Q)[[uoll3 [[Vuoll3 >0
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the inequality

v— Q) [[ut (1)) 2 [[Vat @2 >0 >0

follows.

Thus we get the estimate for Vu* in L°°(0,T; (L?(2))?>*3) and for u*
in L2(0,T; (W?22(Q2))3). The estimate for the time derivative can be shown
easily as mentioned above.

|

Remark. If Q € C>, up € (C*(Q))? and f € C>([0,00) x Q)3, then u €
C*> ((0,T) x Q) (and it is enough ug € Wol)’jiv(Q) for local regularity in time).
However, we cannot expect that u € C* ([0,T) x Q) . Why?

ulpax(0,7) = 0, thus necessarily on 09

0
% +up - VLIO —VALIO + Vp(O» IE) = f(()? l’)
—~ =0

Simultaneously it must hold in
Ap(0,z) = —divdiv (ug ® ug) + div £(0, z),
and at 02
9p(0, )
On

and there is no reason to hold on 99Q: —vAug + Vp(0, z) = £(0,x)! The elliptic
problem would be overdetermined.

=Aug-n+f0,z) -n

Remark. Inequality of the type

1 2 ¢ 2 1 2
S I3+ v [ [7ulf ar < 5 Jue)l}

for a.a. o > 0, including o = 0, and for all t € (¢, T] is called the strong energy
inequality (before we had ¢ = 0). For example, for bounded domains such a
solution exists and we could basically get it by our construction, but we would
have to be more careful in the limit passage in the energy inequality. In such a
case it holds

Theorem 3.6.2. Let Q2 € C*, let u be a weak solution to the Navier—Stokes
equations corresponding to f= 0 and let u fulfil the strong energy inequality.
Then there exists T — a union of disjoint time intervals such that

(@) 1(0,00)\T[1=0 (32((0,00)\T)=0),

(b)  we(C®(T =),

(c) T € (0,00) : (T, 00) C T,

(d) If wg € Wy 3, (Q), then 3Ty > 0:(0,Ty) C 7.
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Appendix: Solvability of
problem divu = f

4.1 Integral operators

Before we start with the proof of Lemma 2.3.2, we recall several basic results
concerning integral operators.

Definition 4.1.1. Let Q) be a bounded domain and let

@(I’ \f:zl) Qx Q. z
K(z,z —y) = o=y (z,y) €Ax oz F#y,
0, otherwise,

where © € L®(Q x 0By). Let 0 < A < N. Then

T:f s /Q K(z,2 - 4)f(y) dy

is called a weakly singular integral operator.
It holds (see [37] or [12])
Theorem 4.1.1. Let 1 < g < oo, Q C RN be a bounded domain. Then T':
L1(Q) — LIY(Q) and
NoA
ITfllqg < C(N, A @)~ [1O][ L (2xaB) 1 f]l4-

Definition 4.1.2. Let
O(z, %)

’ I2]

where © € L (RN x 0By). Let
/ O(z,2z)dS, =0 vz € RV,
|z|=1
Then

[Tfl(x) = lim K(z,x —y)f(y)dy

e=0F Jjz—y|>e

60
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is called a singular integral operator of Calderdn—Zygmund type, K is a singular
kernel of Calderon—Zygmund type.

It holds (see [37])

Theorem 4.1.2. Let 1 < g < oo and let T be a singular integral operator of
Calderén—Zygmund type. Then T: LY(RN) — L1(RYN) and

T fllg < Clg, NIl Lo @y xaB,) 1 fla-

4.2 Bogovskii operator in bounded domains
4.2.1 Homogeneous boundary condition
We consider problem

divv=f in Q,
v=10 at 090,

where (2 is a bounded domain. We assume f € LI(Q) for a certain ¢ > 1 and §2
sufficiently regular; hence

/divvdxz/ v-ndS =0,
Q oQ
/fd:z::O
Q

is the necessary condition for the existence of a solution to our problem.
Denote

ie.,

Ir(Q) = {f e LP(Q);/ fdz = o}.
Q
The main result is

Theorem 4.2.1. Let Q C RY be a bounded domain with Lipschitz boundary.
Then there exists a linear operator Bo = (B, BE, ..., BY) such that:

(1)

B : LP(Q) — (WP ()Y, 1<p<oo

(ii) For f € Lr(f2)
div(Ba(f))=f ae inQ

(ii) 3C = C(p, N,Q): Vf € LP(Q?) we have

IVBa(Hlly < Cllfllp, 1<p<oo

(i) If f =divg, g€ ES(Q), then

[Ba(Hll, < Clp, N, Q)lgllp, 1 <p<oo
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(v) If f € WP (Q) N Lr(Q), m > 0, then
IVBa()llmp < Cos Ny fllmp, 1 <p<oo

(vi) If f € C§°(Q) (and, indeed, [, fdz=0), then Bo(f) € (C5(2))N.

Remark. Note that Lemma 2.3.2 is a direct consequence of the theorem above.
Note also that from the proof it follows that the operator Bg is linear and
independent of p.

Instead of Theorem 4.2.1 we prove another result, where the assumption
about the Lipschitz boundary is replaced by the assumption that 2 is star-
shaped with respect to a ball Br. More precisely,

Lemma 4.2.1. Let Q C RN be star-shaped with respect to a ball Br(xg), where
Br(zo) C Q. Then there exists a linear operator

Bo: O (Q) = {f € C(9); /Q fdz =0} = (C52(@)Y

such that

divBq(f) = f, feCe(Q)
IVBa(f)llq < Clg, N, fllg, 1<q<oo.

Moreover, if f =divg, g€ (C°(Q))N, then
[Ba(f)lly < Cla, N, Q)l[gllg, 1<q<oo.

The constant C has the form

diam Q)N<1 L+ diam Q)’

C = Cola, V) =

where diam ) = sup, , cq [v — y|.

Remark. Theorem 4.2.1 can be shown using Lemma 4.2.1 as follows. Due to
Lemma, 2.3.1 we decompose € C%! into several subdomains which are star-
shaped with respect to balls, lying inside these subdomains. We decompose
function f € C§°(€2) with zero mean into a sum of functions f; € C§°(£);) with
zero mean over {2; and in each ;, we construct Bg,. Then

r+m

Bo(f) = Z B, (fi)

and due to Lemma 2.3.1 the estimates from Lemma 4.2.1 remain valid in the
Lipschitz domain. Finally we use the density of compactly supported smooth
functions in L(Q2) or in E} (1), respectively. Analogously, using the density of
these functions in WJ™?(Q) and after a minor change of the proof of Lemma
4.2.1 we show also the estimate for higher order derivatives, i.e.,

Lemma 4.2.2. Let f € W™(Q) N L4(Q2), where Q C RY is star-shaped with
respect to a ball Br(xg) such that Br(xzo) C Q Then the operator Bg from
Lemma 4.2.1 also satisfies

IVBallm.g < C(q, N, D fllm,q: m€ENp, 1 <g<o0.
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Proof. The proof is a homework for the kind reader; it is just a modification
of the proof of Lemma 4.2.1 below. |

Proof (of Lemma 4.2.1). The operator div is invariant on translations. Thus it
is enough to consider domain €2, star-shaped with respect to a ball Br(0) (with
the center at the origin). The candidate for the solution is

r—-Y > T—Y\ N-1
vx:BQfx:/fyi/ wrly+s—=)s ds| dy,
@ =32 = [ S0 [ en(rapmi)e )

(4.1)
where
1 T
wn(z) = o ( )

and w is the standard mollifier, i.e., w € C5°(RY), suppw C B;(0) and

/ wdzx =1.

RN
Then suppwr C Br(0), [,wrdz =1 and
1 1
lwrllcomny < R7N||W||CO(RN)» [Vwr|lcomny < WHVWHCO(RNy

We rewrite (4.1) into several equivalent forms. Using the change of variable
r= Tiw we have

vo) = [t -0 [ el tra-p) e @2

and the change of variables s = |z — y| + r leads to

v(x):/gf(y)(z_y)(/ooowR<x+r Ty )(|a:—y|+r)N*1dr> dy. (4.3)

lz —y|NV 2 —y|

As f € C§° (), we can replace the integration over {2 by the integration over
RY. The change of variables z = x — y in (4.2) gives

v(z) = . (x — Z)z(/loO wr(z — 2+ zr)rV 1 dr) dz. (4.4)

In the proof we can use any of the above given equivalent forms. Taking
arbitrary derivative with respect to x in (4.4) it follows that we have Bq(f) €
(C>=(Q))N. Let us show that supp Bo(f) C A, where

A={z€Q;2=Xz1 + (1 — N)z2,21 € supp f, 22 € Br(0),\ € [0,1]}.

(Recall that Q is star-shaped with respect to all points 2o and thus the line
(%1, 22) is contained in Q.) Let x € Q\ A. Then y +r(z —y) ¢ Br(0) for r > 1,
y € supp f, as for w = y+r(z—y) we have z = y(1—1)+wi. Thus Bo(f)(z) =0
for z € O\ A. As A is a compact set, we have shown that Bq(f) € (C§°(Q))V.
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We now compute derivatives.

ovj(z) of(x —=z) /OO B N_1
o Jox  Gm zj( 1 wr(x —z+zr)r dr) dz

i 8UJR N—1
+ - flx z)zj</1 o2, (x—z4rz)r dr) dz

:/B " {afgm:'z)zj(/loowlg(x—z—i—zr)rjv_ldr)

+f(x — z)zj(/loo aac;f(as—errz)rN*l dr)}dz

+/E(O)f($—z){5ij(/looOJR($—Z+Z’I")7"N1d7">
—|—zj(/100 %(m—z—l—m)r]vdr)}dz

—|—/ f(x—z)zjﬁ(/ wR(w—z—i—zr)rN*ldr) ds,
dBc(0) KRV

= (1)) + (I12)i5(x) + (12)i ().

Evidently
lim (IEI)” =0.

e—0+
In the second integral, we use change of variables y = x — z and then similar
procedure as from (4.1) to (4.3):

N (I2)ij(x) =
/BE(x) [f(y)im i”yw (/0 wR<x + rﬁ)ﬂx —yl+r)N ! d’r)] dy+

/Ba(z) {f(y)ikfi ;‘Jz\l,jﬂ </0°° %WR(JJ + rﬁ)(\x —y|+r)V dr)} dy.

We rewrite the term (|z — y| + )" and analogous term in the first integral by
means of binomial theorem. We write separately the term without |z — y|. As

0<r<(R+diamQQ) < 2diam Q, |z —y| < diam €,
it is possible to estimate
A7 WR
o 0%

(a: pr——Y )erk\x —y|*"1dr < C max |Vwg|(diam Q)
|z — y| rE€BR
o0
/ wR(x + ru)rN_l_k\x —y[F7dr < € max |wg|(diam Q)Y L.
0 lz =yl ©E€EBR
Altogether,

D= [ Kuler-pi@ws [ Guniow

O, (z. 2
where K;;(z, z) = % with

®ij<$7é> = 0;j /OOOwR(x—i-rél)rN_ldr—l—a/ooo (,f&wR(a:—&—T;)rNdr
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and
C(N) (diamQ)N-1 diam 2
. < .
|G”(I‘,y)‘ — \x—y|N—1 RN (1+ R )a (4 5)
z,y € L.
We can rewrite the third integral

(12)ij(x)

= /BBE(O)(f(x —z)— f(x))zjg(/loowR(x—z—i—rz)rN_l dr) ds,

Jrf(x)/ z]ﬁ(/ wR(zfz+rz)rN71dr> ds..
dB.(0) 12|\ sy

First, let us look at the second term. We change the variables z = ew

oo
2(I13);; = f(x)gN/ ijl(/ wr(r — Ew—i—rew)rN_ldr) dSy,
8B1(0) 1

e(r=1) =1 = ) [ Rt |ttt (241)

:f(a:)/ T;T;ng(x+w)dw+o(1) for e — 0.
RN

M dt) S,

As the first term contains additional term tending to zero (|f(xz—z)— f(z)| <
Clz| = 0 for € = 07), we have

lim (I3);;(x) = f(z)H;j(x),

e—0t
where
Ny
Hy(z) = i duw.
() /RN wp? wr(z + w) dw
Altogether
vj(z) .
By L Kij(z,x—y)f(y)dy+ | Gij(@,y) f(y) dy+ f(2)Hi;(2),
x; =0T JBe(a) RN
z € Q. As
i[wR<z+r i )(|zfy\+r)N} = zkiykin(erru)x
dr |z =yl |z —y| 08 |z =yl
><(|m—y|—|—r)N+NwR<x+r Ty >(|x—y|+r)N*1,
|z —y|
we get

(I2)ii()
/BE(x)xf_(yy)Vv</O @[MR(I_FTM_Z')(M—ZJ‘+T)N:|dr)dy

— —wr(e) / fw)dy = —wr() [ f)dy =0
B () Q
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Further

Hi(z) =/ wr(z +w)dw =1,
RN

and thus
divv(z) = f(x), x € .

It remains to show the estimates. Due to (4.5) G;; is a weakly singular kernel
and due to Theorem 4.1.1 (|Q|~ < diam Q)

H/RN Gis () ) dy| < H/QGij(~7y)f(y)dy q

dia;Q)N(l . dia21§2>”f”q.

< C(q,N)(
Next
/ @ij(:c,z) dSZ
|z|=1

= / ((51-7-/ wR(x—l—zr)rN_l dr+zj/ in(x—l—rz)rNdr) ds,
lz1=1 ~ “Jo o 0§

0
:/ [5iij(z+y)+yj6 wR(ery)} dy = 0.
RN Yi
Similarly as in the estimates of the weakly singular integrals

sup [©(a, é)‘ < C(N)||w||CI(RN)(diamQ)N<1 . diamQ>

z,z€RN R R ’
hence
tiw || [ Kt = s
e—0t (1) q
diam O\ NV diam Q2
< CaNw)(T=) (1 S5 1

The last term

w; W 5
sup | Hyj(z)] = sup / 5+ w) duw < / wr(y)dy =1,
e zeQ JRN |’LU| RN

and thus the estimate

diam Q\ N diam 2
) (1 +

IVBa(£)lly < cola. N) (= = )£l

is proved.
It remains to show the estimate for f = divg, g € (C§°(Q2))Y. We plug in
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the form of f to (4.4). We have

/ div, g(x — 2)z; (/ wr(z —z+rz)rV 1 dr) dz
B (0) 1

v;(x)
o
+/ divmg(x—z)zj(/ wr(z —z+rz)rM 1 dr) dz
B=(0) 1
= / div, g(xfz)zj(/ wr(z — 2z +rz)rV 1 dr) dz
B:(0) 1
oo
—l—/ gz —2) [6ij/ wr(z —z+rz)rNtdr
B=(0) 1

<9
+2z; x—z+r2)(r—1rV " tdr| dz
i [ g )~ 1) ar]

N—1
—|—/63€(0) (gZ z]| | / wr(x —z+rz)r dr) ds.,
= (J2)ij (@) + (J2)ij(x) + (J2)ij(x), &> 0.

Similarly as above we conclude

vj(r) = lim Kij(z,z—y)gi(y) dy+/RN Gij(x,y)gi(y) dy + Hij(x)gi(z),

=0t Jpe(x)

x € (), where K; is the same as above, éij is a weakly singular kernel satisfying
the same estimate as G;;. Hence we get the same estimate as in the previous
case. |

Remark. In our case, i.e., for a bounded domain, we can show for p < N
estimate
IVl o <Clfl,  1<p<N,

hence (for p > N using Friedrichs inequality)
vl < Cllfllp,  1<p<oo.

However, the constant C' depends on () through the constant from Friedrichs
N
inequality or from the embedding L¥-7 () < LP(Q2).

4.2.2 Inhomogeneous boundary condition
We solve the problem

divu=f inQ,
u=a on 9Jf (4.6)

with the compatibility condition

/fdx:/ma-nds.

Theorem 4.2.2. Let () € C%! be a bounded domain. Thus there exists a linear
operator Bo = (BQ, CB%, . BN) such that for f € LP(2), a € (Wl_f’p(aﬂ))
satisfying the compatzbzlzty condition

/fda::/ a-ndS
Q a0



68 CHAPTER 4. APPENDIX

1t holds _ _
divBa(f,a)=f a.e. inQ, T(Ba(f,a)) = a,

where T is the trace operator. Moreover, there exists a constant C, dependent
only on the dimension N, exponent p and domain ) such that

I1Ba(f, a)llip < C(Np, Q) (If I + lalli -1 p00), 1<p<oo.

Proof. We denote by A the extension of a to (W?(2))" due to the inverse
trace theorem, i.e., TA = a, [[All1p0 < C(p, N,Q)||all;_1 , g0- We set
P,

v =Bq(f,a) = Bo(f — divA) + A,

i.e., we look for the solution in the form v =w + A, where divw = f — div A,
w = 0 at 0. Evidently

divv = f, Tv=TA=a
and it holds

Ve < Cp. N Q) (Al p.0 + (I = div Allp.0)
<Cl, N (Ifllp + a1  s0)-

Recall that for the inhomogeneous boundary condition the Lipschitz bound-
ary is important in order to define the trace of a function. For the homogeneous
boundary condition certain regularity is also needed. The following construction
is due to Luc Tartar and shows that for domains with cusps the solution may
not exist, even for p = 2.

Consider Q C R? with the boundary formed by two parabolas y = x2 and
y = —x2,0 <z < 1, and by the arc of the circle y?> + (r —1)2=1,1 <z < 2.
Let u = (u1,us) be a solution to

diva = f,

where f € L2(Q). We show that in general, |[Vu| may not be in L?(). Assume
the contrary and we aim to get a contradiction. We set

- a? (91,61 8UQ - a? 8u1
g(x) = /_ac2 (57 + 873/) dy = /_m2 87(%?/) dy,

as uy € Wy'>(Q). Further we define for a.a. € (0,1)

2

Aw = [ ey

—x2

Then, since u; € Wy(2),

2

d

aA(x) = /_: agxul(gc,y) dy + 22(uy (z, 2?) + uy (z, —2?))

ZL’2 a
= /ﬂﬂ %m(ﬂc,y) dy.
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Thus g(z) = A'(z). But A(0) = 0, hence

A(z) = / g(s)ds. (4.7
0
Further, as u; (z, —2?) = 0 for a.a. x € (0, 1),
v 0
wea)= [ Srwendr

Using Fubini’s theorem

A(z) = [ . / . 8—u1 x,T dT) dy = /122 (/952 %ul(xﬂ') dy) dr

= [12 (2?2 — 1) aTul(x T)dr,

thus )
22 o w2\
@) < gt ([ (Grw) )
Therefore A
(w) e L2(0, 1),
as

/;(A fdr< S // aa—xy)dydx

and u; € W1’2(Q).
Take f () = 2%, z € (0,1), extended into 2 in such a way that it holds
Jo f(z,y) dmdy—O AstLZ( ), we must have

1 x?
/ / 2% dy dx < oo,
0 —z2

1
/ 2272 dz < oo,
0

and thus 2a + 2 > —1. Hence our f belongs to L?(Q) if and only if a > —3.
On the other hand,

ie.,

2 2

9(@) =~ / divu(z,y)dy= [ f(z,y)dy =222

—xz2 2

for z € (0,1). Hence, due to (4.7),

@ 2
Alz) = 2y2t2 dy = zot3
() A Yy V=03

if a > —3 which is fulfilled due to assumptions on f. The condition Az(f) €
L?(0,1) gives

x> € L*(0,1)
which is fulfilled for o > —% and this is a stronger restriction than the condition
following from f € L?*(2) (i.e., & > —3). It means that the condition f €
L2(Q) is not sufficient to guarantee the existence of u € (Wy'?(€2))?2 solving our
problem.
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4.3 Unbounded domains

Denote for 1 < p < oo

DP(Q) = [ue cgey 7.

Note that for Q2 bounded we get the space WO1 (Q), hence a nontrivial situation
appears for 2 unbounded. Further, for 1 < p < N and 992 € C%! (if non-empty)
we have (see, e.g., [12])
Lpioy) — 1 . P(O)) - ~Z () _
Dy? () ={u € L;,,.(2); Vu € (LP(Q))";u € L7 (Q); T u|aq = 0}.
If p > N, then

Dy*() = {u € L}, (Q); Vu € (L7(2))"V; T ulon = 0}.

loc

For Q =RY,p> N it is

Dy?(RY) = {u = {i+ C}eer; @ € L}, .(RY); Vi € (LP(RV)V}.

loc

4.3.1 Whole space

In this case the solution to divu = f is extremely simple. We can look for the
solution in the form u = Vv, i.e.,

Ay = f in RV,

hence
Bry(f) =VExf,

where € is the fundamental solution to the Laplace equation.
We have (the proof is easy and is left as exercise)

Theorem 4.3.1. The operator Bgy: LP(RY) — (DSP(RV)N, 1 < p < .
For f € LP(RY) it holds

divBgn (f) = f a.e. in RN

and
IVBr~y (F)llp < Clo, N)|[fllp, 1<p<oo.

p >
If f € C2(RY), then Bgw (f) € (C=(RM))N and

[Brew () () < (w

for all z € BR(0), R > 0.

4.3.2 Exterior domains

Theorem 4.3.2. Let Q) be an exterior domain with Lipschitz boundary. Then
there exists a linear operator Bg = (B, BE, ..., BYN) such that

(i) Ba: LP(Q) — (DyP(Q)N, 1 <p < oo
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(i) divBa(f) = f a.e. in Q, f € LP(Q)

(iii) [[VBa(f)llp < C, DI fllp, 1 <p < oo

(iv) If | € C§°(Q), then Bo(f) € (C=(Q)N and [Bo(f)|(x) < SEE for
x € BE(0), R > Ry such that Q¢ C Bg,(0).

Proof. Without loss of generality assume f € C§°(Q), i.e., we use the density
property. We extend f by zero in such a way that f € C*(RY). We set

V=u+w,
where
VExf, 1<p< N

_ 1 1,p N
U= vesf—— | Vexfds, N<p<oo (D R,
‘QRO| QRO

i.e., divu = f in RY. Thus divw = 0 in © and we have to choose w to eliminate
the nonzero value of u at 0€2. Hence

divw =0 in QROZQHBRC)(O),
=—-u at 09,
w=0 at 8BRU(0)

As

/ u-ndS’+/ OdS:—/ u-ndS:—/ diva dz =0,
Q 8B, Qe c

the compatibility condition is fulfilled and w exists due to Theorem 4.2.2. We
extend w by zero outside Bpg,(0). We have fulfilled (ii), (iv) and it remains to
show the estimates. Evidently,

IVal,my < Clfly.
Further, due to the Poincaré inequality,
VWl ey < IVWlpap, < C(p, N, Qry)|[Trulli_1 50
< Cllullipog, < ClVullpag, < Clflp-

4.3.3 Domains with noncompact boundaries
Consider the domain
Q={zecRY;2" > F(zy,...,axy_1) = F(2')},

where F' is globally Lipschitz function. Without loss of generality assume F'(0) =
0. As an example we may take

Q={recRY; 2" > (|2/| +1)* -1}, a<1.
Hence domain €2 contains inside a cone. Denote for M > 0
Cf ={z e RN;zy > M|2'|}.

Due to assumptions above domain ) contains such a cone for a certain M. It
holds (the following theorem is taken from [36])
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Theorem 4.3.3 (Solonnikov). Let Q be a domain of the type above. Then there
exists operator Bo = (BY,, B3, ..., BY) such that

(i) Ba: LP(Q) — (DyP(Q)N, 1 <p < o0
(i) divBa(f) = f a.e. inQ, f € LP(Q)
(iit) |VBa()ll, < Cp, N)|[fllp, 1 <p < oo
(i) If f € C(Q), then Bo(f) € (C=(Q)N and [Bo(f)|(x) < SBED for
zeQf R>0.
Proof. Set C, =C, , ={yecRY;y—xeCy,y = _C(T,ﬂ}' Then C, C RV \ Q.

z, 90

Let f € C§°(Q). Extend f by zero outside Q and set

V(@) = Ba((e) = [ hew(E=0) oy

L 2 —yV Nz —yl
()

= —w|— | f(x — 2)dz,
/c e\

where w € C}(0B1(0) N C'ar)ﬁ)7 faBl(o) wdS =1.
The rest of the proof is analogous as above and thus it is left as exercise for
interested reader. |

4.3.4 Applications

We want to prove the density of smooth functions with compact support in
W()l,,giv(Q); for © exterior domain the proof is more complicated than for €2

bounded domain. We give the proof for = R, when all complications coming
from unboundedness of the domain appear, we only save the problems near the
boundary which we have solved in the case of bounded domain before.

Let u € W&ﬁ’iv(RN). Take R > 1 and set ug = ung, where ng is a cut-off

function such that
1 z¢ BR(O),

nr(r) = { 0 z¢ BQR(O),

0<nr <1, Vg < %. Evidently, limp_,oc ug = u in (WLP(RN))N. The func-
tion up has already compact support, but it has generally non-zero divergence.

Hence we set
diVVR = div upr in BQR(O) \BR(O),

VR\BBR(O) = VR\aBza(o) =0.

Such a solution evidently exists and fulfils
IVVRlp,Bar0)\Br(0) < Cll divurlp 5,q(0)\Br(0)
where C' is independent of R. Thus
IVV&lp,Bar(00\Br(0) < Cllu- VN&lp,5sr00\Br(0) < %||qu,Bm(o)\BR(o)-
The Poincaré inequality implies

IVRlp.Bar(0)\Br(0) < CRIVVERlp Bar0)\Br©0) < Cllullp,Bsr(0)\Br(0)-
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Set wr = ug — vg. Thus wg has compact support (Bag(0)), fulfils
divwg =divug —divvg =0

in RY and it holds

11,0,B20(0\Br(0) + IVE1,p,B2r(00\Br(0)
1,p,B2r(0)\Br(0) — 0

[wr —ully , gy < [lu(l —ngr)
< Cu]

for R — +o00. Now it is enough to take mollification
WRn = W1 * WR.

For a suitable sequence R,, — +0o we have wg, », € (C5°(RM))N, divwg, , =
0 (the mollification commutes with the divergence), and

lim wg, ,=1u
n—oo

in (WP (RV)V.
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