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1. Introduction

The aim of this course is to present further properties of solutions to the Navier–
Stokes equations. It is a continuation of the course devoted to mathematical theory
of the Navier–Stokes equations. Therefore all important definitions and results
can be found in the Lecture Notes [5]. Therein, we consider mostly the weak and
the Leray–Hopf solutions (i.e., weak solutions which additionally fulfil the energy
inequality). Here, we shall mostly consider so called suitable weak solutions. This
notion is well-suited for the study of partial regularity and local results. The second
part of the Lecture Notes is devoted to further results which are connected with
the regularity of solutions. More precisely, in Chapter 2 we shall introduce the
suitable weak solution, show its existence and its basic properties connected the
partial regularity of the solutions. This part is mostly based on papers [1], [3] and
[4]. The following chapter is based on paper [6]. We shall show that if the pressure
connected to the to the given weak solution of the Cauchy problem is bounded from
below, then the solution is as regular as the data of the problem allow. The last
part, based on paper [2], gives the same result under the assumption that the weak
solution belongs additionally to the space L∞(0, T ; (L3(R3))3).

First, we shall recall what we know about the Navier–Stokes equations. Let
Ω ⊂ RN . We look for functions

u : (0, T )× Ω → RN ,

p : (0, T )× Ω → R
such that

(1.1)

∂u

∂t
+ u · ∇u−∆u+∇p = f

divu = 0

}
in (0, T )× Ω,

u(0, x) = u0(x) in Ω,

u(t, x) = 0 on (0, T )× ∂Ω.

As the existence of classical solutions (at least in the spatial dimension N ≥ 3)
seems to be not obvious, we studied the weak solution:

u ∈ L∞(0, T ; (L2(Ω))N ) ∩ L2(0, T ;W 1,2
0,div(Ω))

such that
∂u

∂t
∈ Lq(0, T ; (W 1,2

0,div(Ω))
∗), q ≥ 1

and 〈∂u
∂t
,φ

〉
+

∫
Ω

(u · ∇u) ·φ dx+

∫
Ω

∇u : ∇φ dx = ⟨f ,φ⟩

∀φ ∈W 1,2
0,div(Ω)

and a.e. t ∈ (0, T ). Moreover,

lim
t→0+

∫
Ω

u ·φ dx =

∫
Ω

u0 ·φ dx ∀φ ∈ (L2(Ω))N .

Let us recall that

• u ∈ C([0, T ); (L2(Ω))Nw ) ⇒ the initial condition is fulfilled in this sense
• the weak formulation does not contain the pressure ⇒ it is important to
know if we can reconstruct the pressure.

Concerning the weak solution, we proved the following:

Theorem 1.1. Let Ω ⊂ RN be a bounded domain, N = 2, 3, further let the right-
hand side f ∈ L2((0, T ), (W−1,2(Ω))N ) and the initial condition u0 ∈ L2

0,div(Ω).
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Then there exists at least one weak solution to (1.1); additionally, this solution
fulfils the energy inequality:

(1.2)
1

2

∫
Ω

|u(t, ·)|2 dx+

∫ t

0

∫
Ω

|∇u|2 dx dτ ≤ 1

2

∫
Ω

|u0(t, ·)|2 dx+

∫ t

0

⟨f ,u⟩dτ

for a.e. t ∈ (0, T ) (while by changing the function on a subset of the time interval
of measure zero it is possible to obtain the inequality ∀t ∈ (0, T )).

Moreover, if N = 2, then the solution is unique in the class of all weak solutions1.
Further, for N = 2, if Ω ∈ C2, u0 ∈ W 1,2

0,div(Ω) and f ∈ L2(0, T ; (L2(Ω))2), then

u ∈ C([0, T ]; (W 1,2(Ω))2) ∩ L2(0, T ; (W 2,2(Ω))2), ∂u
∂t ∈ L2(0, T ; (L2(Ω))2).

We did not get a similar result for N = 3. We only have

• We can construct a solution which fulfils the energy inequality.
• The uniqueness is not known, we can get it only in the class of the Leray–
Hopf solutions and moreover, the unique solutiuon must be more regular,
i.e.,

u ∈ Lt(0, T ; (Ls(Ω))3)
2

t
+

3

s
≤ 1

(we proved the case s > 3).
• Higher regularity of the solution is not evident. We only have for Ω ∈ C2,
f ∈ L2(0, T ; (L2(Ω)))3, u0 ∈W 1,2

0,div(Ω), and, additionally

u ∈ Lt(0, T ; (Ls(Ω))3)
2

t
+

3

s
≤ 1,

that

u ∈ C([0, T );W 1,2
0,div(Ω)) ∩ L

2(0, T ; (W 2,2(Ω))3)

(and again, we proved only the case s > 3; the case s = 3 will be shown in
Chapter 4).

The question of the existence of the pressure is highly non-trivial. We discussed
several methods, the most suitable for us was based on the higher regularity of the
Stokes problem with integrable right-hand side, i.e., we consider the problem

∂v

∂t
−∆v +∇p = g

divv = 0

}
in (0, T )× Ω,

v(0, x) = u0(x) in Ω,

v(t, x) = 0 on (0, T )× ∂Ω.

(1.3)

Then, if Ω ∈ C2, g ∈ Lt(0, T ; (Ls(Ω))N ), u0 is sufficiently smooth (e.g., it is enough
u0 ∈ (W 1,∞(Ω))N ), then ∥∂v

∂t ,∇
2v,∇p∥Lt(0,T ;Ls(Ω)) ≤ C(∥g∥Lt(0,T ;(Ls(Ω))N ),u0).

Thus, if we set g = f − u · ∇u, then due to the uniqueness of the solution of the
Stokes problem the same also holds for u, solution to (1.1). In particular, for f and
u0 sufficiently smooth

∥∇p∥Lt(0,T ;(Ls(Ω))N ) ≤ C(f ,u0, ∥u · ∇u∥Lt(0,T ;(Ls(Ω))N )),

i.e., ∇p ∈ Lt(0, T ; (Ls(Ω))N ), where 2
t +

N
s ≤ N + 1, 1 < s < N

N−1 a N = 2, 3.

Furthermore, taking the pressure such that (additive constant is not fixed, at least
in the case of a bounded domain)∫

Ω

p(t, ·) dx = 0 for a.e. t ∈ (0, T ),

1This solution fulfils the energy equality and u ∈ C([0, T ); (L2(Ω))2).
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then we have for N = 3

p ∈ Lt(0, T ; (Ls(Ω))N )

with 2
t +

3
s ≤ 3, 3

2 < s < 3; in particular for s = t = 5
3

p ∈ L
5
3 ((0, T )× Ω).

2. Suitable weak solution

2.1. Basic notions. Before we define the suitable weak solution, we perform a
formal calculation. We take Φ ∈ C∞

0 ((0, T )×Ω), formally multiply equation (1.1)1
by 2Φu and integrate over (0, t)× Ω, t ≤ T . Then

2

∫ t

0

∫
Ω

∂u

∂t
· uΦdxdτ =

∫ t

0

∫
Ω

∂

∂t
|u|2Φdx dτ

= −
∫ t

0

∫
Ω

|u|2 ∂Φ
∂t

dxdτ +

∫
Ω

|u|2(t, ·)Φ(t, ·) dx,

2

∫ t

0

∫
Ω

(u · ∇u) · uΦdxdτ =

∫ t

0

∫
Ω

u · ∇|u|2Φdx dτ

= −
∫ t

0

∫
Ω

|u|2u · ∇Φdx dτ,

−2

∫ t

0

∫
Ω

(∆u · u)Φdxdτ = 2

∫ t

0

∫
Ω

|∇u|2Φdxdτ

+2

∫ t

0

∫
Ω

(∇u · u) · ∇Φdxdτ

= 2

∫ t

0

∫
Ω

|∇u|2Φdxdτ −
∫ t

0

∫
Ω

|u|2∆Φdx dτ,

2

∫ t

0

∫
Ω

∇p · uΦdxdτ = −2

∫ t

0

∫
Ω

pu · ∇Φdxdτ.

Altogether we have ∀Φ ∈ C∞
0 ((0, T )× Ω) and ∀t ∈ (0, T ):∫

Ω

|u|2(t, ·)Φ(t, ·) dx+ 2

∫ t

0

∫
Ω

|∇u|2Φdxdτ =

∫ t

0

∫
Ω

|u|2
(∂Φ
∂t

+∆Φ
)
dxdτ

+

∫ t

0

∫
Ω

(|u|2 + 2p)u · ∇Φdx dτ +

∫ t

0

∫
Ω

2f · uΦdxdτ.

Similarly as for the weak solution, we should not expect equality, rather inequal-
ity. This brings us to the following definition

Definition 2.1. Let f ∈ L2(0, T ; (L
6
5 (Ω))3) + L1(0, T ; (L2(Ω))3), Ω ⊂ R3 is a

bounded domain. Then the pair (u, p) is called a suitable weak solution to the
Navier–Stokes equations, if

• (u, p) fulfils (1.1) in the sense of distributions, i.e., it holds

−
∫ T

0

∫
Ω

u · ∂φ
∂t

dx dτ −
∫ T

0

∫
Ω

(u⊗ u) : ∇φ dx dτ −
∫ T

0

∫
Ω

u ·∆φdx dτ

−
∫ T

0

∫
Ω

p divφdxdτ =

∫ T

0

∫
Ω

f ·φ dxdτ ∀φ ∈ (C∞
0 ((0, T )× Ω))3

and ∫
Ω

u · ∇ψ dx = 0 pro s.v. t ∈ (0, T ) a ∀ψ ∈ C∞
0 (Ω)

• u ∈ L2(0, T ;W 1,2
0,div(Ω)) ∩ L∞(0, T ; (L2(Ω))3), p ∈ L

3
2 ((0, T )× Ω)



SUITABLE WEAK SOLUTIONS TO THE NAVIER–STOKES EQUATIONS 5

• ∀Φ ∈ C∞
0 ((0, T )× Ω), Φ ≥ 0 the generalized energy inequality holds:

∫
Ω

|u|2(t, ·)Φ(t, ·) dx+ 2

∫ t

0

∫
Ω

|∇u|2Φdxdτ ≤
∫ t

0

∫
Ω

|u|2
(∂Φ
∂t

+∆Φ
)
dxdτ

+

∫ t

0

∫
Ω

(|u|2 + 2p)u · ∇Φdxdτ + 2

∫ t

0

∫
Ω

f · uΦdxdτ

(2.1)

for a.e. t ∈ (0, T ).

Remark 2.2. The definition of the suitable weak solution does not contain the ini-
tial condition. Based on the regularity of the velocity field we know that u ∈
C([0, T ); (L2(Ω))3w); we can assume that the initial condition is satisfied in this
sense. To characterize precisely the space with the least regularity for u0 to get
existence of a suitable weak solution we would have to introduce certain interpo-
lation spaces which we do not want to do. Therefore we shall assume that u0 is a
sufficiently smooth function.

We aim at showing the following two results:

1) Under certain assumptions on u0, f and Ω there exists a suitable weak
solution to problem (1.1).

2) The set of possible singularities of a suitable weak solution is small.

The conditions under which we shall prove these results will be specified later.

Remark 2.3. We considered up to now only bounded domains. With a little effort
all results can be generalized e.g. to R3, to exterior domains or domains with non-
compact boundaries. We will not deal here with such problems as well as we skip
possible generalizations to spatial dimensions N ≥ 4.

2.2. Existence of suitable weak solution. We aim at proving the following
theorem.

Theorem 2.4. Let the bounded domain Ω ∈ C2, let u0 be sufficiently smooth and
let f ∈ L2(0, T ; (L

6
5 (Ω))3). Then there exists at least one suitable weak solution to

the Navier–Stokes equations.

Remark 2.5. The assumptions on f can be modified, e.g. f ∈ L
5
3 (0, T ; (L

15
14 (Ω))3)∩

L1(0, T ; (L2(Ω))3).

Let us consider instead of (1.1) the problem

∂uδ

∂t
+ (uδ)δ · ∇uδ −∆uδ +∇pδ = f

divuδ = 0

 in (0, T )× Ω,

uδ(0, x) = u0(x) in Ω,

uδ(t, x) = 0 on (0, T )× ∂Ω,

(2.2)

where

(uδ)δ(t, x) = (ωδ ∗ ũ)(t, x) =
1

δ3

∫
R3

ω
(x− y

δ

)
ũ(t, y) dy

for

ũ(t, y) = uδ(t, y) for y ∈ Ω, ũ(t, y) = 0 for y /∈ Ω,
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ω(·) is the standard mollification kernel, 0 < t < T . As uδ = 0 on ∂Ω in the sense
of traces, ũ(t, ·) ∈ (W 1,2(R3))3. Therefore also

div(uδ)δ(t, x) = div
1

δ3

∫
R3

ω
(x− y

δ

)
ũ(t, y) dx

=
1

δ3

∫
R3

∂

∂xi
ω
(x− y

δ

)
ũi(t, y) dx = − 1

δ3

∫
R3

∂

∂yi
ω
(x− y

δ

)
ũi(t, y) dx

=
1

δ3

∫
R3

ω
(x− y

δ

)∂ũi(t, y)
∂yi

dx = 0.

This ensures that the important property which enables us to obtain a priori esti-
mates is kept. Moreover, for

u ∈ L∞(0, T ; (L2(Ω))3) ∩ L2(0, T ; (W 1,2(Ω))3)

the function

(uδ)δ ∈ L∞(0, T ; (L∞(Ω))3) ∩ L2(0, T ; (W 1,∞(Ω))3),

and it is even smooth in spatial variables. Thus we have

Lemma 2.6. Let δ > 0 and let the assumptions of Theorem 2.4 be fulfilled. Then
there exists at least one weak solution to problem (2.2) (in a similar sense as the
weak solution for the Navier–Stokes equations).

Proof. We will not perform the proof in detail as we basically only copy the existence
proof for the Navier–Stokes equations. We therefore only give a few hints.

Step 1 : Galerkin approximation — it is the same as for the Navier–Stokes
equations, just the nonlinear term is slightly modified, i.e. the nonlinearity
is quadratic, but it has a different form. However, this does not change
anything in the proof of local existence of a solution on (0, T ∗).

Step 2 : • We use as a test function

un(t, x) =

n∑
j=1

cnj (t)w
j(x),

where {wi}∞i=1 is a suitable basis of W 1,2
0,div(Ω). We get

1

2

d

dt
∥un∥22 + ∥∇un∥22 =

∫
Ω

f · un dx ≤ C∥f∥ 6
5
∥∇un∥2,

the rest is the same as for the Navier–Stokes equations. In particular,
the solution is global in time (on (0, T ]).

• Similarly as for the Navier–Stokes equations we can estimate the time
derivative. If we use additionally the higher integrability of the con-
vective term, we get∥∥∥∂un

∂t

∥∥∥
L2(0,T ;(W 1,2

0,div(Ω))∗)
≤ C(δ),∥∥∥∂un

∂t

∥∥∥
L

4
3 (0,T ;(W 1,2

0,div(Ω))∗)
≤ C.

Recall that we have the following δ-independent estimates

∥uδ∥q ≤ ∥u∥q, 1 ≤ q ≤ ∞;

they follow by the Hörmander–Young inequality for convolutions

∥u ∗ ωδ∥q ≤ ∥ωδ∥1∥u∥q = ∥ω∥1∥u∥q,



SUITABLE WEAK SOLUTIONS TO THE NAVIER–STOKES EQUATIONS 7

generally then

∥u ∗ ωδ∥r ≤ ∥ωδ∥p∥u∥q,
1

p
+

1

q
=

1

r
+ 1.

Therefore, concerning the δ-independent estimates, they are exactly the
same as for the Navier–Stokes equations.

Step 3 : Limit passage — similarly as for the Navier–Stokes equations we
employ the Aubin–Lions lemma and the fact that a priori estimates and
strong convergence in the space L2((0, T )×Ω) imply the strong convergence
in L2(0, T ;Lq(Ω)) for 1 ≤ q < 6 and Lp(0, T ;L2(Ω)) for 1 ≤ p < ∞. (The
details are left as a useful exercise for the kind reader.)

�

To summarize, the lemma above provides the estimates

∥uδ∥L∞(0,T ;(L2(Ω))3) + ∥∇uδ∥L2(0,T ;(L2(Ω))3×3) +
∥∥∥∂uδ

∂t

∥∥∥
L

4
3 (0,T ;(W 1,2

0,div(Ω))∗)
≤ C,

where the constant C is independent of δ.
Next step is the passage δ → 0+. We have the following result.

Lemma 2.7. There exists a sequence δn → 0+ such that

uδn ⇀∗ u in L∞(0, T ; (L2(Ω))3),

uδn ⇀ u in L2(0, T ; (W 1,2(Ω))3),

uδn → u in (L2((0, T )× Ω))3,

where u is a weak solution to the Navier–Stokes equations.

Proof. We proceed as above. The only term which is not trivial is the convective
one. We have to be slightly more careful, due to the presence of a nonlocal term.
We know that ∇uδn ⇀ ∇u in (L2((0, T ) × Ω))3×3. Therefore it remains to show
that

(uδn)δn → u in (L2((0, T )× Ω))3,

or

uδn ∗ ωδn → u in (L2((0, T )× Ω))3.

Recall that we know uδn → u in (L2((0, T )× Ω))3, hence

∥(uδn)δn − u∥(L2((0,T )×Ω))3

≤ ∥(uδn)δn − uδn∥(L2((0,T )×Ω))3 + ∥uδn − u∥(L2((0,T )×Ω))3 ,

and it remains to show that the first term goes to 0. Thus

∥(uδn)δn − uδn∥2(L2((0,T )×Ω))3

=

∫ T

0

∫
Ω

( 1

δ3n

∫
Ω

ω
(x− y

δn

)(
uδn(t, y)− uδn(t, x)

)
dy

)2

dxdt

=

∫ T

0

∫
Ω

(∫
B1(0)

ω(z)
(
uδn(t, x− zδn)− uδn(t, x)

)
dz

)2

dx dt ≡ I1.

As uδn → u in (L2((0, T ) × Ω))3, the functions {uδn} are uniformly 2-mean con-
tinuous, i.e.

I1 ≤
∫
B1(0)

ω2(z) dz

∫
B1(0)

∫ T

0

∫
Ω

(
uδn(t, x− zδn)− uδn(t, x)

)2
dx dtdz → 0

for δn → 0+. �
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It remains to check the existence of the pressure and to verify the generalized
energy inequality. If we put the convective term to the right-hand side, we get both
for the limit Navier–Stokes equations as well as for (2.2) the following estimates for
the pressure:

∥∇p∥Lt(0,T ;(Ls(Ω))3)

≤ C
(
∥f∥Lt(0,T ;(Ls(Ω))3) + ∥u · ∇u∥Lt(0,T ;(Ls(Ω))3)

)
+ C1(u0),

∥∇pδn∥Lt(0,T ;(Ls(Ω))3)

≤ C
(
∥f∥Lt(0,T ;(Ls(Ω))3) + ∥(uδn)δn · ∇uδn∥Lt(0,T ;(Ls(Ω))3)

)
+ C1(u0).

Choosing t = 5
3 and s = 15

14 it yields

∥(uδn)δn · ∇uδn∥
L

5
3 (0,T ;(L

15
14 (Ω))3)

≤ ∥(uδn)δn∥L10(0,T ;(L
30
13 (Ω))3)

∥∇uδn∥L2(0,T ;(L2(Ω))3×3)

≤ C∥(uδn)δn∥
1
5

L2(0,T ;(L6(Ω))3)∥(u
δn)δn∥

4
5

L∞(0,T ;(L2(Ω))3)∥∇uδn∥L2(0,T ;(L2(Ω))3×3)

≤ const..

Therefore

∥∇p∥
L

5
3 (0,T ;(L

15
14 (Ω))3)

≤ C,

∥∇pδn∥
L

5
3 (0,T ;(L

15
14 (Ω))3)

≤ C.

If we normalize the pressure∫
Ω

pδn dx =

∫
Ω

p dx = 0 ∀t ∈ (0, T ),

we have

∥p∥
L

5
3 ((0,T )×Ω)

≤ C1

∥pδn∥
L

5
3 ((0,T )×Ω)

≤ C1,

where C1 is independent of δn. Therefore the pressure exists both for (2.2) and

the limit problem (1.1). The sequence of pressures is bounded in L
5
3 ((0, T ) × Ω)

and thus also in L
3
2 ((0, T ) × Ω). Hence the pair (u, p) is a distributional solution

to (1.1) and belongs to the required spaces. It remains to verify the validity of the
generalized energy inequality.

Lemma 2.8. The solution (u, p) fulfils the generalized energy inequality (2.1).

Proof. As (uδn)δnand its spatial gradient are bounded functions for fixed δn, it is
not difficult to see that uδn can be used as test function in the weak formulation for
(2.2) with δ = δn. More precisely, we use rather 2uδnΦ, where Φ is a non-negative
smooth compactly supported function in (0, T ) × Ω. Repeating the computations
from Section 2.1, we get∫

Ω

|uδn |2(t, ·)Φ(t, ·) dx+ 2

∫ t

0

∫
Ω

|∇uδn |2Φdx dτ

=

∫ t

0

∫
Ω

|uδn |2
(∂Φ
∂t

+∆Φ
)
dx dτ +

∫ t

0

∫
Ω

|uδn |2(uδn)δn · ∇Φdxdτ

+ 2

∫ t

0

∫
Ω

pδnuδn · ∇Φdx dτ + 2

∫ t

0

∫
Ω

f · uδnΦdx dτ .
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We multiply this inequality by ψ(t) ≥ 0, ψ(t) ∈ C∞
0 (0, T ), and integrate over the

time interval (0, T ):∫ T

0

∫
Ω

|uδn |2(t, ·)Φ(t, ·) dxψ(t) dt+ 2

∫ T

0

∫ t

0

∫
Ω

|∇uδn |2Φdxdτψ(t) dt

=

∫ T

0

[ ∫ t

0

∫
Ω

|uδn |2
(∂Φ
∂t

+∆Φ
)
dxdτ +

∫ t

0

∫
Ω

|uδn |2(uδn)δn · ∇Φdxdτ

+2

∫ t

0

∫
Ω

pδnuδn · ∇Φdxdτ + 2

∫ t

0

∫
Ω

f · uδnΦdxdτ
]
ψ(t) dt.

Next we let δn → 0+. We use in the first term the fact that un → u v (L2((0, T )×
Ω))3, in the second one the Fatou lemma. In the third term we use the strong con-
vergence (see Lemma 2.7), in the fourth one the strong convergence in L3((0, T )×Ω);
it follows from the estimate

∥u∥
(L

10
3 ((0,T )×Ω))3

≤ ∥u∥
2
5

L∞(0,T ;(L2(Ω))3)∥u∥
3
5

L2(0,T ;(L6(Ω))3)

and the interpolation of L3 between L2 and L
10
3 . The computation for (uδn)δn is

similar as above, i.e. ∥(uδn)δn − uδn∥(L3((0,T )×Ω))3 → 0. In the fifth term we use

the weak convergence of pδn in L
5
3 ((0, T ) × Ω) and the strong convergence of uδn

in (L
5
2 ((0, T )× Ω))3, the last term is obvious. Therefore we have∫ T

0

∫
Ω

|u|2Φdxψ(t) dt+ 2

∫ T

0

∫ t

0

∫
Ω

|∇u|2Φdxdτψ(t) dt

≤
∫ T

0

∫ t

0

∫
Ω

|u|2
(∂Φ
∂t

+∆Φ
)
dxdτψ(t) dt+

∫ T

0

∫ t

0

∫
Ω

|u|2u · ∇Φdxdτψ(t) dt

+ 2

∫ T

0

∫ t

0

∫
Ω

pu · ∇Φdxdτψ(t) dt+ 2

∫ T

0

∫ t

0

∫
Ω

f · uΦdxdτψ(t) dt.

As the inequality holds ∀ψ ∈ C∞
0 (0, T ), ψ ≥ 0, we get the desired generalized

energy inequality (2.1) a.e. in (0, T ). �

Lemma 2.8 completes the proof of Theorem 2.4.

2.3. Partial regularity of the suitable weak solution. The aim of this section
is to characterize the size of possible sets of singular points. Before we start with it,
we have to precise several notions as a singular and a regular point and to explain
the difference between the k-dimensional parabolic and Hausdorff measure.

In what follows, for the reason of simplicity, we assume f = 0. The case f ≠ 0 is
studied in [3] (and it requires to deal with Morrey–Campanato spaces).

Definition 2.9. Let z = (t, x) ∈ (0, T )×Ω. We say that z is a regular point of the
suitable weak solution to the Navier–Stokes equations in (0, T )×Ω, if there ∃Uδ(z)
such that u ∈ C0,α(Uδ(z)) for a certain 0 < α ≤ 1. The point z is a singular point
of the suitable weak solution to the Navier–Stokes equations in (0, T ) × Ω, if it is
not a regular point.

Remark 2.10. The Hölder continuity of the velocity in fact implies a certain smooth-
ness of the pressure, but we shall not discuss it here. Just note that in general it
is not known whether u is in the neighbourhood of the regular point continuously
differentiable in time and thus the full regularity is not known to hold.

Let us introduce (z0 = (t0, x0) ∈ (0, T )× Ω):

Q(z0, r) =
{
z = (t, x) ∈ (0, T )× Ω; t ∈ (t0 − r2, t0), x ∈ Br(x0)

}
,

Q∗(z0, r) =
{
z = (t, x) ∈ (0, T )× Ω; t ∈

(
t0 − 7

8r
2, t0 +

1
8r

2
)
, x ∈ Br(x0)

}
.
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Definition 2.11. Let X ⊂ R× RN , k ∈ R+. Then Pk(X), defined as

Pk(X) = lim
δ→0

Pk
δ (X) = sup

δ>0
Pk
δ (X),

where

Pk
δ (X) = inf

{ ∞∑
i=1

rki ; X ⊂
∞⋃
i=1

Q(zi, ri), ri < δ
}
,

is called the k-dimensional parabolic measure of X (i.e., we cover X by countably
many parabolic cylinders) and Hk(X), defined as

Hk(X) = lim
δ→0

Hk
δ (X) = sup

δ>0
Hk

δ (X),

where

Hk
δ (X) = inf

{ ∞∑
i=1

rki ; X ⊂
∞⋃
i=1

Bri(zi), ri < δ
}
,

is called the k-dimensional Hausdorff measure of X (i.e., we cover X by countably
many balls in RN+1).

Remark 2.12. It holds Hk(X) ≤ cPk(X), since for r < 1 we have the situation as
in Figure 1, i.e., the set covered by a parabolic cylinder can be covered by m balls

Figure 1. Covering of the parabolic cylinder by balls

with the same diameter, m is finite and independent of δ and k, but it depends on
N . Thus

m
∑
i

rki = m
∑
i

rki =
∑
j

rkj

(in other words, m× covering by cylinders = m× covering by balls = covering by
balls) and thus

m inf
{∑

i r
k
i ; X covered by cylinders Q(zi, ri), ri < δ

}
≥ inf

{∑
j r

k
j ; X covered by balls with diameters rj , rj < δ

}
⇒ mPk

δ (X) ≥ Hk
δ (X), ∀0 < δ < 1.

We aim at proving the following

Theorem 2.13. Let (u, p) be a suitable weak solution to the Navier–Stokes equa-
tions in (0, T )×Ω, bounded. Let D ⊂ D ⊂ (0, T )×Ω, SD = S ∩D, where S is the
set of all singular points, i.e. of all points from (0, T ) × Ω, which are not regular.
Then P1(SD) = 0, i.e., the one dimensional parabolic measure of the set of singular
points lying inside a compact subset of (0, T )× Ω is zero.

To prove Theorem 2.13 we shall need

Theorem 2.14. There exists ε∗ > 0 such that if

(2.3) lim sup
r→0+

1

r

∫
Q∗(z0,r)

|∇u|2 dxdt < ε∗,

then z0 is a regular point.
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We shall prove Theorem 2.14 in the next section. We need the following covering
lemma

Lemma 2.15. Let J be a class of parabolic cylinders Q∗(z, r), which are contained
in a bounded subset of R × R3. Then there exists an at most countable subclass
J ′ = {Q∗

i (zi, ri)}∞i=1 such that

(2.4) Q∗
i ∩Q∗

j = ∅, i ̸= j,

(2.5) ∀Q∗ ∈ J ∃Q∗
i (zi, ri) ∈ J ′ : Q∗ ⊂ Q∗

i (zi, 5ri).

Proof. We set J0 = J and proceed by induction. Let {Q∗
k}nk=1 be chosen and we

set Jn = {Q∗ ∈ J , Q∗ ∩ Q∗
k = ∅, 1 ≤ k ≤ n} (i.e., for n = 0 we do nothing). If

Jn ̸= ∅, we choose Q∗
n+1(zn+1, rn+1) ∈ Jn such that ∀Q∗(z, r) ∈ Jn : r ≤ 3

2rn+1.
If Jn = ∅, we finish the process and J ′ =

⋃n
i=1Q

∗
i . If the process is infinite, then

necessarily rn → 0 (otherwise we get contradiction with the boundedness of the
set). It follows from the construction that J ′ are disjoint. It remains to show the

second property. We take arbitrary Q̃∗ = Q̃∗(z, r) ∈ J \ J ′. Then there exists

n ∈ N0 such that Q̃∗ ∈ Ji for i = 0, ..., n and Q̃∗ /∈ Jn+1 (otherwise contradiction

with rn → 0). Thus Q̃∗∩Q∗
n+1 ̸= ∅ and rn+1 ≥ 2

3r. We extend the cylinder x-times
and then

x · rn+1 ≥
(
1 + 2 · 3

2

)
rn+1 = 4rn+1 =⇒ x ≥ 4,

1

8
(xrn+1)

2 ≥
(1
8
+

9

4

)
r2n+1 =

19

8
r2n+1 =⇒ x2 ≥ 19.

Therefore it is enough to take x = 5 and Q̃∗ ⊂ Q∗
n+1(zn+1, 5rn+1). �

Proof. (Theorem 2.13) Let (u, p) be a suitable weak solution and let S be its singular
set, SD its intersection with a bounded set D lying inside the time-space cylinder.
Then due to Theorem 2.14

z = (t, x) ∈ SD ⇒ lim sup
r→0+

1

r

∫
Q∗(z,r)

|∇u|2 dx dt ≥ ε∗.

Let V be a neighbourhood of SD in R×R3 and let δ > 0 be sufficiently small. We
choose for any (t, x) ∈ SD a cylinder Q∗(z, r) with r < δ such that

1

r

∫
Q∗(z,r)

|∇u|2 dxdt ≥ ε∗

2
and Q∗(z, r) ⊂ V.

Lemma 2.15 provides existence of a disjoint class {Q∗
i (zi, ri)}∞i=1 such that SD ⊂⋃

iQ
∗
i (zi, 5ri) and

∞∑
i=1

ri ≤
2

ε∗

∑
i

∫
Q∗

i (zi,ri)

|∇u|2 dx dt ≤ 2

ε∗

∫
V

|∇u|2 dx dt ≤ K

ε∗
.

We have (L4 denotes the four-dimensional Lebesgue measure)

L4(SD) ≤ C

∞∑
i=1

(5ri)
5 ≤ Cδ4

∞∑
i=1

ri ≤ C
δ4

ε∗
,

where δ > 0 can be taken arbitrarily small. Thus L4(SD) = 0. Furthermore,
P1(SD) ≤

∑∞
i=1 5ri ≤

5
ϵ∗

∫
V
|∇u|2 dx dt for any neighbourhood V of the set SD. As

the four-dimensional Lebesgue measure of SD is zero and∇u ∈ (L2((0, T )× Ω))3×3,
the measure of the set V can be arbitrarily small and due to the absolute continuity
of the Lebesgue integral P1(SD) = 0. �
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Corollary 2.16. The set of singular times (i.e., time instants τ in (0, T ) such that
there exists a point (τ, x) ∈ S) has 1

2 -dimensional Hausdorff measure zero.

Proof. If X ⊂ R × R3, ΣX is the projection of X on R and P1(X) = 0, then

H 1
2 (ΣX) = 0. Namely, if X is covered by countably many cylinders with diameter

ri ≤ δ such that
∑

i ri = o(1) for δ → 0+, then the projection on the time axis
is covered by countably many intervals of the length ρi = r2i ≤ δ2 = ∆. Then∑

i ρ
1
2
i =

∑
i ri = o(1) for δ → 0+, hence also for ∆ → 0+. �

Corollary 2.17. If the solution fulfils ∇u ∈ L4(0, T ; (L2(Ω))3×3) (i.e., we also
have u ∈ L4(0, T ; (L6(Ω))3)), then S is empty.

Proof. Let z = (t, x). We compute∫
Q∗(z,r)

|∇u|2 dy dt =
∫ t+ 1

8 r
2

t− 7
8 r

2

(∫
|x−y|<r

|∇u|2 dy
)
dτ

≤ Cr
(∫ t+ 1

8 r
2

t− 7
8 r

2

(∫
|x−y|<r

|∇u|2 dy
)2

dτ
) 1

2

,

thus

lim sup
r→0+

1

r

∫
Q∗(z,r)

|∇u|2 dy dt

≤ C lim sup
r→0+

(∫ t+ 1
8 r

2

t− 7
8 r

2

(∫
|x−y|<r

|∇u|2 dy
)2

dτ
) 1

2

= 0

due to the absolute continuity of the Lebesgue integral (the integral is finite and
the set is getting smaller). �
Remark 2.18. Note that u ∈ L4(0, T ; (L6(Ω))3) corresponds exactly to the Prodi–
Serrin conditions, as 2

4 + 3
6 = 1. More generally, if ∇u ∈ Lp(0, T ; (Lq(Ω))3×3),

2
p + 3

q = 2, then it can be shown that for arbitrary ∞ ≥ q > 3
2 , thus 1 ≤ p < ∞,

the solution is regular and unique in the class of all Leray–Hopf weak solutions;
the proof is similar to the case of Prodi–Serrin conditions for the velocity itself.
Note also that the case ∇u ∈ L∞(0, T ; (L

3
2 (R3))3×3) implies the regularity as u ∈

L∞(0, T ; (L3(R3))3). Moreover, if we assume that ∇u ∈ Lp(0, T ; (Lq(Ω))3×3) for
both p, q ≥ 2 (hence q ∈ [2, 3]), then we get as above∫

Q∗(z,r)

|∇u|2 dy dt =
∫ t+ 1

8 r
2

t− 7
8 r

2

(∫
|x−y|<r

|∇u|2 dy
)
dτ

≤ Cr2
p−2
p +3 q−2

q

(∫ t+ 1
8 r

2

t− 7
8 r

2

(∫
|x−y|<r

|∇u|q dy
) p

q

dτ
) 2

p

,

thus if 2p−2
p + 3 q−2

q , i.e., 2
p + 3

q = 2, we get that the singular set must be empty.

However, in the computation we need that both p, q ≥ 2.

2.4. Proof of local regularity criterion. This section contains the proof of The-
orem 2.14, which allowed us to deal with the partial regularity in the previous sec-
tion. Without loss of generality (to simplify the notation), we take z = (0, 0) and
instead of Q∗ we take Q. The case z ̸= (0, 0) and Q∗, respectively, can be obtained
similarly. In what follows, we write Qr instead of the correct Q((0, 0), r).

We first show

Theorem 2.19. There exist constants ε0 > 0, C0 > 0 such that if it holds for (u, p)
a suitable weak solution

(2.6)

∫
Q1

(
|u|3 + |p| 32

)
dx dt ≤ ε0,



SUITABLE WEAK SOLUTIONS TO THE NAVIER–STOKES EQUATIONS 13

then ∥u∥(C0,α(Qk))3
≤ C0 for certain 0 < α ≤ 1, 0 < k ≤ 1.

To prove the theorem, we need several auxiliary results.

Lemma 2.20. Let (un, pn) be a sequence of suitable solutions to the Navier–Stokes
equations which fulfils

(2.7) ess sup
t∈(−1,0)

∫
B1(0)

|un(t, ·)|2 dx <∞,

(2.8)

∫
Q1

|∇un|2 dx dt <∞,

(2.9)

∫
Q1

|pn|
3
2 dxdt <∞.

If (u, p) is the weak (or the weak-∗) limit of (un, pn) in the spaces with the norms
given above, then (u, p) is a suitable weak solution to the Navier–Stokes equations.

Proof. The proof is similar to the proof of Theorem 1.1. We need to show the strong
convergence of u in L3(Q1) and to this aim we would like to apply the Aubin–Lions
Lemma. Therefore we need an estimate of the time derivative. We have in the
distributional sense

∂un

∂t
= ∆un − un · ∇un −∇pn

and due to our assumptions, the following sequences are bounded:

• ∆un in L2(−1, 0; (W−1,2(B1))
3)

• ∇pn in L
3
2 (−1, 0; (W−1, 32 (B1))

3)

• un · ∇un in L
5
3 (−1, 0; (L

15
14 (B1))

3),

where L
15
14 (B1) ↪→ W−1, 53 (B1) ↪→ W−1, 32 (B1) = (W 1,3

0 (B1))
∗. The weakest in-

formation comes from the pressure. Therefore we have that ∂un

∂t is bounded in

L
3
2 (−1, 0; (W−1, 32 (B1))

3). The Aubin–Lions Lemma implies W 1,2(B1)↪→↪→L2(B1)

↪→ W−1, 32 (B1), thus un → u in (L2(Q1))
3. It implies together with the bound-

edness of un in (L
10
3 (Q1))

3 that un → u in (Lq(Q1))
3 for 1 ≤ q < 10

3 , i.e., in
particular also for q = 3. The rest of the proof is obvious. �

Lemma 2.21. There exists ε0 > 0 such that if
∫
Q1

(
|u|3 + |p| 32

)
dxdt ≤ ε0 for

(u, p) a suitable weak solution to the Navier–Stokes equations, then

(2.10)
(
θ−5

∫
Qθ

|u− uθ|3

θα0
dxdt

) 1
3

+ θ
(
θ−5

∫
Qθ

|p− pθ(t)|
3
2

θα0
dxdt

) 2
3

≤ 1

2

((∫
Q1

|u|3 dx dt
) 1

3

+
(∫

Q1

|p| 32 dxdt
) 2

3
)

for a certain θ ∈ (0, 1) (it is possible to take θ ∈ (θ, θ), θ = θ
2
, 0 < θ < θ < 1) and

α0 ∈ (0, 12 ), where

(2.11) uθ = θ−5

∫
Qθ

u(τ, y) dy dτ, pθ(t) = θ−3

∫
Bθ

p(t, y) dy, −θ−2 ≤ t ≤ 0.

Proof. We prove the result by contradiction. Assume the contrary, i.e. let there
exist a sequence εi → 0+ such that εi = ∥ui∥(L3(Q1))3 +∥pi∥

L
3
2 (Q1)

, where (ui, pi) is

a sequence of suitable weak solutions. Furthermore, let (2.10) do not hold for any
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θ ∈ (0, 1) and any (ui, pi), i ∈ N. Denote Ui =
ui

ϵi
and Pi =

pi

ϵi
. These functions

fulfil
∂Ui

∂t
+ εiUi · ∇Ui −∆Ui +∇Pi = 0,

divUi = 0

in the weak sense; moreover, it is a suitable weak solution to the Navier–Stokes
equations and the generalized energy inequality is satisfied for any Φ ∈ C∞

0 ((−1, 0]×
B1), Φ ≥ 0 in the form∫

B1

Φ(t, ·)|Ui(t, ·)|2 dx+ 2

∫ t

−1

∫
B1

Φ|∇Ui|2 dxdt

≤
∫ t

−1

∫
B1

|Ui|2
(
∂Φ

∂t
+∆Φ

)
dx dt+

∫ t

−1

∫
B1

(
2Pi + εi|Ui|2

)
Ui · ∇Φdxdt.

We have ∥Ui∥(L3(Q1))3 ≤ 1, ∥Pi∥
L

3
2 (Q1)

≤ 1; whence Ui is also bounded in

the spaces L∞
loc((−1, 0]; (L2

loc(B1))
3) and in L2

loc((−1, 0]; (W 1,2
loc (B1))

3), thus also in

(L
10
3

loc((−1, 0]×B1))
3. Using the same procedure as in Lemma 2.20 we get

Ui ⇀ U in (L3(Q1))
3,

Pi ⇀ P in L
3
2 (Q1)

and

Ui → U in (Lq
loc((−1, 0]×B1))

3 for any 1 ≤ q <
10

3
,

where the pair (U, P ) satisfies in the weak sense

∂U

∂t
−∆U+∇P = 0,

divU = 0.

The weak lower semicontinuity of a norm implies ∥U∥(L3(Q1))3 ≤ 1 and ∥P∥
L

3
2 (Q1)

≤
1. We can now use properties of the Stokes problem, in particular that U is Hölder
continuous in the time variable, say with the exponent 2α0, and Lipschitz contin-
uous in the spatial variable. (The proof is technical, but nowadays standard and
well known.) Therefore we have

θ−5

∫
Qθ

|U−Uθ|3 dx dt ≤ Cθ−5

∫
Qθ

(
θ2α0 + θ

)3
dxdt ≤ 1

2

1

53
θα0

if we choose sufficiently small θ ≤ 1
2 . Moreover, we have Ui → U v (L3

loc((−1, 0]×
B1)

3, thus

(2.12) θ−5

∫
Qθ

|Ui −Ui,θ|3 dxdt ≤
1

53
θα0

for a sufficiently large i0, i ≥ i0.
Let us now consider the pressure. We have

∆Pi = −εi div div(Ui ⊗Ui) = −εi
∂Uk

i

∂xl

∂U l
i

∂xk
.

Hence we can write Pi = hi + gi, where hi is a harmonic function in B 2
3
for any

t ∈ (−1, 0) and gi satisfies

∆gi = −εi
∂Uk

i

∂xl

∂U l
i

∂xk
in B 2

3
,

gi = 0 on ∂B 2
3
.
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We set

hi,θ(t) = θ−3

∫
Bθ

hi(t, x) dx,

gi,θ(t) = θ−3

∫
Bθ

gi(t, x) dx.

Then we have∫
Qθ

|Pi − Pi,θ|
3
2 dxdt ≤ C

(∫
Qθ

|hi − hi,θ|
3
2 dxdt

+

∫
Qθ

|gi|
3
2 dx dt+

∫
Qθ

|gi,θ|
3
2 dxdt

)
.

Now∫
Qθ

|gi|
3
2 dxdt+

∫
Qθ

|gi,θ|
3
2 dxdt ≤ Cε

3
2
i

∫
Qθ

|Ui|3 dxdt

+

∫
Qθ

θ−
9
2

(∫
Bθ

|gi(t, y)|
3
2 θ

3
2 dy

)
dxdt ≤ Cε

3
2
i

∫
Qθ

|Ui|3 dxdt,

where we employed the Hölder inequality with 1 and the Fubini theorem. Further-
more ∫

Qθ

|hi − hi,θ|
3
2 dxdt ≤ Cθ3θ

3
2 ,

as hi are harmonic functions, therefore smooth in the spatial variables. Additionally,
they are bounded L

3
2 (−1, 0;L

3
2 (B 2

3
)), as gi and Pi are so. Altogether

θ
(
θ−5

∫
Qθ

|Pi − Pi,θ|
3
2 dxdt

) 2
3 ≤ Cθ

2
3 + Cεiθ

− 7
3 ≤ 1

5
θ

2
3α0

for a sufficiently small εi and a suitable θ. Summarizing,(
θ−5

∫
Qθ

|Ui − Ui,θ|3

θα0
dx dt

) 1
3

+ θ
(
θ−5

∫
Qθ

|Pi − Pi,θ|
3
2

θα0
dxdt

) 2
3 ≤ 2

5
,

which leads to a contradiction. �

We can now start with the proof of Theorem 2.19.

Proof. (Theorem 2.19) Let
∫
Q1

(
|u|3 + |p| 32

)
dx dt ≤ ε0. Then(∫

Q1

|u|3 dxdt
) 1

3

+

(∫
Q1

|p| 32 dx dt
) 2

3

≤ ε̃0

for ε̃0 small. We define

u1(t, x) = θ−
α0
3

(
u(θ2t, θx)− uθ

)
p1(t, x) = θ1−

α0
3

(
p(θ2t, θx)− pθ(θ

2t)
)
.

We recompute the differential operators:

∂u1

∂t
(t, x) =

∂u

∂τ
(θ2t, θx)θ2−

α0
3

u1 · ∇u1(t, x) = u · ∇yu(θ
2t, θx)θ1−

2α0
3 − uθ · ∇yu(θ

2t, θx)θ1−
2α0
3 or otherwise

u1 · ∇u1(t, x) = u · ∇yu(θ
2t, θx)θ1−

2α0
3 − uθ · ∇xu1(t, x)θ

−α0
3

∆u1(t, x) = ∆yu(θ
2t, θx)θ2−

α0
3

∇p1(t, x) = ∇yp(θ
2t, θx)θ2−

α0
3
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and the Navier–Stokes equations for (u, p) transform to the equation for (u1, p1)

∂u1

∂t
+ θ

(
uθ + θ

α0
3 u1

)
· ∇u1 +∇p1 −∆u1 = 0 in Q1.

We use Lemma 2.21 for the pair (u, p):(
θ−5

∫
Qθ

|u(t, x)− uθ|3

θα0
dxdt

) 1
3

+ θ
(
θ−5

∫
Qθ

|p(t, x)− pθ(t)|
3
2

θα0
dxdt

) 2
3 ≤ 1

2
ε̃0.

By virtue of the change of variables x = θy, t = θ2τ we have (τ, y) ∈ Q1 and(∫
Q1

|u1(τ, y)|3 dy dτ
) 1

3

+ θ
(∫

Q1

|p1(τ, y)|
3
2 θ−

3
2+

α0
2 −α0 dy dτ

) 2
3 ≤ 1

2
ε̃0;

as the power at θ is negative and θ < 1, we also have(∫
Q1

|u1(τ, y)|3 dy dτ
) 1

3

+
(∫

Q1

|p1(τ, y)|
3
2 dy dτ

) 2
3 ≤ 1

2
ε̃0.

We now want to use a similar lemma as Lemma 2.21 for (u1, p1) and for θ ∈ (θ, θ),

θ = θ
2
. The limit problem is here

∂U2

∂t
+ b · ∇U2 −∆U2 +∇P2 = 0,

divU2 = 0

for b = θ(u)θ a constant vector. Even though the limit problem is not the Stokes
problem, we have similar properties of the solution, in particular the Hölder conti-
nuity. Note that we also have div(uθ · ∇ui) = 0. Now

θ−5

∫
Qθ

|u1 − u1,θ|3

θα0
dxdt = θ−10

∫
Qθ2

|u− uθ2 |3

θ2α0
dxdt,

θ
(
θ−5

∫
Qθ

|p1 − p1,θ(t)|
3
2

θα0
dxdt

) 2
3

= θ2+
α0
3

(
θ−10

∫
Qθ2

|p− pθ2(t)| 32
θ2α0

dxdt
) 2

3

,

and iterating we get

(2.13) r−5

∫
Qr

|u− ur|3 dxdt ≤ Cε0r
α0 ∀r ∈ (0, θ),

which implies the Hölder continuity — see below. �

Remark 2.22. The fact that u is Hölder continuous follows from the theory of
Morrey–Campanato spaces. We shall not introduce them, we only show how the
Hölder continuity can be obtained. We have

1

r5+α0

∫
Q((t0,x0);r)

|u− u(t0,x0);r|
3 dx dt ≤ C, α0 > 0, r ∈ (0, θ), (t0, x0) ∈ Qβ ,

0 < β ≤ 1, u(t0,x0);r =
1

|Qr|

∫
Q((t0,x0),r)

udx dt.

For simplicity, we take (t0, x0) = (0, 0). For R0 = θ
2 , Ri+1 = Ri

2 we have

|uRi − uRi+1 |3 ≤ C
(
|uRi − u(t, x)|3 + |u(t, x)− uRi+1 |3

)
.

Integrating
∫
QRi+1

· dxdt yields

|uRi
− uRi+1

|3

≤ CR−5
i+1

(∫
QRi

|uRi − u(t, x)|3 dxdt+
∫
QRi+1

|u(t, x)− uRi+1 |3 dxdt
)

≤ CRα0
i .
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Thus

|uR0
− uRn+1

| ≤ C

n∑
i=1

R
α0/3
0 2−iα0/3 ≤ CR

α0/3
0 ,

Similarly

|uRn − uRn+m | ≤ CRα0/3
n .

From here we see that uRn
is a Cauchy sequence, thus there exists limn→∞ uRn

= u,
which equals to u(0, 0).2 Thus

|u(0, 0)− u(0,0);R| ≤ CR
α0
3 .

The whole construction can be performed for a.a. points of the time-space cylinder.
The estimate above is uniform with respect to (t, x) ∈ Qr. We therefore have for

R = |z1 − z2| = max{|x1 − x2|,
√
|t1 − t2|}

|u(z1)− u(z2)| ≤ |u(z1)− uz1;2R|+ |uz1;2R − uz2;2R|+ |uz2;2R − u(z2)|.

The first and the third terms can be estimated by CR
α0
3 , while the second term we

estimate by means of the Hölder inequality as follows

|uz1;2R − uz2;2R|

≤ 1

|S|

(∫
Q(z1;2R)

|uz1;2R − u(z)|dz +
∫
Q(z2,2R)

|uz2;2R − u(z)|dz
)

≤ C
1

R5
R

1
3 (5+α0)R5 2

3 = CR
α0
3 ,

where S = Q(z1, 2R) ∩Q(z2, 2R). Thus

|u(z1)− u(z2)| ≤ CR
α0
3 ≤ C|z1 − z2|

α0
3 .

The Hölder continuity is proved.

Let us introduce the following notation:

(2.14)

A(r) = sup
−r2≤t≤0

1

r

∫
Br

|u|2 dx,

B(r) =
1

r

∫
Qr

|∇u|2 dx dt,

C(r) =
1

r2

∫
Qr

|u|3 dxdt,

D(r) =
1

r2

∫
Qr

|p| 32 dxdt.

Lemma 2.23. It holds for 0 ≤ r ≤ ρ

(2.15) C(r) ≤ K
[( r
ρ

)3

A
3
2 (ρ) +

(ρ
r

)3

A
3
4 (ρ)B

3
4 (ρ)

]
.

2In fact, the limit is for a.e. (t, x) ∈ Qr equal to u(t, x). We assume without loss of generality

that (0, 0) is such a point.
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Proof. Denote fρ = 1
|Bρ|

∫
Bρ
f dx. Then∫

Br

|u|2 dx ≤
∫
Br

(
|u|2 − (|u|2)ρ

)
dx+

∫
Br

(|u|2)ρ dx

≤
∫
Bρ

∣∣|u|2 − (|u|2)ρ
∣∣ dx+

∫
Br

(|u|2)ρ dx

≤ Kρ

∫
Bρ

|∇(|u|2)|dx+

(
r

ρ

)3 ∫
Bρ

|u|2 dx

≤ Kρ

∫
Bρ

|u||∇u|dx+

(
r

ρ

)3 ∫
Bρ

|u|2 dx.

Due to the Poincaré inequality∫
Ω

|w|dx ≤ K(diam Ω)

∫
Ω

|∇w|dx,

where the constant K is independent of Ω. Thus∫
Br

|u|2 dx ≤ Kρ
(∫

Bρ

|u|2 dx
) 1

2
(∫

Bρ

|∇u|2 dx
) 1

2

+
( r
ρ

)3
∫
Bρ

|u|2 dx

≤ Kρ
3
2A

1
2 (ρ)

(∫
Bρ

|∇u|2 dx
) 1

2

+
( r
ρ

)3

ρA(ρ).

Furthermore,∫
Br

|u|3 dx ≤ K
(∫

Br

|u|2 dx
) 3

4
(∫

Br

|u|6 dx
) 3

12

≤ K
(∫

Br

|u|2 dx
) 3

4
(∫

Br

|∇u|2 dx
) 3

4

+K(r)
(∫

Br

|u|2 dx
) 3

2

,

where for the ball Br ⊂ R3 the constant K(r) can be computed by the scaling
argument:∫

B1

|w|3 dx ≤ K
(∫

B1

|w|2 dx
) 3

4
(∫

B1

|∇xw|2 dx
) 3

4

+K(1)
(∫

B1

|w|2 dx
) 3

2

,

w(x) = u(rx), y = rx, ∇x = r∇y. Thus

1

r3

∫
Br

|u|3 dy ≤ K
( 1

r3

) 3
4
(∫

Br

|u|2 dy
) 3

4
(∫

Br

|∇yu|2 dy
) 3

4
( 1

r3

) 3
4

(r2)
3
4

+K(1)
( 1

r3

) 3
2
(∫

Br

|u|2 dy
) 3

2

.

It yields K(r) = 1

r
3
2
. Therefore∫

Br

|u|3 dx ≤ K
(∫

Br

|u|2 dx
) 3

4
(∫

Br

|∇u|2 dx
) 3

4

+
K

r
3
2

(∫
Br

|u|2 dx
) 3

2

≤ K
(∫

Bρ

|u|2 dx
) 3

4
(∫

Bρ

|∇u|2 dx
) 3

4

+
K

r
3
2

(∫
Br

|u|2 dx
) 3

2

≤ Kρ
3
4A

3
4 (ρ)

(∫
Bρ

|∇u|2 dx
) 3

4

+
K

r
3
2

[(
ρ

3
2A

1
2 (ρ)

(∫
Bρ

|∇u|2 dx
) 1

2
) 3

2

+
(( r

ρ

)3

ρA(ρ)
) 3

2
]

≤ K
[
ρ

3
4A

3
4 (ρ)

(∫
Bρ

|∇u|2 dx
) 3

4

+
ρ

9
4

r
3
2

A
3
4 (ρ)

(∫
Bρ

|∇u|2 dx
) 3

4

+
r3

ρ3
A

3
2 (ρ)

]
.
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We now integrate over the time variable
∫ 0

−r2
· dt:∫

Qr

|u|3 dx dt ≤ K
[ ∫ 0

−r2

(∫
Bρ

|∇u|2 dx
) 3

4

dt
(
ρ

3
4A

3
4 (ρ) +

ρ
9
4

r
3
2

A
3
4 (ρ)

)
+
r5

ρ3
A

3
2 (ρ)

]
≤ Kr

1
2

(∫
Qρ

|∇u|2 dx dt
) 3

4
(
ρ

3
4A

3
4 (ρ) +

ρ
9
4

r
3
2

A
3
4 (ρ)

)
+K

r5

ρ3
A

3
2 (ρ).

This implies

C(r) ≤ K
r3

ρ3
A

3
2 (ρ) +KA

3
4 (ρ)B

3
4 (ρ)

[(ρ
r

) 3
2

+
(ρ
r

)3]
.

As ρ ≥ r, we have ρ
3
2

r
3
2
≤ ρ3

r3 . It gives

C(r) ≤ K
[( r
ρ

)3

A
3
2 (ρ) +

(ρ
r

)3

A
3
4 (ρ)B

3
4 (ρ)

]
.

The proof is complete. �

Lemma 2.24. It holds for 0 < r ≤ ρ

(2.16) D(r) ≤ K
[(ρ
r

)2

A
3
4 (ρ)B

3
4 (ρ) +

r

ρ
D(ρ)

]
.

Proof. We know that the pressure can be written as p = p1 + p2, where

∆p2 = 0 inBρ

∆p1 = −div div
(
u⊗ u− (u⊗ u)ρ

)
inBρ,

p1 = 0 on ∂Bρ.

Due to the Calderón–Zygmund theory∫
B1

|p1|
3
2 dx ≤ K

∫
B1

|u⊗ u− (u⊗ u)1|
3
2 dx ≤ K

(∫
B1

|∇(u⊗ u)|dx
) 3

2

.

We have using the Poincaré inequality and the scaling argument∫
Bρ

|p1|
3
2 dx ≤ K∥∇(u⊗ u)∥

3
2

L1(Bρ)
≤ K

(∫
Bϱ

|∇u||u|dx
) 3

2

≤ Kρ
3
4A

3
4 (ρ)

(∫
Bρ

|∇u|2 dx
) 3

4

.

Therefore∫
Qρ

|p1|
3
2 dxdt ≤ Kρ

3
4A

3
4 (ρ)ρ

1
2

(1
ρ

∫
Qρ

|∇u|2 dxdt
) 3

4

ρ
3
4 = Kρ2A

3
4 (ρ)B

3
4 (ρ).

Hence∫
Qρ

|p2|
3
2 dxdt ≤ K

(∫
Qρ

|p| 32 dx dt+
∫
Qρ

|p1|
3
2 dx dt

)
≤ K%2

[
D(ρ)+A

3
4 (ρ)B

3
4 (ρ)

]
.

As p2 is harmonic in Bρ, we have

1

r3

∫
Br

|p2|
3
2 dx ≤ K

ρ3

∫
Bρ

|p2|
3
2 dx,

where K is independent of ρ and r. This follows from the mean value theorem for
harmonic functions. If 1

2ρ ≤ r ≤ ρ, the claim is obvious. Therefore it is enough to

assume r < 1
2ρ. In this case, for arbitrary x ∈ Br and s < 1

2ρ we have

p2(x) =
1

4πs2

∫
∂Bs(x)

p2(y) dSy,
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hence

s2|p2(x)|
3
2 ≤ C

∫
∂Bs(x)

|p2(y)|
3
2 dSy.

Integrating this inequality over s ∈ (0, 12ρ) yields

|p(x)| 32 ≤ C

ρ3

∫
B 1

2
ρ
(x)

|p2|
3
2 dy ≤ C

ρ3

∫
Bρ

|p2|
3
2 dy.

Integrating this inequality over Br we get the claim. Thus for r ≤ ρ

1

r3

∫
Qr

|p2|
3
2 dxdt ≤ K

ρ3

∫
Qρ

|p2|
3
2 dx dt.

Finally

D(r) =
1

r2

∫
Qr

|p| 32 dxdt ≤ K

r2

(∫
Qr

|p1|
3
2 dxdt+

∫
Qr

|p2|
3
2 dxdt

)
≤ K

( 1

r2

∫
Qr

|p1|
3
2 dx dt+

r

ρ

1

ρ2

∫
Qρ

|p2|
3
2 dxdt

)
≤ K

[(ρ
r

)2

A
3
4 (ρ)B

3
4 (ρ) +

r

ρ
D(ρ) +

r

ρ
A

3
4 (ρ)B

3
4 (ρ)

]
,

≤ K
[(ρ
r

)2

A
3
4 (ρ)B

3
4 (ρ) +

r

ρ
D(ρ)

]
,

as 0 < r ≤ ρ. �

We can now start with the proof of Theorem 2.14.

Proof. (Theorem 2.14) Without loss of generality we assume z0 = (0, 0) and we
replace Q∗ by Q. We take r ≤ ρ

2 and the generalized energy inequality (2.1) with

Φ

 = 1 naQr,
= 0 na (R− × R3)\Qρ,
∈ C∞ naQρ\Qr,

where 0 ≤ Φ ≤ 1 and ∇kΦ ≤ K
ρk , k = 1, 2, ∂Φ

∂t ≤ K
ρ2 . Then we have

sup
−r2≤t≤0

1

r

∫
Br

|u|2(t, ·) dx+
1

r

∫
Qr

|∇u|2 dx dt ≤ K

r

∫
Qρ

|u|2
(∂Φ
∂t

+∆Φ
)
dx dt

+
K

r

∫
Qρ

(
|u|2 − |u|2ρ

)
u · ∇Φdxdt+

K

r

∫
Qρ

2pu · ∇Φdxdt = I1 + I2 + I3.

(2.17)

On the left-hand side we have A(r) +B(r), we estimate the terms on the right-
hand side

(2.18) |I1| ≤
K

r

1

ρ2

(∫
Qρ

|u|3 dx dt
) 2

3

ρ
5
3 ≤ K

ρ

r
C

2
3 (ρ).
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It holds for the second term (without loss of generality we assume ρ ≤ 1)

|I2| ≤
K

rρ

(∫
Qρ

|u|3 dx dt
) 1

3
(∫

Qρ

∣∣|u|2 − |u|2ρ
∣∣ 3
2 dx dt

) 2
3

≤ K

rρ
1
3

C
1
3 (ρ)

∫
Qρ

|∇|u|2|dxdt

≤ K

rρ
1
3

C
1
3 (ρ) sup

−ρ2≤t≤0

(∫
Bρ

|u|2 dx
) 1

2
(∫

Qρ

|∇u|2 dxdt
) 1

2
(∫ 0

−ρ2

1 dt
) 1

2

≤ Kρ2

rρ
1
3

C
1
3 (ρ)A

1
2 (ρ)B

1
2 (ρ) ≤ K

(ρ
r

)
A

1
2 (ρ)B

1
2 (ρ)C

1
3 (ρ).

(2.19)

We estimate the last term

|I3| ≤
K

rρ

(∫
Qρ

|u|3 dxdt
) 1

3
(∫

Qρ

|p| 32 dxdt
) 2

3 ≤ K
(ρ
r

)
C

1
3 (ρ)D

2
3 (ρ).(2.20)

Altogether we have

(2.21) A
3
2 (r) ≤ K

[(ρ
r

) 3
2

C(ρ) +
(ρ
r

) 3
2

A
3
4 (ρ)B

3
4 (ρ)C

1
2 (ρ) +

(ρ
r

) 3
2

C
1
2 (ρ)D(ρ)

]
.

Lemma 2.24 yields

(2.22) D2(r) ≤ K
[(ρ
r

)4

A
3
2 (ρ)B

3
2 (ρ) +

( r
ρ

)2

D2(ρ)
]
.

Therefore

A
3
2 (r) +D2(r) ≤ K

{(ρ
r

) 3
2

C(ρ) +
(ρ
r

) 3
2

A
3
2 (ρ)B

3
2 (ρ)

+
(ρ
r

) 3
2

D2(ρ) +
(ρ
r

)4

A
3
2 (ρ)B

3
2 (ρ) +

( r
ρ

)2

D2(ρ)
}
.

(2.23)

We now apply (2.23) with r := r/2, ρ := r and get

(2.24) A
3
2

(r
2

)
+D2

(r
2

)
≤ K

(
C(r) +A

3
2 (r)B

3
2 (r) +D2(r)

)
.

We further use Lemma 2.23, (2.21), (2.22) and we have

A
3
2

(r
2

)
+D2

(r
2

)
≤ K

{( r
ρ

)3

A
3
2 (ρ) +

(ρ
r

)3

A
3
4 (ρ)B

3
4 (ρ)

+B
3
2 (r)

[(ρ
r

) 3
2

C(ρ) +
(ρ
r

) 3
2

A
3
2 (ρ)B

3
2 (ρ) +

(ρ
r

) 3
2

D2(ρ)
]

+
(ρ
r

)4

A
3
2 (ρ)B

3
2 (ρ) +

( r
ρ

)2

D2(ρ)
}
.

(2.25)

The term C(ρ) can be again estimated by Lemma 2.23 for r = ρ. Altogether we
have

A
3
2

(r
2

)
+D2

(r
2

)
≤ K

{( r
ρ

)3

A
3
2 (ρ) +

( r
ρ

)2

D2(ρ)

+B
3
2 (r)

[(ρ
r

)α

A
3
2 (ρ) +

(ρ
r

)β

A
3
2 (ρ)B

3
2 (ρ) +

(ρ
r

)γ

D2(ρ) +
(ρ
r

)δ

B
3
2 (ρ)

]
+
(ρ
r

)ε

A
3
2 (ρ)B

3
2 (ρ)

}(2.26)

for certain α, β, γ, δ, ε > 0. We choose r = θρ, 0 < θ < 1 with θ sufficiently small
and use the assumption from Theorem 2.14 for ε∗ sufficiently small. We obtain

(2.27) A
3
2

(1
2
θρ

)
+D2

(1
2
θρ

)
≤ 1

2

[
A

3
2 (ρ) +D2(ρ)

]
+ ε̃∗1
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for a fixed θ ∈ (0, 1), ε̃∗1 ≪ 1 and arbitrary ρ > 0. We denote θ1 = θ
2 . Then,

iterating (2.27) we get

A
3
2

(
θk+1
1 ρ

)
+D2

(
θk+1
1 ρ

)
≤ 1

2k+1

[
A

3
2 (ρ) +D2(ρ)

]
+ ε∗1 ∀k ∈ N.

Lemma 2.23 yields

C(θk+1
1 ρ) ≤ K

(
A

3
2

(
θk+1
1 ρ

)
+B

3
2

(
θk+1
1 ρ

))
≤ K

2k+1

[
A

3
2 (ρ) +D2(ρ)

]
+ ε∗2.

Hence it holds for a certain θ1 ∈ (0, 1) and arbitrary ρ > 0

C
(
θk+1
1 ρ

)
+D

(
θk+1
1 ρ

)
≤ ε0,

where ε0 is the number from Theorem 2.19.
Now it is enough to recall that if (u, p) solves the Navier–Stokes equations, then

uλ(t, x) = λu(λ2t, λx),

pλ(t, x) = λ2p(λ2t, λx)

solves the same system, while

Cu(ρ) = Cuρ(1),

Dp(ρ) = Dpρ(1).

This is a direct consequence of the change of variables∫
Q1

|uρ(t, x)|3 dxdt =
ρ3

ρ5

∫
Q1

|u(ρ2t, ρx)|3ρ5 dx dt = 1

ρ2

∫
Qρ

|u(τ, y)|3 dy dτ

∫
Q1

|pρ(t, x)|
3
2 dxdt =

ρ3

ρ5

∫
Q1

|p(ρ2t, ρx)| 32 ρ5 dxdt = 1

ρ2

∫
Qρ

|p(τ, y)| 32 dy dτ.

Hence the assumptions of Theorem 2.19 are fulfilled. The proof of Theorem 2.14 is
finished. �
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