Steady compressible Navier-Stokes-Fourier system and related results: Large data results

Milan Pokorný
Charles University
E-mail: pokorny@karlin.mff.cuni.cz

results obtained in collaboration with M. Bulíček (Praha), E. Feireisl, V. Giovangigli (Paris), D. Jesslé (Toulon), A. Jüngel (Wien), O. Kreml, Y. Lu (Nanjing), P.B. Mucha (Warszawa), Š. Nečasová, A. Novotný (Toulon), T.

Piasecki (Warszawa), N. Zamponi (Praha), E. Zatorska (London)

Defence of the thesis to obtain the degree DSc., November 10, 2020

Steady compressible Navier-Stokes-Fourier system I

$\Omega \subset \mathbb{R}^{3}$, bounded, smooth (C^{2})

- Balance of mass

$$
\begin{equation*}
\operatorname{div}(\varrho \mathbf{u})=0 \tag{1}
\end{equation*}
$$

$\varrho: \Omega \mapsto \mathbb{R} \ldots$ density of the fluid
$\mathbf{u}: \Omega \mapsto \mathbb{R}^{3} \ldots$ velocity field

- Balance of momentum

$$
\operatorname{div}(\varrho u \otimes u)-\operatorname{div} S+\nabla p=\rho f
$$

$\mathbb{S} \ldots$ viscous part of the stress tensor (symmetric tensor)
$\mathrm{f}: \Omega \mapsto \mathbb{R}^{3} \ldots$ specific volume force (given)
p.... pressure (scalar quantity)

- Balance of total energy

$$
\begin{equation*}
\operatorname{div}(\varrho E u)+\operatorname{div}(q+p u)=\varrho f \cdot u+\operatorname{div}(S u) \tag{3}
\end{equation*}
$$

$E=\frac{1}{2}|\mathbf{u}|^{2}+e \ldots$ specific total energy
e ... specific internal energy (scalar quantity)
q . . heat flux (vector field)
(no energy sources assumed)

Steady compressible Navier-Stokes-Fourier system I

$\Omega \subset \mathbb{R}^{3}$, bounded, smooth (C^{2})

- Balance of mass

$$
\begin{equation*}
\operatorname{div}(\varrho \mathbf{u})=0 \tag{1}
\end{equation*}
$$

$\varrho: \Omega \mapsto \mathbb{R} \ldots$ density of the fluid
$\mathbf{u}: \Omega \mapsto \mathbb{R}^{3} \ldots$ velocity field

- Balance of momentum

$$
\begin{equation*}
\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}+\nabla p=\varrho \mathbf{f} \tag{2}
\end{equation*}
$$

$\mathbb{S} \ldots$ viscous part of the stress tensor (symmetric tensor)
$\mathrm{f}: \Omega \mapsto \mathbb{R}^{3} \ldots$ specific volume force (given)
p... pressure (scalar quantity)

- Balance of total energy

$$
\operatorname{div}(\varrho E \mathrm{u})+\operatorname{div}(\mathrm{q}+p \mathrm{u})=\varrho \mathrm{f} \cdot \mathrm{u}+\operatorname{div}(\mathrm{Su})
$$

$E=\frac{1}{2}|\mathbf{u}|^{2}+e \ldots$ specific total energy
e ...specific internal energy (scalar quantity)
q . . . heat flux (vector field)
(no energy sources assumed)

Steady compressible Navier-Stokes-Fourier system I

$\Omega \subset \mathbb{R}^{3}$, bounded, smooth (C^{2})

- Balance of mass

$$
\begin{equation*}
\operatorname{div}(\varrho \mathbf{u})=0 \tag{1}
\end{equation*}
$$

$\varrho: \Omega \mapsto \mathbb{R} \ldots$ density of the fluid
$\mathbf{u}: \Omega \mapsto \mathbb{R}^{3} \ldots$ velocity field

- Balance of momentum

$$
\begin{equation*}
\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}+\nabla p=\varrho \mathbf{f} \tag{2}
\end{equation*}
$$

$\mathbb{S} \ldots$ viscous part of the stress tensor (symmetric tensor)
$\mathrm{f}: \Omega \mapsto \mathbb{R}^{3} \ldots$ specific volume force (given)
p.... pressure (scalar quantity)

- Balance of total energy

$$
\begin{equation*}
\operatorname{div}(\varrho E \mathbf{u})+\operatorname{div}(\mathbf{q}+p \mathbf{u})=\varrho \mathbf{f} \cdot \mathbf{u}+\operatorname{div}(\mathbb{S} \mathbf{u}) \tag{3}
\end{equation*}
$$

$E=\frac{1}{2}|\mathbf{u}|^{2}+e \ldots$ specific total energy
e ...specific internal energy (scalar quantity)
q ... heat flux (vector field)
(no energy sources assumed)

Steady compressible Navier-Stokes-Fourier system II

- Boundary conditions at $\partial \Omega$: velocity

$$
\begin{gather*}
\mathbf{u} \cdot \mathbf{n}=0 \\
(\mathbb{I}-\mathbf{n} \otimes \mathbf{n})(\mathbb{S} \mathbf{n}+\lambda \mathbf{u})=\mathbf{0} \tag{4}
\end{gather*}
$$

$\lambda \geq 0$
or

$$
\begin{equation*}
\mathbf{u}=\mathbf{0} \tag{5}
\end{equation*}
$$

- Boundary conditions at $\partial \Omega$: temperature

$$
\begin{equation*}
\mathrm{q} \cdot \mathrm{n}-L\left(\eta-O_{0}\right)=0, \tag{6}
\end{equation*}
$$

$L>0, \Theta_{0}>0$

- Total mass

Steady compressible Navier-Stokes-Fourier system II

- Boundary conditions at $\partial \Omega$: velocity

$$
\begin{gather*}
\mathbf{u} \cdot \mathbf{n}=0 \\
(\mathbb{I}-\mathbf{n} \otimes \mathbf{n})(\mathbb{S} \mathbf{n}+\lambda \mathbf{u})=\mathbf{0} \tag{4}
\end{gather*}
$$

$\lambda \geq 0$
or

$$
\begin{equation*}
\mathbf{u}=\mathbf{0} \tag{5}
\end{equation*}
$$

- Boundary conditions at $\partial \Omega$: temperature

$$
\begin{equation*}
\mathbf{q} \cdot \mathbf{n}-L\left(\vartheta-\Theta_{0}\right)=0 \tag{6}
\end{equation*}
$$

$$
L>0, \Theta_{0}>0
$$

- Total mass

Steady compressible Navier-Stokes-Fourier system II

- Boundary conditions at $\partial \Omega$: velocity

$$
\begin{gather*}
\mathbf{u} \cdot \mathbf{n}=0 \\
(\mathbb{I}-\mathbf{n} \otimes \mathbf{n})(\mathbb{S} \mathbf{n}+\lambda \mathbf{u})=\mathbf{0} \tag{4}
\end{gather*}
$$

$\lambda \geq 0$
or

$$
\begin{equation*}
\mathbf{u}=\mathbf{0} \tag{5}
\end{equation*}
$$

- Boundary conditions at $\partial \Omega$: temperature

$$
\begin{equation*}
\mathbf{q} \cdot \mathbf{n}-L\left(\vartheta-\Theta_{0}\right)=0 \tag{6}
\end{equation*}
$$

$L>0, \Theta_{0}>0$

- Total mass

$$
\begin{equation*}
\int_{\Omega} \varrho \mathrm{d} x=M>0 \tag{7}
\end{equation*}
$$

Thermodynamics I

We will work with basic quantities: density ϱ and temperature ϑ
We assume: $e=e(\varrho, \vartheta), p=p(\varrho, \vartheta)$
Gibbs' relation

$$
\begin{equation*}
\frac{1}{\vartheta}\left(D e(\varrho, \vartheta)+p(\varrho, \vartheta) D\left(\frac{1}{\varrho}\right)\right)=D s(\varrho, \vartheta) \tag{8}
\end{equation*}
$$

with $s(\varrho, \vartheta)$ the specific entropy.
The specific entropy fulfills formally the entropy balance

$$
\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)=\sigma=\frac{\mathbb{S}: \nabla \mathbf{u}}{\vartheta}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta^{2}}
$$

Second law of thermodynamics

Thermodynamics I

We will work with basic quantities: density ϱ and temperature ϑ
We assume: $e=e(\varrho, \vartheta), p=p(\varrho, \vartheta)$
Gibbs' relation

$$
\begin{equation*}
\frac{1}{\vartheta}\left(D e(\varrho, \vartheta)+p(\varrho, \vartheta) D\left(\frac{1}{\varrho}\right)\right)=D s(\varrho, \vartheta) \tag{8}
\end{equation*}
$$

with $s(\varrho, \vartheta)$ the specific entropy.
The specific entropy fulfills formally the entropy balance

$$
\begin{equation*}
\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)=\sigma=\frac{\mathbb{S}: \nabla \mathbf{u}}{\vartheta}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta^{2}} \tag{9}
\end{equation*}
$$

Second law of thermodynamics

Thermodynamics I

We will work with basic quantities: density ϱ and temperature ϑ
We assume: $e=e(\varrho, \vartheta), p=p(\varrho, \vartheta)$
Gibbs' relation

$$
\begin{equation*}
\frac{1}{\vartheta}\left(D e(\varrho, \vartheta)+p(\varrho, \vartheta) D\left(\frac{1}{\varrho}\right)\right)=D s(\varrho, \vartheta) \tag{8}
\end{equation*}
$$

with $s(\varrho, \vartheta)$ the specific entropy.
The specific entropy fulfills formally the entropy balance

$$
\begin{equation*}
\operatorname{div}(\varrho s \mathbf{u})+\operatorname{div}\left(\frac{\mathbf{q}}{\vartheta}\right)=\sigma=\frac{\mathbb{S}: \nabla \mathbf{u}}{\vartheta}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta^{2}} \tag{9}
\end{equation*}
$$

Second law of thermodynamics

$$
\begin{equation*}
\sigma=\frac{\mathbb{S}: \nabla \mathbf{u}}{\vartheta}-\frac{\mathbf{q} \cdot \nabla \vartheta}{\vartheta^{2}} \geq 0 \tag{10}
\end{equation*}
$$

Thermodynamics II

Another possibility is to work with internal energy balance (heat equation)
Balance of internal energy

$$
\operatorname{div}(\varrho \mathbf{e} \mathbf{u})+\operatorname{div} \mathbf{q}+p \operatorname{div} \mathbf{u}=\mathbb{S}: \nabla \mathbf{u}
$$

The troublemaker is the nonlinear term on the rhs. Anyway, this equation plays an important role in the construction of weak solutions.

Constitutive relations I

- Newtonian fluid

$$
\begin{equation*}
\mathbb{S}=\mathbb{S}(\vartheta, \nabla \mathbf{u})=\mu(\vartheta)\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right]+\xi(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I} \tag{11}
\end{equation*}
$$

$\mu(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$,
$\xi(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}_{0}^{+}:$viscosity coefficients

- Fourier's law

$$
\begin{equation*}
\mathbf{q}=\mathbf{q}(\vartheta, \nabla \vartheta)=-\kappa(\vartheta) \nabla \vartheta \tag{12}
\end{equation*}
$$

$\kappa(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \ldots$ heat conductivity
(we will not consider the latter, due to additional technicalities)

- Internal energy

$$
e(\varrho, \vartheta)=c_{v} \vartheta+\frac{\varrho^{\gamma-1}}{\gamma-1}
$$

Constitutive relations I

- Newtonian fluid

$$
\begin{equation*}
\mathbb{S}=\mathbb{S}(\vartheta, \nabla \mathbf{u})=\mu(\vartheta)\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right]+\xi(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I} \tag{11}
\end{equation*}
$$

$\mu(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$,
$\xi(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}_{0}^{+}:$viscosity coefficients

- Fourier's law

$$
\begin{equation*}
\mathbf{q}=\mathbf{q}(\vartheta, \nabla \vartheta)=-\kappa(\vartheta) \nabla \vartheta \tag{12}
\end{equation*}
$$

$\kappa(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \ldots$ heat conductivity

- Pressure law
(we will not consider the latter, due to additional technicalities)
- Internal energy

Constitutive relations I

- Newtonian fluid

$$
\begin{equation*}
\mathbb{S}=\mathbb{S}(\vartheta, \nabla \mathbf{u})=\mu(\vartheta)\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right]+\xi(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I} \tag{11}
\end{equation*}
$$

$$
\mu(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}
$$

$$
\xi(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}_{0}^{+}: \text {viscosity coefficients }
$$

- Fourier's law

$$
\begin{equation*}
\mathbf{q}=\mathbf{q}(\vartheta, \nabla \vartheta)=-\kappa(\vartheta) \nabla \vartheta \tag{12}
\end{equation*}
$$

$\kappa(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \ldots$ heat conductivity

- Pressure law

$$
\begin{align*}
p=p(\varrho, \vartheta) & =\varrho^{\gamma}+\varrho \vartheta \\
& =(\gamma-1) \varrho e(\varrho, \vartheta) \tag{13}
\end{align*}
$$

(we will not consider the latter, due to additional technicalities)

- Internal energy

Constitutive relations I

- Newtonian fluid

$$
\begin{equation*}
\mathbb{S}=\mathbb{S}(\vartheta, \nabla \mathbf{u})=\mu(\vartheta)\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}-\frac{2}{3} \operatorname{div} \mathbf{u} \mathbb{I}\right]+\xi(\vartheta) \operatorname{div} \mathbf{u} \mathbb{I} \tag{11}
\end{equation*}
$$

$$
\mu(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}
$$

$$
\xi(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}_{0}^{+}: \text {viscosity coefficients }
$$

- Fourier's law

$$
\begin{equation*}
\mathbf{q}=\mathbf{q}(\vartheta, \nabla \vartheta)=-\kappa(\vartheta) \nabla \vartheta \tag{12}
\end{equation*}
$$

$\kappa(\cdot): \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \ldots$ heat conductivity

- Pressure law

$$
\begin{align*}
p=p(\varrho, \vartheta) & =\varrho^{\gamma}+\varrho \vartheta \\
\text { or } & =(\gamma-1) \varrho e(\varrho, \vartheta) \tag{13}
\end{align*}
$$

(we will not consider the latter, due to additional technicalities)

- Internal energy

$$
\begin{equation*}
e(\varrho, \vartheta)=c_{v} \vartheta+\frac{\varrho^{\gamma-1}}{\gamma-1} \tag{14}
\end{equation*}
$$

Constitutive relations II

- Heat conductivity

$$
\begin{equation*}
\kappa(\vartheta) \sim(1+\vartheta)^{m} \tag{15}
\end{equation*}
$$

$m \in \mathbb{R}^{+}$

- Viscosity coefficients

$$
\begin{gather*}
C_{1}(1+\vartheta)^{\alpha} \leq \mu(\vartheta) \leq C_{2}(1+\vartheta)^{\alpha} \tag{16}\\
0 \leq \xi(\vartheta) \leq C_{2}(1+\vartheta)^{\alpha}
\end{gather*}
$$

$\mu(\cdot)$ globally Lipschitz continuous, $\xi(\cdot)$ continuous,
$0 \leq \alpha \leq 1$

Constitutive relations II

- Heat conductivity

$$
\begin{equation*}
\kappa(\vartheta) \sim(1+\vartheta)^{m} \tag{15}
\end{equation*}
$$

$m \in \mathbb{R}^{+}$

- Viscosity coefficients

$$
\begin{gather*}
C_{1}(1+\vartheta)^{\alpha} \leq \mu(\vartheta) \leq C_{2}(1+\vartheta)^{\alpha} \\
0 \leq \xi(\vartheta) \leq C_{2}(1+\vartheta)^{\alpha} \tag{16}
\end{gather*}
$$

$\mu(\cdot)$ globally Lipschitz continuous, $\xi(\cdot)$ continuous, $0 \leq \alpha \leq 1$

Weak solution I

We consider the Navier boundary conditions for the velocity and the Newton boundary conditions for the temperature.

- Weak formulation of the continuity equation

$$
\begin{equation*}
\int_{\Omega} \varrho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \quad \forall \psi \in C^{1}(\bar{\Omega}) \tag{17}
\end{equation*}
$$

- Renormalized continuity equation
o extended by zero outside Ω, \mathbf{u} extended outside Ω so that it remains in the $W^{1, P}$ space
$\int_{\Omega} b(\varrho) \mathbf{u} \cdot \nabla \psi \mathrm{d} x+\int_{\Omega}\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} \mathbf{u} \psi \mathrm{d} x=0 \forall \psi \in C_{0}^{1}\left(\mathbb{R}^{3}\right)$
for all $b \in C^{1}([0, \infty))$ with $h^{\prime}(z)=0$ for $z \geq K>0$.
- Weak formulation of the momentum equation

$$
\begin{align*}
& \int_{\Omega}(-\varrho(\mathbf{u} \otimes \mathbf{u}): \nabla \varphi-p(\varrho, \vartheta) \operatorname{div} \varphi+\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \varphi) \mathrm{d} x \\
& \quad+\lambda \int_{\partial \Omega} \mathrm{u} \cdot \varphi \mathrm{~d} \sigma=\int_{\Omega} \varrho \mathrm{f} \cdot \varphi \mathrm{dx} \quad \forall \varphi \in C_{\mathrm{n}}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right) \tag{19}
\end{align*}
$$

Weak solution I

We consider the Navier boundary conditions for the velocity and the Newton boundary conditions for the temperature.

- Weak formulation of the continuity equation

$$
\begin{equation*}
\int_{\Omega} \varrho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \quad \forall \psi \in C^{1}(\bar{\Omega}) \tag{17}
\end{equation*}
$$

- Renormalized continuity equation ϱ extended by zero outside Ω, \mathbf{u} extended outside Ω so that it remains in the $W^{1, p}$ space

$$
\begin{equation*}
\int_{\Omega} b(\varrho) \mathbf{u} \cdot \nabla \psi \mathrm{d} x+\int_{\Omega}\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} \mathbf{u} \psi \mathrm{d} x=0 \forall \psi \in C_{0}^{1}\left(\mathbb{R}^{3}\right) \tag{18}
\end{equation*}
$$

for all $b \in C^{1}([0, \infty))$ with $b^{\prime}(z)=0$ for $z \geq K>0$.

- Weak formulation of the momentum equation

Weak solution I

We consider the Navier boundary conditions for the velocity and the Newton boundary conditions for the temperature.

- Weak formulation of the continuity equation

$$
\begin{equation*}
\int_{\Omega} \varrho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \quad \forall \psi \in C^{1}(\bar{\Omega}) \tag{17}
\end{equation*}
$$

- Renormalized continuity equation ϱ extended by zero outside Ω, \mathbf{u} extended outside Ω so that it remains in the $W^{1, p}$ space

$$
\begin{equation*}
\int_{\Omega} b(\varrho) \mathbf{u} \cdot \nabla \psi \mathrm{d} x+\int_{\Omega}\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} \mathbf{u} \psi \mathrm{d} x=0 \forall \psi \in C_{0}^{1}\left(\mathbb{R}^{3}\right) \tag{18}
\end{equation*}
$$

for all $b \in C^{1}([0, \infty))$ with $b^{\prime}(z)=0$ for $z \geq K>0$.

- Weak formulation of the momentum equation

$$
\begin{align*}
\int_{\Omega} & (-\varrho(\mathbf{u} \otimes \mathbf{u}): \nabla \varphi-p(\varrho, \vartheta) \operatorname{div} \varphi+\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \varphi) \mathrm{d} x \\
& +\lambda \int_{\partial \Omega} \mathbf{u} \cdot \boldsymbol{\varphi} \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \varphi \mathrm{d} x \quad \forall \varphi \in C_{\mathbf{n}}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right) \tag{19}
\end{align*}
$$

Weak solution II

Weak formulation of the total energy balance

$$
\begin{gather*}
\int_{\Omega}-\left(\frac{1}{2} \varrho|\mathbf{u}|^{2}+\varrho e(\varrho, \vartheta)\right) \mathbf{u} \cdot \nabla \psi \mathrm{d} x \\
=\int_{\Omega}(\varrho \mathbf{f} \cdot \mathbf{u} \psi+p(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi) \mathrm{d} x \\
-\int_{\Omega}((\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}) \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta \cdot \nabla \psi) \mathrm{d} x \tag{20}\\
-\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right)+\lambda|\mathbf{u}|^{2}\right) \psi \mathrm{d} \sigma \\
\forall \psi \in C^{1}(\bar{\Omega})
\end{gather*}
$$

Definition
The triple (ϱ, u, ϑ) is called a renormalized weak solution to our system (1)-(7)
if $\varrho \geq 0, \vartheta>0$ a.e. in $\Omega, \mathbf{u} \cdot \mathrm{n}=0$ on $\partial \Omega, \int_{\Omega} \varrho \mathrm{d} x=M,(17)$, (18), (19) and
(20) hold true.

Weak solution II

Weak formulation of the total energy balance

$$
\begin{gather*}
\int_{\Omega}-\left(\frac{1}{2} \varrho|\mathbf{u}|^{2}+\varrho e(\varrho, \vartheta)\right) \mathbf{u} \cdot \nabla \psi \mathrm{d} x \\
=\int_{\Omega}(\varrho \mathbf{f} \cdot \mathbf{u} \psi+p(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi) \mathrm{d} x \\
-\int_{\Omega}((\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}) \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta \cdot \nabla \psi) \mathrm{d} x \tag{20}\\
-\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right)+\lambda|\mathbf{u}|^{2}\right) \psi \mathrm{d} \sigma \\
\forall \psi \in C^{1}(\bar{\Omega})
\end{gather*}
$$

Definition

The triple $(\varrho, \mathbf{u}, \vartheta)$ is called a renormalized weak solution to our system (1)-(7) if $\varrho \geq 0, \vartheta>0$ a.e. in $\Omega, \mathbf{u} \cdot \mathbf{n}=0$ on $\partial \Omega, \int_{\Omega} \varrho \mathrm{d} x=M$, (17), (18), (19) and (20) hold true.

Variational entropy solution I

- Weak formulation of the entropy inequality

$$
\begin{align*}
& \int_{\Omega}\left(\frac{\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}}{\vartheta}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta} \Theta_{0} \psi \mathrm{~d} \sigma \\
& \leq \int_{\partial \Omega} L \psi \mathrm{~d} \sigma+\int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta \cdot \nabla \psi}{\vartheta}-\varrho s(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x \tag{21}\\
& \forall \text { nonnegative } \psi \in C^{1}(\bar{\Omega})
\end{align*}
$$

- Global total energy balance

$$
\begin{equation*}
\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right)+\lambda|u|^{2}\right) d \sigma=\int_{\Omega} \varrho f \cdot u d x \tag{22}
\end{equation*}
$$

Definition

The triple (ϱ, u, v) is called a renormalized variational entropy solution to our system (1)-(7), if $\varrho \geq 0, \vartheta>0$ a.e. in $\Omega, \mathbf{u} \cdot \mathrm{n}=0$ on $\partial \Omega, \int_{\Omega} \varrho \mathrm{d} x=M$ (17), (18) and (19) are satisfied in the same sense as in Definition 1, and we have the entropy inequality (21) together with the global total energy balance (22).
Both definitions are reasonable in the sense that any smooth weak or entropy variational solution is actually a classical solution to (1)-(7) (weak-strong compatibility).

Variational entropy solution I

- Weak formulation of the entropy inequality

$$
\begin{align*}
& \int_{\Omega}\left(\frac{\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}}{\vartheta}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta} \Theta_{0} \psi \mathrm{~d} \sigma \\
& \leq \int_{\partial \Omega} L \psi \mathrm{~d} \sigma+\int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta \cdot \nabla \psi}{\vartheta}-\varrho s(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x \tag{21}\\
& \forall \text { nonnegative } \psi \in C^{1}(\bar{\Omega})
\end{align*}
$$

- Global total energy balance

$$
\begin{equation*}
\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right)+\lambda|\mathbf{u}|^{2}\right) \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \mathrm{d} x \tag{22}
\end{equation*}
$$

Definition
The triple (ϱ, u, v) is called a renormalized variational entropy solution to our
system (1)-(7), if $\varrho \geq 0, \vartheta>0$ a.e. in $\Omega, \mathbf{u} \cdot \mathrm{n}=0$ on $\partial \Omega, \int_{\Omega} \varrho \mathrm{d} x=M$ (17),
(18) and (19) are satisfied in the same sense as in Definition 1, and we have
the entropy inequality (21) together with the global total energy balance (22).
Both definitions are reasonable in the sense that any smooth weak or entropy
variational solution is actually a classical solution to (1)-(7) (weak-strong

Variational entropy solution I

- Weak formulation of the entropy inequality

$$
\begin{align*}
& \int_{\Omega}\left(\frac{\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}}{\vartheta}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta} \Theta_{0} \psi \mathrm{~d} \sigma \\
& \leq \int_{\partial \Omega} L \psi \mathrm{~d} \sigma+\int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta \cdot \nabla \psi}{\vartheta}-\varrho s(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x \tag{21}\\
& \forall \text { nonnegative } \psi \in C^{1}(\bar{\Omega})
\end{align*}
$$

- Global total energy balance

$$
\begin{equation*}
\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right)+\lambda|\mathbf{u}|^{2}\right) \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \mathrm{d} x \tag{22}
\end{equation*}
$$

Definition

The triple $(\varrho, \mathbf{u}, \vartheta)$ is called a renormalized variational entropy solution to our system (1)-(7), if $\varrho \geq 0, \vartheta>0$ a.e. in $\Omega, \mathbf{u} \cdot \mathbf{n}=0$ on $\partial \Omega, \int_{\Omega} \varrho \mathrm{d} x=M$ (17), (18) and (19) are satisfied in the same sense as in Definition 1, and we have the entropy inequality (21) together with the global total energy balance (22).
Both definitions are reasonable in the sense that any smooth weak or entropy variational solution is actually a classical solution to (1)-(7) (weak-strong

Variational entropy solution I

- Weak formulation of the entropy inequality

$$
\begin{gather*}
\int_{\Omega}\left(\frac{\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}}{\vartheta}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta} \Theta_{0} \psi \mathrm{~d} \sigma \\
\leq \int_{\partial \Omega} L \psi \mathrm{~d} \sigma+\int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta \cdot \nabla \psi}{\vartheta}-\varrho s(\varrho, \vartheta) \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x \tag{21}\\
\forall \text { nonnegative } \psi \in C^{1}(\bar{\Omega})
\end{gather*}
$$

- Global total energy balance

$$
\begin{equation*}
\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right)+\lambda|\mathbf{u}|^{2}\right) \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \mathrm{d} x \tag{22}
\end{equation*}
$$

Definition

The triple $(\varrho, \mathbf{u}, \vartheta)$ is called a renormalized variational entropy solution to our system (1)-(7), if $\varrho \geq 0, \vartheta>0$ a.e. in $\Omega, \mathbf{u} \cdot \mathbf{n}=0$ on $\partial \Omega, \int_{\Omega} \varrho \mathrm{d} x=M$ (17), (18) and (19) are satisfied in the same sense as in Definition 1, and we have the entropy inequality (21) together with the global total energy balance (22). Both definitions are reasonable in the sense that any smooth weak or entropy variational solution is actually a classical solution to (1)-(7) (weak-strong compatibility).

Mathematical results

Until 2009，in the literature there was no existence results except for small data results or one result by P．L．Lions，where，however，the fixed mass was replaced by the finite L^{p} norm of the density for p sufficiently large．

P．B．Mucha，M．P．：On the steady compressible Navier－Stokes－Fourier system， Communications in Mathematical Physics 288 （2009），349－377．

P．B．Mucha，M．P．：Weak solutions to equations of steady compressible heat conducting fluids，Mathematical Models \＆Methods in Applied Sciences 20 （2010），785－813．
目
A．Novotný，M．P．：Steady compressible Navier－Stokes－Fourier system for monoatomic gas and its generalizations，Journal of Differential Equations 251 （2011），270－315．
國
A．Novotný，M．P．：Weak and variational solutions to steady equations for compressible heat conducting fluids，SIAM Journal on Mathematical Analysis 43 （2011），1158－1188．
©
D．Jesslé，A．Novotný，M．P．：Steady Navier－Stokes－Fourier system with slip boundary conditions，Mathematical Models \＆Methods in Applied Sciences 24 （2014），751－781．
R
P．B．Mucha，M．P．，E．Zatorska：Existence of Stationary Weak Solutions for the Heat Conducting Flows．In：Giga，Yoshikazu，Novotný，Antonín（eds．）： Handbook of Mathematical Analysis in Mechanics of Viscous Fluids， Springer Verlag，2018，2595－2662．

Approximate system I

We consider for simplicity Ω not axially symmetric and $\lambda=0$. We have in this case Korn's inequalities of the form

$$
\|\mathbf{u}\|_{1, p} \leq C\left(\int_{\Omega} \frac{1}{\vartheta} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u} \mathrm{d} x\right)^{\frac{1}{2}}\|\vartheta\|_{3 m}^{\frac{1-\alpha}{2}},
$$

where $p=\frac{6 m}{3 m+1-\alpha}<2$ if $0 \leq \alpha<1, p=2$ if $\alpha=1$. We first consider the easier case $\alpha=1$.

We can prove existence of a solution to the following system for arbitrary $\delta>0$ provided $\beta, B \gg 1$.
Continuity equation:
for all $\psi \in W^{1, \frac{30 \beta}{25 \beta-18}}(\Omega ; \mathbb{R})$, as well as in the renormalized sense
Momentum equation:

$$
\begin{gathered}
\int_{\Omega}\left(-\varrho_{\delta}\left(\mathbf{u}_{\delta} \otimes \mathbf{u}_{\delta}\right): \nabla \varphi+\mathbb{S}\left(\vartheta_{\delta}, \nabla \mathbf{u}_{\delta}\right): \nabla \varphi\right. \\
\left.-\left(p\left(\varrho_{\delta}, \vartheta_{\delta}\right)+\delta \varrho_{\delta}^{\beta}+\delta \varrho_{\delta}^{2}\right) \operatorname{div} \varphi\right) \mathrm{d} x=\int_{\Omega} \varrho_{\delta} \mathbf{f} \cdot \varphi \mathrm{d} x
\end{gathered}
$$

Approximate system I

We consider for simplicity Ω not axially symmetric and $\lambda=0$. We have in this case Korn's inequalities of the form

$$
\|\mathbf{u}\|_{1, p} \leq C\left(\int_{\Omega} \frac{1}{\vartheta} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u} \mathrm{d} x\right)^{\frac{1}{2}}\|\vartheta\|_{3 m}^{\frac{1-\alpha}{2}},
$$

where $p=\frac{6 m}{3 m+1-\alpha}<2$ if $0 \leq \alpha<1, p=2$ if $\alpha=1$. We first consider the easier case $\alpha=1$.

We can prove existence of a solution to the following system for arbitrary $\delta>0$ provided $\beta, B \gg 1$.
Continuity equation:

$$
\begin{equation*}
\int_{\Omega} \varrho_{\delta} \mathbf{u}_{\delta} \cdot \nabla \psi \mathrm{d} x=0 \tag{23}
\end{equation*}
$$

for all $\psi \in W^{1, \frac{30 \beta}{25 \beta-18}}(\Omega ; \mathbb{R})$, as well as in the renormalized sense

Approximate system I

We consider for simplicity Ω not axially symmetric and $\lambda=0$. We have in this case Korn's inequalities of the form

$$
\|\mathbf{u}\|_{1, p} \leq C\left(\int_{\Omega} \frac{1}{\vartheta} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u} \mathrm{d} x\right)^{\frac{1}{2}}\|\vartheta\|_{3 m}^{\frac{1-\alpha}{2}},
$$

where $p=\frac{6 m}{3 m+1-\alpha}<2$ if $0 \leq \alpha<1, p=2$ if $\alpha=1$. We first consider the easier case $\alpha=1$.

We can prove existence of a solution to the following system for arbitrary $\delta>0$ provided $\beta, B \gg 1$.
Continuity equation:

$$
\begin{equation*}
\int_{\Omega} \varrho_{\delta} \mathbf{u}_{\delta} \cdot \nabla \psi \mathrm{d} x=0 \tag{23}
\end{equation*}
$$

for all $\psi \in W^{1, \frac{30 \beta}{25 \beta-18}}(\Omega ; \mathbb{R})$, as well as in the renormalized sense Momentum equation:

$$
\begin{gather*}
\int_{\Omega}\left(-\varrho_{\delta}\left(\mathbf{u}_{\delta} \otimes \mathbf{u}_{\delta}\right): \nabla \boldsymbol{\varphi}+\mathbb{S}\left(\vartheta_{\delta}, \nabla \mathbf{u}_{\delta}\right): \nabla \boldsymbol{\varphi}\right. \\
\left.-\left(p\left(\varrho_{\delta}, \vartheta_{\delta}\right)+\delta \varrho_{\delta}^{\beta}+\delta \varrho_{\delta}^{2}\right) \operatorname{div} \varphi\right) \mathrm{d} x=\int_{\Omega} \varrho_{\delta} \mathbf{f} \cdot \boldsymbol{\varphi} \mathrm{d} x \tag{24}
\end{gather*}
$$

for all $\varphi \in W_{n}^{1, \frac{5}{2}}\left(\Omega ; \mathbb{R}^{3}\right)$

Approximate system II

Total energy balance:

$$
\begin{align*}
& \int_{\Omega}\left(\left(-\frac{1}{2} \varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}-\varrho_{\delta} e\left(\varrho_{\delta}, \vartheta_{\delta}\right)\right) \mathbf{u}_{\delta} \cdot \nabla \psi+\left(\kappa\left(\vartheta_{\delta}\right)+\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \nabla \vartheta_{\delta} \cdot \nabla \psi\right) \mathrm{d} x \\
& +\int_{\partial \Omega}\left(L+\delta \vartheta_{\delta}^{B-1}\right)\left(\vartheta_{\delta}-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho_{\delta} \mathbf{f} \cdot \mathbf{u}_{\delta} \psi \mathrm{d} x+\int_{\Omega}\left(\left(-\mathbb{S}\left(\vartheta_{\delta}, \nabla \mathbf{u}_{\delta}\right) \mathbf{u}_{\delta}\right.\right. \\
+ & \left.\left.\left(p\left(\varrho_{\delta}, \vartheta_{\delta}\right)+\delta \varrho_{\delta}^{\beta}+\delta \varrho_{\delta}^{2}\right) \mathbf{u}_{\delta}\right) \cdot \nabla \psi+\delta \vartheta_{\delta}^{-1} \psi\right) \mathrm{d} x+\delta \int_{\Omega}\left(\frac{1}{\beta-1} \varrho_{\delta}^{\beta}+\varrho_{\delta}^{2}\right) \mathbf{u}_{\delta} \cdot \nabla \psi \mathrm{d} x \tag{25}
\end{align*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$
Entropy inequality:

Approximate system II

Total energy balance:

$$
\begin{align*}
& \int_{\Omega}\left(\left(-\frac{1}{2} \varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}-\varrho_{\delta} e\left(\varrho_{\delta}, \vartheta_{\delta}\right)\right) \mathbf{u}_{\delta} \cdot \nabla \psi+\left(\kappa\left(\vartheta_{\delta}\right)+\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \nabla \vartheta_{\delta} \cdot \nabla \psi\right) \mathrm{d} x \\
& +\int_{\partial \Omega}\left(L+\delta \vartheta_{\delta}^{B-1}\right)\left(\vartheta_{\delta}-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho_{\delta} \mathbf{f} \cdot \mathbf{u}_{\delta} \psi \mathrm{d} x+\int_{\Omega}\left(\left(-\mathbb{S}\left(\vartheta_{\delta}, \nabla \mathbf{u}_{\delta}\right) \mathbf{u}_{\delta}\right.\right. \\
+ & \left.\left.\left(p\left(\varrho_{\delta}, \vartheta_{\delta}\right)+\delta \varrho_{\delta}^{\beta}+\delta \varrho_{\delta}^{2}\right) \mathbf{u}_{\delta}\right) \cdot \nabla \psi+\delta \vartheta_{\delta}^{-1} \psi\right) \mathrm{d} x+\delta \int_{\Omega}\left(\frac{1}{\beta-1} \varrho_{\delta}^{\beta}+\varrho_{\delta}^{2}\right) \mathbf{u}_{\delta} \cdot \nabla \psi \mathrm{d} x \tag{25}
\end{align*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$
Entropy inequality:

$$
\begin{align*}
\int_{\Omega}\left(\vartheta_{\delta}^{-1} \mathbb{S}\left(\vartheta_{\delta}, \mathbf{u}\right):\right. & \left.\nabla \mathbf{u}_{\delta}+\delta \vartheta_{\delta}^{-2}+\left(\kappa\left(\vartheta_{\delta}\right)+\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \frac{\left|\nabla \vartheta_{\delta}\right|^{2}}{\vartheta_{\delta}^{2}}\right) \psi \mathrm{d} x \\
\leq \int_{\Omega}\left(\left(\kappa\left(\vartheta_{\delta}\right)+\right.\right. & \left.\left.\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \frac{\nabla \vartheta_{\delta}: \nabla \psi}{\vartheta_{\delta}}-\varrho s\left(\varrho_{\delta}, \vartheta_{\delta}\right) \mathbf{u}_{\delta} \cdot \nabla \psi\right) \mathrm{d} x \tag{26}\\
& +\int_{\partial \Omega} \frac{L+\delta \vartheta_{\delta}^{B-1}}{\vartheta_{\delta}}\left(\vartheta_{\delta}-\Theta_{0}\right) \psi \mathrm{d} \sigma
\end{align*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$ nonnegative

Estimates independent of δ I
Use in the entropy inequality and in the total energy balance test functions $\psi \equiv 1$:

$$
\begin{align*}
\int_{\Omega}\left(\kappa\left(\vartheta_{\delta}\right)+\right. & \left.\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \frac{\left|\nabla \vartheta_{\delta}\right|^{2}}{\vartheta_{\delta}^{2}} \mathrm{~d} x+\int_{\Omega}\left(\frac{1}{\vartheta_{\delta}} \mathbb{S}\left(\vartheta_{\delta}, \mathbf{u}_{\delta}\right): \nabla \mathbf{u}_{\delta}+\delta \vartheta_{\delta}^{-2}\right) \mathrm{d} x \\
& +\int_{\partial \Omega} \frac{L+\delta \vartheta_{\delta}^{B-1}}{\vartheta_{\delta}} \Theta_{0} \mathrm{~d} \sigma \leq \int_{\partial \Omega}\left(L+\delta \vartheta_{\delta}^{B-1}\right) \mathrm{d} \sigma \tag{27}
\end{align*}
$$

Using suitable estimates of the Bogovskii-type we can get rid of the δ-dependent terms and we conclude:

$$
\begin{equation*}
\left\|\vartheta_{\delta}\right\|_{3 m}+\delta\left\|\vartheta_{\delta}\right\|_{B, \partial \Omega}^{B} \leq C\left(1+\left\|\mathbf{u}_{\delta} \varrho_{\delta}\right\|_{1}\right) \tag{30}
\end{equation*}
$$

Estimates independent of δ I
Use in the entropy inequality and in the total energy balance test functions $\psi \equiv 1$:

$$
\begin{align*}
\int_{\Omega}\left(\kappa\left(\vartheta_{\delta}\right)+\right. & \left.\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \frac{\left|\nabla \vartheta_{\delta}\right|^{2}}{\vartheta_{\delta}^{2}} \mathrm{~d} x+\int_{\Omega}\left(\frac{1}{\vartheta_{\delta}} \mathbb{S}\left(\vartheta_{\delta}, \mathbf{u}_{\delta}\right): \nabla \mathbf{u}_{\delta}+\delta \vartheta_{\delta}^{-2}\right) \mathrm{d} x \\
& +\int_{\partial \Omega} \frac{L+\delta \vartheta_{\delta}^{B-1}}{\vartheta_{\delta}} \Theta_{0} \mathrm{~d} \sigma \leq \int_{\partial \Omega}\left(L+\delta \vartheta_{\delta}^{B-1}\right) \mathrm{d} \sigma \tag{27}
\end{align*}
$$

Using suitable estimates of the Bogovskii-type we can get rid of the
δ-dependent terms and we conclude:

$$
\begin{equation*}
\int_{\partial \Omega}\left(L \vartheta_{\delta}+\delta \vartheta_{\delta}^{B}\right) \mathrm{d} \sigma=\int_{\Omega} \varrho_{\delta} \mathbf{u}_{\delta} \cdot \mathbf{f} \mathrm{d} x+\int_{\partial \Omega}\left(L+\delta \vartheta_{\delta}^{B-1}\right) \Theta_{0} \mathrm{~d} \sigma+\delta \int_{\Omega} \vartheta_{\delta}^{-1} \mathrm{~d} x \tag{28}
\end{equation*}
$$

Estimates independent of δ I

Use in the entropy inequality and in the total energy balance test functions $\psi \equiv 1$:

$$
\begin{gather*}
\int_{\Omega}\left(\kappa\left(\vartheta_{\delta}\right)+\delta \vartheta_{\delta}^{B}+\delta \vartheta_{\delta}^{-1}\right) \frac{\left|\nabla \vartheta_{\delta}\right|^{2}}{\vartheta_{\delta}^{2}} \mathrm{~d} x+\int_{\Omega}\left(\frac{1}{\vartheta_{\delta}} \mathbb{S}\left(\vartheta_{\delta}, \mathbf{u}_{\delta}\right): \nabla \mathbf{u}_{\delta}+\delta \vartheta_{\delta}^{-2}\right) \mathrm{d} x \\
\quad+\int_{\partial \Omega} \frac{L+\delta \vartheta_{\delta}^{B-1}}{\vartheta_{\delta}} \Theta_{0} \mathrm{~d} \sigma \leq \int_{\partial \Omega}\left(L+\delta \vartheta_{\delta}^{B-1}\right) \mathrm{d} \sigma \tag{27}
\end{gather*}
$$

Using suitable estimates of the Bogovskii-type we can get rid of the δ-dependent terms and we conclude:

$$
\begin{gather*}
\left\|\mathbf{u}_{\delta}\right\|_{1,2}+\left\|\nabla \vartheta_{\delta}^{\frac{m}{2}}\right\|_{2}+\left\|\nabla \ln \vartheta_{\delta}\right\|_{2}+\left\|\vartheta_{\delta}^{-1}\right\|_{1, \partial \Omega} \\
+\delta\left(\left\|\nabla \vartheta_{\delta}^{\frac{B}{2}}\right\|_{2}^{2}+\left\|\nabla \vartheta_{\delta}^{-\frac{1}{2}}\right\|_{2}^{2}+\left\|\vartheta_{\delta}\right\|_{3 B}^{B}+\left\|\vartheta_{\delta}^{-2}\right\|_{1}\right) \leq C \tag{29}\\
\left\|\vartheta_{\delta}\right\|_{3 m}+\delta\left\|\vartheta_{\delta}\right\|_{B, \partial \Omega}^{B} \leq C\left(1+\left\|\mathbf{u}_{\delta} \varrho_{\delta}\right\|_{1}\right) \tag{30}
\end{gather*}
$$

Estimates independent of $\delta \mathrm{II}$

To estimate the density, we may use the Bogovskii-type estimates, but this leads to the bound $\gamma>\frac{3}{2}$. Therefore we apply another approach based on "potential"estimates of the pressure.

- Define for $1 \leq a \leq \gamma, 0<b<1$

$$
\begin{equation*}
\mathcal{A}=\int_{\Omega}\left(\varrho_{\delta}^{a}\left|\mathbf{u}_{\delta}\right|^{2}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b+2}\right) \mathrm{d} x \tag{31}
\end{equation*}
$$

- Using the previous estimates we get, under some conditions on a and b

- We use as test function in the momentum equation

Estimates independent of $\delta \mathrm{II}$

To estimate the density, we may use the Bogovskii-type estimates, but this leads to the bound $\gamma>\frac{3}{2}$. Therefore we apply another approach based on "potential"estimates of the pressure.

- Define for $1 \leq a \leq \gamma, 0<b<1$

$$
\begin{equation*}
\mathcal{A}=\int_{\Omega}\left(\varrho_{\delta}^{a}\left|\mathbf{u}_{\delta}\right|^{2}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b+2}\right) \mathrm{d} x \tag{31}
\end{equation*}
$$

- Using the previous estimates we get, under some conditions on a and b

$$
\begin{gather*}
\left\|\mathbf{u}_{\delta}\right\|_{1,2} \leq C \\
\left\|\vartheta_{\delta}\right\|_{3 m} \leq C\left(1+\mathcal{A}^{\frac{a-b}{2(a b+a-2 b)}}\right) \\
\int_{\Omega}\left(\varrho_{\delta}^{s \gamma}+\varrho_{\delta}^{(s-1) \gamma} p\left(\varrho_{\delta}, \vartheta_{\delta}\right)+\left(\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right)^{s}+\delta \varrho_{\delta}^{\beta+(s-1) \gamma}\right) \mathrm{d} x \tag{32}\\
\leq C\left(1+\mathcal{A}^{\frac{\text { sa-b }}{a b+a-b}}\right)
\end{gather*}
$$

- We use as test function in the momentum equation

Estimates independent of $\delta \mathrm{II}$

To estimate the density, we may use the Bogovskii-type estimates, but this leads to the bound $\gamma>\frac{3}{2}$. Therefore we apply another approach based on "potential"estimates of the pressure.

- Define for $1 \leq a \leq \gamma, 0<b<1$

$$
\begin{equation*}
\mathcal{A}=\int_{\Omega}\left(\varrho_{\delta}^{a}\left|\mathbf{u}_{\delta}\right|^{2}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b+2}\right) \mathrm{d} x \tag{31}
\end{equation*}
$$

- Using the previous estimates we get, under some conditions on a and b

$$
\begin{gather*}
\left\|\mathbf{u}_{\delta}\right\|_{1,2} \leq C \\
\left\|\vartheta_{\delta}\right\|_{3 m} \leq C\left(1+\mathcal{A}^{\frac{a-b}{2(a b+a-2 b)}}\right) \\
\int_{\Omega}\left(\varrho_{\delta}^{s \gamma}+\varrho_{\delta}^{(s-1) \gamma} p\left(\varrho_{\delta}, \vartheta_{\delta}\right)+\left(\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right)^{s}+\delta \varrho_{\delta}^{\beta+(s-1) \gamma}\right) \mathrm{d} x \tag{32}\\
\leq C\left(1+\mathcal{A}^{\frac{\text { sa-b }}{a b+a-b}}\right)
\end{gather*}
$$

- We use as test function in the momentum equation

$$
\varphi_{i}(x) \sim \frac{(x-y)_{i}}{|x-y|^{A}}
$$

Estimates independent of δ III
Lemma
Let $y \in \Omega, R_{0}<\frac{1}{3} \operatorname{dist}(y, \partial \Omega)$. Then

$$
\begin{gather*}
\int_{B_{R_{0}(y)}}\left(\frac{p\left(\varrho_{\delta}, \vartheta_{\delta}\right)}{|x-y|^{A}}+\frac{\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}}{|x-y|^{A}}\right) \mathrm{d} x \tag{33}\\
\leq C\left(1+\left\|p\left(\varrho_{\delta} \vartheta_{\delta}\right)\right\|_{1}+\left\|\mathbf{u}_{\delta}\right\|_{1,2}\left(1+\left\|\vartheta_{\delta}\right\|_{3 m}\right)+\left\|\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right\|_{1}\right)
\end{gather*}
$$

provided $A<\min \left\{\frac{3 m-2}{2 m}, 1\right\}$.
Similar test functions can be used for y near and at the boundary. We obtain a similar result. More complex for the Dirichlet boundary conditions, leads to more restrictions.

- Let us consider

The unique strong solution can be written

$$
h(y)=\int_{\Omega} G(x, y)\left(e_{\delta}^{a}+e_{\delta}^{b}\left|u_{\delta}\right|^{2 b}\right) d x+\text { 1.o.t. }
$$

Estimates independent of δ III

Lemma
Let $y \in \Omega, R_{0}<\frac{1}{3} \operatorname{dist}(y, \partial \Omega)$. Then

$$
\begin{gather*}
\int_{B_{R_{0}}(y)}\left(\frac{p\left(\varrho_{\delta}, \vartheta_{\delta}\right)}{|x-y|^{A}}+\frac{\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}}{|x-y|^{A}}\right) \mathrm{d} x \tag{33}\\
\leq C\left(1+\left\|p\left(\varrho_{\delta} \vartheta_{\delta}\right)\right\|_{1}+\left\|\mathbf{u}_{\delta}\right\|_{1,2}\left(1+\left\|\vartheta_{\delta}\right\|_{3 m}\right)+\left\|\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right\|_{1}\right)
\end{gather*}
$$

provided $A<\min \left\{\frac{3 m-2}{2 m}, 1\right\}$.
Similar test functions can be used for y near and at the boundary. We obtain a similar result. More complex for the Dirichlet boundary conditions, leads to more restrictions.

- Let us consider

The unique strong solution can be written

$$
h(y)=\int_{\Omega} G(x, y)\left(e_{\delta}^{a}+e_{\delta}^{b}\left|u_{\delta}\right|^{2 b}\right) d x+1.0 . t
$$

Estimates independent of $\delta \mathrm{III}$

Lemma
Let $y \in \Omega, R_{0}<\frac{1}{3} \operatorname{dist}(y, \partial \Omega)$. Then

$$
\begin{gather*}
\int_{B_{R_{0}}(y)}\left(\frac{p\left(\varrho_{\delta}, \vartheta_{\delta}\right)}{|x-y|^{A}}+\frac{\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}}{|x-y|^{A}}\right) \mathrm{d} x \tag{33}\\
\leq C\left(1+\left\|p\left(\varrho_{\delta} \vartheta_{\delta}\right)\right\|_{1}+\left\|\mathbf{u}_{\delta}\right\|_{1,2}\left(1+\left\|\vartheta_{\delta}\right\|_{3 m}\right)+\left\|\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right\|_{1}\right)
\end{gather*}
$$

provided $A<\min \left\{\frac{3 m-2}{2 m}, 1\right\}$.
Similar test functions can be used for y near and at the boundary. We obtain a similar result. More complex for the Dirichlet boundary conditions, leads to more restrictions.

- Let us consider

$$
\begin{gather*}
-\Delta h=\varrho_{\delta}^{a}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b}-\frac{1}{|\Omega|} \int_{\Omega}\left(\varrho_{\delta}^{a}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b}\right) \mathrm{d} x, \tag{34}\\
\left.\frac{\partial h}{\partial \mathbf{n}}\right|_{\partial \Omega}=0 .
\end{gather*}
$$

The unique strong solution can be written

Estimates independent of δ III

Lemma
Let $y \in \Omega, R_{0}<\frac{1}{3} \operatorname{dist}(y, \partial \Omega)$. Then

$$
\begin{gather*}
\int_{B_{R_{0}}(y)}\left(\frac{p\left(\varrho_{\delta}, \vartheta_{\delta}\right)}{|x-y|^{A}}+\frac{\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}}{|x-y|^{A}}\right) \mathrm{d} x \tag{33}\\
\leq C\left(1+\left\|p\left(\varrho_{\delta} \vartheta_{\delta}\right)\right\|_{1}+\left\|\mathbf{u}_{\delta}\right\|_{1,2}\left(1+\left\|\vartheta_{\delta}\right\|_{3 m}\right)+\left\|\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right\|_{1}\right)
\end{gather*}
$$

provided $A<\min \left\{\frac{3 m-2}{2 m}, 1\right\}$.
Similar test functions can be used for y near and at the boundary. We obtain a similar result. More complex for the Dirichlet boundary conditions, leads to more restrictions.

- Let us consider

$$
\begin{gather*}
-\Delta h=\varrho_{\delta}^{a}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b}-\frac{1}{|\Omega|} \int_{\Omega}\left(\varrho_{\delta}^{a}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b}\right) \mathrm{d} x, \tag{34}\\
\left.\frac{\partial h}{\partial \mathbf{n}}\right|_{\partial \Omega}=0 .
\end{gather*}
$$

The unique strong solution can be written

$$
\begin{equation*}
h(y)=\int_{\Omega} G(x, y)\left(\varrho_{\delta}^{a}+\varrho_{\delta}^{b}\left|\mathbf{u}_{\delta}\right|^{2 b}\right) \mathrm{d} x+\text { I.o.t. } \tag{35}
\end{equation*}
$$

Estimates independent of $\delta \mathrm{IV}$
As $G(x, y) \leq C|x-y|^{-1}$, we get

$$
\begin{equation*}
\|h\|_{\infty} \leq C\left(1+\mathcal{A}^{\eta}\right) \tag{36}
\end{equation*}
$$

where $\eta=\eta(a, b, \gamma, m)$

$$
\begin{aligned}
\mathcal{A} \sim \int_{\Omega}-\Delta h\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x & =\int_{\Omega} \nabla h \cdot \nabla\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x \leq 2\left\|\nabla \mathbf{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}, \\
B & =\int_{\Omega}\left|\nabla h \otimes \mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x .
\end{aligned}
$$

Employing once more integration by parts

$$
\begin{gathered}
B=-\int_{\Omega} h \Delta h\left|u_{\delta}\right|^{2} \mathrm{~d} x-\int_{\Omega} h \nabla h \cdot \nabla \mathrm{u}_{\delta} \cdot \mathrm{u}_{\delta} \mathrm{d} x \\
\leq\|h\|_{\infty}\left(A+\left\|\nabla \mathrm{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}\right)
\end{gathered}
$$

$$
\begin{equation*}
B \leq\|h\|_{\infty} \mathcal{A}+\frac{1}{2}\left\|\nabla \mathbf{u}_{\delta}\right\|_{2}^{2}\|h\|_{\infty}^{2} . \tag{39}
\end{equation*}
$$

Therefore

Estimates independent of $\delta \mathrm{IV}$
As $G(x, y) \leq C|x-y|^{-1}$, we get

$$
\begin{equation*}
\|h\|_{\infty} \leq C\left(1+\mathcal{A}^{\eta}\right) \tag{36}
\end{equation*}
$$

where $\eta=\eta(a, b, \gamma, m)$

- Next

$$
\begin{align*}
\mathcal{A} \sim \int_{\Omega}-\Delta h\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x & =\int_{\Omega} \nabla h \cdot \nabla\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x \leq 2\left\|\nabla \mathbf{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}, \tag{37}\\
B & =\int_{\Omega}\left|\nabla h \otimes \mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x . \tag{38}
\end{align*}
$$

Employing once more integration by parts

$$
B \leq\|h\|_{\infty} \mathcal{A}+\frac{1}{2}\left\|\nabla \mathbf{u}_{\delta}\right\|_{2}^{2}\|h\|_{\infty}^{2} .
$$

Estimates independent of $\delta \mathrm{IV}$

As $G(x, y) \leq C|x-y|^{-1}$, we get

$$
\begin{equation*}
\|h\|_{\infty} \leq C\left(1+\mathcal{A}^{\eta}\right) \tag{36}
\end{equation*}
$$

where $\eta=\eta(a, b, \gamma, m)$

- Next

$$
\begin{align*}
\mathcal{A} \sim \int_{\Omega}-\Delta h\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x & =\int_{\Omega} \nabla h \cdot \nabla\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x \leq 2\left\|\nabla \mathbf{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}, \tag{37}\\
B & =\int_{\Omega}\left|\nabla h \otimes \mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x . \tag{38}
\end{align*}
$$

Employing once more integration by parts

$$
\begin{gathered}
B=-\int_{\Omega} h \Delta h\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x-\int_{\Omega} h \nabla h \cdot \nabla \mathbf{u}_{\delta} \cdot \mathbf{u}_{\delta} \mathrm{d} x \\
\leq\|h\|_{\infty}\left(\mathcal{A}+\left\|\nabla \mathbf{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}\right),
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
B \leq\|h\|_{\infty} \mathcal{A}+\frac{1}{2}\left\|\nabla \mathbf{u}_{\delta}\right\|_{2}^{2}\|h\|_{\infty}^{2} . \tag{39}
\end{equation*}
$$

Estimates independent of $\delta \mathrm{IV}$

As $G(x, y) \leq C|x-y|^{-1}$, we get

$$
\begin{equation*}
\|h\|_{\infty} \leq C\left(1+\mathcal{A}^{\eta}\right) \tag{36}
\end{equation*}
$$

where $\eta=\eta(a, b, \gamma, m)$

- Next

$$
\begin{align*}
\mathcal{A} \sim \int_{\Omega}-\Delta h\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x & =\int_{\Omega} \nabla h \cdot \nabla\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x \leq 2\left\|\nabla \mathbf{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}, \tag{37}\\
B & =\int_{\Omega}\left|\nabla h \otimes \mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x . \tag{38}
\end{align*}
$$

Employing once more integration by parts

$$
\begin{gathered}
B=-\int_{\Omega} h \Delta h\left|\mathbf{u}_{\delta}\right|^{2} \mathrm{~d} x-\int_{\Omega} h \nabla h \cdot \nabla \mathbf{u}_{\delta} \cdot \mathbf{u}_{\delta} \mathrm{d} x \\
\leq\|h\|_{\infty}\left(\mathcal{A}+\left\|\nabla \mathbf{u}_{\delta}\right\|_{2} B^{\frac{1}{2}}\right),
\end{gathered}
$$

i.e.,

$$
\begin{equation*}
B \leq\|h\|_{\infty} \mathcal{A}+\frac{1}{2}\left\|\nabla \mathbf{u}_{\delta}\right\|_{2}^{2}\|h\|_{\infty}^{2} . \tag{39}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathcal{A} \leq C\left\|\nabla \mathbf{u}_{\delta}\right\|_{2}^{2}\|h\|_{\infty} \tag{40}
\end{equation*}
$$

Estimates independent of $\delta \mathrm{V}$

- Then,

$$
\mathcal{A} \leq C\left(1+\mathcal{A}^{\tilde{\eta}}\right)
$$

and we require $\tilde{\eta}<1$. This leads to a set of conditions.

- Analyzing these conditions, we finally have

Lemma

Let $\left(\varrho_{\delta}, \mathbf{u}_{\delta}, \vartheta_{\delta}\right)$ solve our approximate problem. Let $\gamma>1$ and $m>\frac{2}{4-3}$ Then there exists $s>1$ such that

Estimates independent of $\delta \mathrm{V}$

- Then,

$$
\mathcal{A} \leq C\left(1+\mathcal{A}^{\tilde{\eta}}\right)
$$

and we require $\tilde{\eta}<1$. This leads to a set of conditions.

- Analyzing these conditions, we finally have

Lemma

Let $\left(\varrho_{\delta}, \mathbf{u}_{\delta}, \vartheta_{\delta}\right)$ solve our approximate problem. Let $\gamma>1$ and $m>\frac{2}{4 \gamma-3}$.
Then there exists $s>1$ such that

$$
\begin{array}{lll}
\sup _{\delta>0}\left\|\varrho_{\delta}\right\|_{\gamma s} & < & +\infty \\
\sup _{\delta>0}\left\|\varrho_{\delta} \mathbf{u}_{\delta}\right\|_{s} & < & +\infty \\
\sup _{\delta>0}\left\|\varrho_{\delta}\left|\mathbf{u}_{\delta}\right|^{2}\right\|_{s} & < & +\infty \\
\sup _{\delta>0}\left\|\mathbf{u}_{\delta}\right\|_{1,2} & < & +\infty \tag{41}\\
\sup _{\delta>0}\left\|\vartheta_{\delta}\right\|_{3 m} & < & +\infty \\
\sup _{\delta>0}\left\|\vartheta_{\delta}^{m / 2}\right\|_{1,2} & < & +\infty \\
\sup _{\delta>0} \delta\left\|\varrho_{\delta}^{\beta+(s-1) \gamma}\right\|_{1} & < & +\infty .
\end{array}
$$

Moreover, we can take $s>\frac{6}{5}$ provided $\gamma>\frac{5}{4}$, and $m>\max \left\{1, \frac{2 \gamma+10}{17 \gamma-15}\right\}$.

Limit passage $\delta \rightarrow 0^{+}$।
Continuity equation

$$
\begin{equation*}
\int_{\Omega} \rho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \tag{42}
\end{equation*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$
Momentum equation

$$
\begin{equation*}
\int_{\Omega}(-\varrho(\mathbf{u} \otimes \mathbf{u}): \nabla \varphi+\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \varphi-\overline{p(\varrho, \vartheta)} \operatorname{div} \varphi) \mathrm{d} x=\int_{\Omega} \varrho \mathbf{f} \cdot \varphi \mathrm{d} x \tag{43}
\end{equation*}
$$

for all $\varphi \in C_{n}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$
Entropy inequality

$$
\begin{gather*}
\int_{\Omega}\left(\vartheta^{-1} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x \tag{44}\\
\leq \int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta: \nabla \psi}{\vartheta}-\overline{\varrho s(\varrho, \vartheta)} \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta}\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$, nonnegative
Global total energy balance

$$
\begin{equation*}
\int_{\partial \Omega} L\left(\vartheta-\Theta_{0}\right) \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \mathrm{d} x \tag{45}
\end{equation*}
$$

(total energy balance with test function $\psi \equiv 1$)

Limit passage $\delta \rightarrow 0^{+}$।
Continuity equation

$$
\begin{equation*}
\int_{\Omega} \rho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \tag{42}
\end{equation*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$
Momentum equation

$$
\begin{equation*}
\int_{\Omega}(-\varrho(\mathbf{u} \otimes \mathbf{u}): \nabla \varphi+\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \varphi-\overline{p(\varrho, \vartheta)} \operatorname{div} \varphi) \mathrm{d} x=\int_{\Omega} \varrho \mathbf{f} \cdot \varphi \mathrm{d} x \tag{43}
\end{equation*}
$$

for all $\varphi \in C_{n}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$
for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$, nonnegative
Global total energy balance

Limit passage $\delta \rightarrow 0^{+}$।
Continuity equation

$$
\begin{equation*}
\int_{\Omega} \rho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \tag{42}
\end{equation*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$
Momentum equation

$$
\begin{equation*}
\int_{\Omega}(-\varrho(\mathbf{u} \otimes \mathbf{u}): \nabla \varphi+\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \varphi-\overline{p(\varrho, \vartheta)} \operatorname{div} \varphi) \mathrm{d} x=\int_{\Omega} \varrho \mathbf{f} \cdot \varphi \mathrm{d} x \tag{43}
\end{equation*}
$$

for all $\varphi \in C_{n}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$
Entropy inequality

$$
\begin{gather*}
\int_{\Omega}\left(\vartheta^{-1} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x \tag{44}\\
\leq \int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta: \nabla \psi}{\vartheta}-\overline{\varrho s(\varrho, \vartheta)} \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta}\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$, nonnegative

Limit passage $\delta \rightarrow 0^{+}$।
Continuity equation

$$
\begin{equation*}
\int_{\Omega} \rho \mathbf{u} \cdot \nabla \psi \mathrm{d} x=0 \tag{42}
\end{equation*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$
Momentum equation

$$
\begin{equation*}
\int_{\Omega}(-\varrho(\mathbf{u} \otimes \mathbf{u}): \nabla \varphi+\mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \varphi-\overline{p(\varrho, \vartheta)} \operatorname{div} \varphi) \mathrm{d} x=\int_{\Omega} \varrho \mathbf{f} \cdot \varphi \mathrm{d} x \tag{43}
\end{equation*}
$$

for all $\varphi \in C_{n}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$
Entropy inequality

$$
\begin{gather*}
\int_{\Omega}\left(\vartheta^{-1} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u}+\kappa(\vartheta) \frac{|\nabla \vartheta|^{2}}{\vartheta^{2}}\right) \psi \mathrm{d} x \tag{44}\\
\leq \int_{\Omega}\left(\kappa(\vartheta) \frac{\nabla \vartheta: \nabla \psi}{\vartheta}-\overline{\varrho s(\varrho, \vartheta)} \mathbf{u} \cdot \nabla \psi\right) \mathrm{d} x+\int_{\partial \Omega} \frac{L}{\vartheta}\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$, nonnegative Global total energy balance

$$
\begin{equation*}
\int_{\partial \Omega} L\left(\vartheta-\Theta_{0}\right) \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \mathrm{d} x \tag{45}
\end{equation*}
$$

(total energy balance with test function $\psi \equiv 1$)

Limit passage $\delta \rightarrow 0^{+}$II

Total energy balance

$$
\begin{gather*}
\int_{\Omega}\left(\left(-\frac{1}{2} \varrho|\mathbf{u}|^{2}-\overline{\varrho e(\varrho, \vartheta)}\right) \mathbf{u} \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta: \nabla \psi\right) \mathrm{d} x \\
+\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \psi \mathrm{d} x+\int_{\Omega}(-\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}+\overline{p(\varrho, \vartheta)} \mathbf{u}) \cdot \nabla \psi \mathrm{d} x\right. \tag{46}
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$. We can pass only in certain situations, when we have better a priori estimates! We need $s>\frac{6}{5}$ and $m>1$.

We need to show the strong convergence of the density!
Main ingredients:

- Effective viscous flux identity
- Oscillation defect measure estimate
- Renormalized continuity equation

Limit passage $\delta \rightarrow 0^{+}$II

Total energy balance

$$
\begin{gather*}
\int_{\Omega}\left(\left(-\frac{1}{2} \varrho|\mathbf{u}|^{2}-\overline{\varrho e(\varrho, \vartheta)}\right) \mathbf{u} \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta: \nabla \psi\right) \mathrm{dx} \\
+\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \psi \mathrm{d} x+\int_{\Omega}(-\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}+\overline{p(\varrho, \vartheta)} \mathbf{u}) \cdot \nabla \psi \mathrm{d} x\right. \tag{46}
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$. We can pass only in certain situations, when we have better a priori estimates! We need $s>\frac{6}{5}$ and $m>1$.

We need to show the strong convergence of the density!
Main ingredients:

- Effective viscous flux identity
- Oscillation defect measure estimate
- Renormalized continuity equation

Limit passage $\delta \rightarrow 0^{+}$II

Total energy balance

$$
\begin{gather*}
\int_{\Omega}\left(\left(-\frac{1}{2} \varrho|\mathbf{u}|^{2}-\overline{\varrho e(\varrho, \vartheta)}\right) \mathbf{u} \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta: \nabla \psi\right) \mathrm{d} x \\
+\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \psi \mathrm{d} x+\int_{\Omega}(-\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}+\overline{p(\varrho, \vartheta)} \mathbf{u}) \cdot \nabla \psi \mathrm{d} x\right. \tag{46}
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$. We can pass only in certain situations, when we have better a priori estimates! We need $s>\frac{6}{5}$ and $m>1$.

We need to show the strong convergence of the density!
Main ingredients:

- Effective viscous flux identity
- Oscillation defect measure estimate
- Renormalized continuity equation

Limit passage $\delta \rightarrow 0^{+}$II

Total energy balance

$$
\begin{gather*}
\int_{\Omega}\left(\left(-\frac{1}{2} \varrho|\mathbf{u}|^{2}-\overline{\varrho e(\varrho, \vartheta)}\right) \mathbf{u} \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta: \nabla \psi\right) \mathrm{d} x \\
+\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \psi \mathrm{d} x+\int_{\Omega}(-\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}+\overline{p(\varrho, \vartheta)} \mathbf{u}) \cdot \nabla \psi \mathrm{d} x\right. \tag{46}
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$. We can pass only in certain situations, when we have better a priori estimates! We need $s>\frac{6}{5}$ and $m>1$.

We need to show the strong convergence of the density!
Main ingredients:

- Effective viscous flux identity
- Oscillation defect measure estimate
- Renormalized continuity equation

Limit passage $\delta \rightarrow 0^{+}$II

Total energy balance

$$
\begin{gather*}
\int_{\Omega}\left(\left(-\frac{1}{2} \varrho|\mathbf{u}|^{2}-\overline{\varrho e(\varrho, \vartheta)}\right) \mathbf{u} \cdot \nabla \psi+\kappa(\vartheta) \nabla \vartheta: \nabla \psi\right) \mathrm{d} x \\
+\int_{\partial \Omega}\left(L\left(\vartheta-\Theta_{0}\right) \psi \mathrm{d} \sigma=\int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \psi \mathrm{d} x+\int_{\Omega}(-\mathbb{S}(\vartheta, \nabla \mathbf{u}) \mathbf{u}+\overline{p(\varrho, \vartheta)} \mathbf{u}) \cdot \nabla \psi \mathrm{d} x\right. \tag{46}
\end{gather*}
$$

for all $\psi \in C^{1}(\bar{\Omega} ; \mathbb{R})$. We can pass only in certain situations, when we have better a priori estimates! We need $s>\frac{6}{5}$ and $m>1$.

We need to show the strong convergence of the density!
Main ingredients:

- Effective viscous flux identity
- Oscillation defect measure estimate
- Renormalized continuity equation

Limit passage $\delta \rightarrow 0^{+}$III

Item 1: Effective viscous flux
Using as test function $\zeta(x) \nabla \Delta^{-1}\left(1_{\Omega} T_{k}\left(\varrho_{\delta}\right)\right)$ with $T_{k}(z)=k T\left(\frac{z}{k}\right), k \in N$ for

$$
T(z)=\left\{\begin{array}{c}
z \text { for } 0 \leq z \leq 1 \\
\text { concave on }(0, \infty) \\
2 \text { for } z \geq 3
\end{array}\right.
$$

in the approximative balance of momentum, and $\zeta(x) \nabla \Delta^{-1}\left(1_{\Omega} \overline{T_{k}(\varrho)}\right)$ in its limit version we can deduce

$$
\begin{align*}
& \overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\left(\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)\right) \overline{T_{k}(\varrho) \operatorname{div} \mathbf{u}} \\
= & \overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}-\left(\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)\right) \overline{T_{k}(\varrho)} \operatorname{div} \mathbf{u} \tag{47}
\end{align*}
$$

a.e. in Ω.

Limit passage $\delta \rightarrow 0^{+} \mathrm{IV}$

Item 2: Oscillation defect measure
We do not have L^{2}-bound on the density and thus we do not know whether the renormalized continuity equation for the limit holds. To show it, we introduce:

Oscillation defect measure

$$
\begin{equation*}
\mathbf{o s c}_{\mathbf{q}}\left[\varrho_{\delta} \rightarrow \varrho\right](Q)=\sup _{k>1}\left(\limsup _{\delta \rightarrow 0^{+}} \int_{Q}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{q} \mathrm{~d} x\right) \tag{48}
\end{equation*}
$$

We have

and

$$
\mathbf{o s c}_{\mathbf{q}}\left[\varrho_{\delta} \rightarrow \varrho\right](\Omega)<\infty
$$

for $q>p^{\prime}$, then the limit density and velocity satisfy the renormalized
continuity equation.
Assuming $m>\max \left\{\frac{2}{3(2)}, \frac{2}{3}\right\}$, it can be verified that (49) hold's true with some

Limit passage $\delta \rightarrow 0^{+}$IV

Item 2: Oscillation defect measure
We do not have L^{2}-bound on the density and thus we do not know whether the renormalized continuity equation for the limit holds. To show it, we introduce:

Oscillation defect measure

$$
\begin{equation*}
\mathbf{o s c}_{\mathbf{q}}\left[\varrho_{\delta} \rightarrow \varrho\right](Q)=\sup _{k>1}\left(\limsup _{\delta \rightarrow 0^{+}} \int_{Q}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{q} \mathrm{~d} x\right) \tag{48}
\end{equation*}
$$

We have

$$
\begin{array}{cc}
\varrho_{\delta} \rightharpoonup \varrho & \text { in } L^{1}(\Omega ; \mathbb{R}) \\
\mathbf{u}_{\delta} \rightharpoonup \mathbf{u} & \text { in } L^{p}\left(\Omega ; \mathbb{R}^{3}\right), \\
\nabla \mathbf{u}_{\delta} \rightharpoonup \nabla \mathbf{u} & \text { in } L^{P}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)
\end{array}
$$

and

$$
\begin{equation*}
\mathbf{o s c}_{\mathbf{q}}\left[\varrho_{\delta} \rightarrow \varrho\right](\Omega)<\infty \tag{49}
\end{equation*}
$$

for $q>p^{\prime}$, then the limit density and velocity satisfy the renormalized continuity equation.

Limit passage $\delta \rightarrow 0^{+}$IV

Item 2: Oscillation defect measure
We do not have L^{2}-bound on the density and thus we do not know whether the renormalized continuity equation for the limit holds. To show it, we introduce:

Oscillation defect measure

$$
\begin{equation*}
\mathbf{o s c}_{\mathbf{q}}\left[\varrho_{\delta} \rightarrow \varrho\right](Q)=\sup _{k>1}\left(\limsup _{\delta \rightarrow 0^{+}} \int_{Q}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{q} \mathrm{~d} x\right) \tag{48}
\end{equation*}
$$

We have

$$
\begin{array}{cc}
\varrho_{\delta} \rightharpoonup \varrho & \text { in } L^{1}(\Omega ; \mathbb{R}) \\
\mathbf{u}_{\delta} \rightharpoonup \mathbf{u} & \text { in } L^{p}\left(\Omega ; \mathbb{R}^{3}\right), \\
\nabla \mathbf{u}_{\delta} \rightharpoonup \nabla \mathbf{u} & \text { in } L^{P}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)
\end{array}
$$

and

$$
\begin{equation*}
\mathbf{o s c}_{\mathbf{q}}\left[\varrho_{\delta} \rightarrow \varrho\right](\Omega)<\infty \tag{49}
\end{equation*}
$$

for $q>p^{\prime}$, then the limit density and velocity satisfy the renormalized continuity equation.
Assuming $m>\max \left\{\frac{2}{3(\gamma-1)}, \frac{2}{3}\right\}$, it can be verified that (49) holds true with some $2<q<\gamma+1$.

Limit passage $\delta \rightarrow 0^{+} \mathrm{V}$
We also get

$$
\begin{equation*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \leq C \int_{\Omega}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x \tag{50}
\end{equation*}
$$

$$
\begin{gather*}
\quad \limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}(\varrho \delta)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \tag{51}\\
\leq C \int_{\Omega} \frac{1}{1+\vartheta}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x .
\end{gather*}
$$

Item 3: Application of the renormalization
As $\left(\varrho \delta, \mathbf{u}_{\delta}\right)$ and (ϱ, \mathbf{u}) verify the renormalized continuity equation, we have:

$$
\int_{\Omega} T_{k}(\varrho) \operatorname{div} \mathbf{u} \mathrm{d} x=0
$$

and

$$
\int_{\Omega} T_{k}\left(\varrho_{\delta}\right) \operatorname{div} \mathbf{u}_{\delta} \mathrm{d} x=0, \quad \text { i.e. } \int_{\Omega} \overline{T_{k}(\varrho) \operatorname{div} \mathbf{u}} \mathrm{d} x=0
$$

To this aim, use

$$
\operatorname{div}(b(\varrho) u)+\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} u=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

with

$$
b(\varrho)=\varrho \int_{1}^{\varrho} \frac{T_{k}(z)}{z^{2}} \mathrm{~d} z .
$$

Limit passage $\delta \rightarrow 0^{+} \mathrm{V}$
We also get

$$
\begin{equation*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \leq C \int_{\Omega}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x \tag{50}
\end{equation*}
$$

$$
\begin{gather*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \tag{51}\\
C \int_{\Omega} \frac{1}{1+\vartheta}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x .
\end{gather*}
$$

Item 3: Application of the renormalization
As $\left(\varrho \delta, \mathbf{u}_{\delta}\right)$ and (ϱ, \mathbf{u}) verify the renormalized continuity equation, we have:

and

$$
\int_{\Omega} T_{k}\left(\varrho_{\delta}\right) \operatorname{div} \mathbf{u}_{\delta} \mathrm{d} x=0, \quad \text { i.e. } \int_{\Omega} \overline{T_{k}(\varrho) \operatorname{div} \mathbf{u}} \mathrm{d} x=0
$$

To this aim, use
$\operatorname{div}(b(\varrho) u)+\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} u=0$ in $D^{\prime}\left(\mathbb{R}^{3}\right)$
with

Limit passage $\delta \rightarrow 0^{+} \mathrm{V}$
We also get

$$
\begin{equation*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \leq C \int_{\Omega}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x \tag{50}
\end{equation*}
$$

$$
\begin{gather*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \tag{51}\\
C \int_{\Omega} \frac{1}{1+\vartheta}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x .
\end{gather*}
$$

Item 3: Application of the renormalization
As $\left(\varrho_{\delta}, \mathbf{u}_{\delta}\right)$ and (ϱ, \mathbf{u}) verify the renormalized continuity equation, we have:

$$
\int_{\Omega} T_{k}(\varrho) \operatorname{div} \mathbf{u} \mathrm{d} x=0
$$

and

$$
\int_{\Omega} T_{k}\left(\varrho_{\delta}\right) \operatorname{div} \mathbf{u}_{\delta} \mathrm{d} x=0, \quad \text { i.e. } \int_{\Omega} \overline{T_{k}(\varrho) \operatorname{div} \mathbf{u}} \mathrm{d} x=0
$$

To this aim, use

$$
\operatorname{div}(b(\varrho) u)+\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} u=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

Limit passage $\delta \rightarrow 0^{+} \mathrm{V}$

We also get

$$
\begin{equation*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \leq C \int_{\Omega}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x \tag{50}
\end{equation*}
$$

$$
\begin{align*}
& \limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \tag{51}\\
- & \int_{\Omega} \frac{1}{1+\vartheta}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x .
\end{align*}
$$

Item 3: Application of the renormalization
As $\left(\varrho_{\delta}, \mathbf{u}_{\delta}\right)$ and (ϱ, \mathbf{u}) verify the renormalized continuity equation, we have:

$$
\int_{\Omega} T_{k}(\varrho) \operatorname{div} \mathbf{u} \mathrm{d} x=0
$$

and

$$
\int_{\Omega} T_{k}\left(\varrho_{\delta}\right) \operatorname{div} \mathbf{u}_{\delta} \mathrm{d} x=0, \quad \text { i.e. } \int_{\Omega} \overline{T_{k}(\varrho) \operatorname{div} \mathbf{u}} \mathrm{d} x=0
$$

To this aim, use

$$
\operatorname{div}(b(\varrho) \mathbf{u})+\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} \mathbf{u}=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

Limit passage $\delta \rightarrow 0^{+} \mathrm{V}$

We also get

$$
\begin{gather*}
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \leq C \int_{\Omega}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x \tag{50}\\
\limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x \tag{51}\\
\leq C \int_{\Omega} \frac{1}{1+\vartheta}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x
\end{gather*}
$$

Item 3: Application of the renormalization
As $\left(\varrho_{\delta}, \mathbf{u}_{\delta}\right)$ and (ϱ, \mathbf{u}) verify the renormalized continuity equation, we have:

$$
\int_{\Omega} T_{k}(\varrho) \operatorname{div} \mathbf{u} \mathrm{d} x=0
$$

and

$$
\int_{\Omega} T_{k}\left(\varrho_{\delta}\right) \operatorname{div} \mathbf{u}_{\delta} \mathrm{d} x=0, \quad \text { i.e. } \int_{\Omega} \overline{T_{k}(\varrho) \operatorname{div} \mathbf{u}} \mathrm{d} x=0
$$

To this aim, use

$$
\operatorname{div}(b(\varrho) \mathbf{u})+\left(\varrho b^{\prime}(\varrho)-b(\varrho)\right) \operatorname{div} \mathbf{u}=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)
$$

with

$$
b(\varrho)=\varrho \int_{1}^{\varrho} \frac{T_{k}(z)}{z^{2}} \mathrm{~d} z
$$

Limit passage $\delta \rightarrow 0^{+} \mathrm{VI}$

Using the effective viscous flux identity we get that

$$
\begin{equation*}
\int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=\int_{\Omega}\left(T_{k}(\varrho)-\overline{T_{k}(\varrho)}\right) \operatorname{div} \mathbf{u} \mathrm{d} x . \tag{52}
\end{equation*}
$$

oscillation defect measure together with (49)

$$
\lim _{k \rightarrow \infty} \int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(0, \vartheta) T_{k}(\rho)}-\bar{p}(\varrho, \vartheta) \overline{T_{k}(\varrho)}\right) \mathrm{dx}=0 .
$$

Hence

with some $q>2$, the same as for the oscillation defect measure. Now, as

$$
\left\|\varrho_{\delta}-\varrho\right\|_{1} \leq\left\|\varrho_{\delta}-T_{k}\left(\varrho_{\delta}\right)\right\|_{1}+\left\|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right\|_{1}+\left\|T_{k}(\varrho)-\varrho\right\|_{1},
$$

which implies

Limit passage $\delta \rightarrow 0^{+} \mathrm{VI}$

Using the effective viscous flux identity we get that

$$
\begin{equation*}
\int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=\int_{\Omega}\left(T_{k}(\varrho)-\overline{T_{k}(\varrho)}\right) \operatorname{div} \mathbf{u} \mathrm{d} x \tag{52}
\end{equation*}
$$

As $\lim _{k \rightarrow \infty}\left\|T_{k}(\varrho)-\varrho\right\|_{1}=\lim _{k \rightarrow \infty}\left\|\overline{T_{k}(\varrho)}-\varrho\right\|_{1}=0$, the definition of the oscillation defect measure together with (49)

$$
\lim _{k \rightarrow \infty} \int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=0
$$

Hence

with some $q>2$, the same as for the oscillation defect measure. Now, as

Limit passage $\delta \rightarrow 0^{+} \mathrm{VI}$

Using the effective viscous flux identity we get that

$$
\begin{equation*}
\int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=\int_{\Omega}\left(T_{k}(\varrho)-\overline{T_{k}(\varrho)}\right) \operatorname{div} \mathbf{u} \mathrm{d} x \tag{52}
\end{equation*}
$$

As $\lim _{k \rightarrow \infty}\left\|T_{k}(\varrho)-\varrho\right\|_{1}=\lim _{k \rightarrow \infty}\left\|\overline{T_{k}(\varrho)}-\varrho\right\|_{1}=0$, the definition of the oscillation defect measure together with (49)

$$
\lim _{k \rightarrow \infty} \int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=0
$$

Hence

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x=0 \\
\lim _{k \rightarrow \infty} \limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{q} \mathrm{~d} x=0
\end{gathered}
$$

with some $q>2$, the same as for the oscillation defect measure.

Limit passage $\delta \rightarrow 0^{+} \mathrm{VI}$

Using the effective viscous flux identity we get that

$$
\begin{equation*}
\int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=\int_{\Omega}\left(T_{k}(\varrho)-\overline{T_{k}(\varrho)}\right) \operatorname{div} \mathbf{u} \mathrm{d} x . \tag{52}
\end{equation*}
$$

As $\lim _{k \rightarrow \infty}\left\|T_{k}(\varrho)-\varrho\right\|_{1}=\lim _{k \rightarrow \infty}\left\|\overline{T_{k}(\varrho)}-\varrho\right\|_{1}=0$, the definition of the oscillation defect measure together with (49)

$$
\lim _{k \rightarrow \infty} \int_{\Omega} \frac{1}{\frac{4}{3} \mu(\vartheta)+\xi(\vartheta)}\left(\overline{p(\varrho, \vartheta) T_{k}(\varrho)}-\overline{p(\varrho, \vartheta)} \overline{T_{k}(\varrho)}\right) \mathrm{d} x=0
$$

Hence

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \limsup _{\delta \rightarrow 0^{+}} \int_{\Omega} \frac{1}{1+\vartheta}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{\gamma+1} \mathrm{~d} x=0 \\
\lim _{k \rightarrow \infty} \limsup _{\delta \rightarrow 0^{+}} \int_{\Omega}\left|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right|^{q} \mathrm{~d} x=0
\end{gathered}
$$

with some $q>2$, the same as for the oscillation defect measure. Now, as

$$
\begin{gathered}
\left\|\varrho_{\delta}-\varrho\right\|_{1} \leq\left\|\varrho_{\delta}-T_{k}\left(\varrho_{\delta}\right)\right\|_{1}+\left\|T_{k}\left(\varrho_{\delta}\right)-T_{k}(\varrho)\right\|_{1}+\left\|T_{k}(\varrho)-\varrho\right\|_{1} \\
\varrho_{\delta} \rightarrow \varrho \quad \operatorname{in} L^{1}(\Omega ; \mathbb{R})
\end{gathered}
$$

which implies

$$
\varrho_{\delta} \rightarrow \varrho \quad \text { in } L^{p}(\Omega ; \mathbb{R}) \quad \forall 1 \leq p<s \gamma
$$

Results I (Navier b.c.)

We proved:
Theorem
Let $\Omega \in C^{2}$ be a bounded domain in $\mathbb{R}^{3}, \mathbf{f} \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right), \Theta_{0} \geq K_{0}>0$ a.e. at $\partial \Omega, \Theta_{0} \in L^{1}(\partial \Omega)$. Let $\gamma>1, m>\max \left\{\frac{2}{3}, \frac{2}{3(\gamma-1)}\right\}$.
Let Ω be not axially symmetric. Then there exists a variational entropy solution to our problem. Moreover, (ϱ, \mathbf{u}) is a renormalized solution to the continuity equation.
Additionally, if $m>1$ and $\gamma>\frac{5}{4}$, then the solution is a weak solution, i.e. also the weak formulation of the total energy balance is fulfilled.

Results I (Navier b.c.)

We proved:
Theorem
Let $\Omega \in C^{2}$ be a bounded domain in $\mathbb{R}^{3}, \mathbf{f} \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right), \Theta_{0} \geq K_{0}>0$ a.e. at $\partial \Omega, \Theta_{0} \in L^{1}(\partial \Omega)$. Let $\gamma>1, m>\max \left\{\frac{2}{3}, \frac{2}{3(\gamma-1)}\right\}$.
Let Ω be not axially symmetric. Then there exists a variational entropy solution to our problem. Moreover, (ϱ, \mathbf{u}) is a renormalized solution to the continuity equation.
Additionally, if $m>1$ and $\gamma>\frac{5}{4}$, then the solution is a weak solution, i.e. also the weak formulation of the total energy balance is fulfilled.

Results II (Dirichlet b.c.)

Theorem
Let $\Omega \in C^{2}$ be a bounded domain in $\mathbb{R}^{3}, \mathbf{f} \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right), \Theta_{0} \geq K_{0}>0$ a.e. at $\partial \Omega, \Theta_{0} \in L^{1}(\partial \Omega)$. Let $\gamma>1, m>\max \left\{\frac{2}{3}, \frac{2}{3(\gamma-1)}\right\}$.
Then there exists a variational entropy solution to our problem. Moreover, (ϱ, \mathbf{u}) is a renormalized solution to the continuity equation.
Additionally, if $m>\max \left\{\frac{2}{3}, \frac{2 \gamma}{3(3 \gamma-4)}\right\}$ and $\gamma>\frac{4}{3}$, then the solution is a weak
solution, i.e. also the weak formulation of the total energy balance is fulfilled.

Results II (Dirichlet b.c.)

Theorem
Let $\Omega \in C^{2}$ be a bounded domain in $\mathbb{R}^{3}, \mathbf{f} \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right), \Theta_{0} \geq K_{0}>0$ a.e. at $\partial \Omega, \Theta_{0} \in L^{1}(\partial \Omega)$. Let $\gamma>1, m>\max \left\{\frac{2}{3}, \frac{2}{3(\gamma-1)}\right\}$.
Then there exists a variational entropy solution to our problem. Moreover, (ϱ, \mathbf{u}) is a renormalized solution to the continuity equation. Additionally, if $m>\max \left\{\frac{2}{3}, \frac{2 \gamma}{3(3 \gamma-4)}\right\}$ and $\gamma>\frac{4}{3}$, then the solution is a weak solution, i.e. also the weak formulation of the total energy balance is fulfilled.

The case $\alpha=0$

The situation when the viscosity is independent of the temperature was studied in

Piotr B. Mucha, M.P.: On the steady compressible Navier-Stokes-Fourier system, Comm. Math. Phys. 288 (2009), 349-377.

Piotr B. Mucha, M.P.: Weak solutions to equations of steady compressible heat conducting fluids, Math. Models Methods Appl. Sci. 20 (2010), 785-813.

- The a priori estimates for the velocity were obtained from momentum equation, not from the entropy inequality, therefore it was possible have the velocity gradient in $L^{2}(\Omega)$
- The entropy inequality was used to control the temperature,

Bogovskii-type estimates for the density

- In the first paper, combining the estimates with a special approximation we obtained for Navier boundary conditions for the velocity existence of more regular solutions for $\gamma>3$ and $m>\frac{3 \gamma-1}{3 \gamma-7}$
$\mathbf{u} \in W^{1, q}\left(\Omega ; \mathbb{R}^{3}\right), 1 \leq q<\infty$
\Rightarrow In the second paper, existence of weak solutions was established for $\gamma>\frac{7}{3}$ $m>\frac{3 \gamma-1}{3 \gamma-7}$ and either Navier or Dirichlet boundary conditions for the velocity.

The case $\alpha=0$

The situation when the viscosity is independent of the temperature was studied in

Piotr B. Mucha, M.P.: On the steady compressible Navier-Stokes-Fourier system, Comm. Math. Phys. 288 (2009), 349-377.

星
Piotr B. Mucha, M.P.: Weak solutions to equations of steady compressible heat conducting fluids, Math. Models Methods Appl. Sci. 20 (2010), 785-813.

- The a priori estimates for the velocity were obtained from momentum equation, not from the entropy inequality, therefore it was possible have the velocity gradient in $L^{2}(\Omega)$
- The entropy inequality was used to control the temperature, Bogovskii-type estimates for the density

In the first paper, combining the estimates with a special approximation,
we obtained for N avier boundary conditions for the velocity existence of
more regular solutions for $\gamma>3$ and $m>\frac{3 \gamma-1}{3 \gamma-7}$:

- In the second paper, existence of weak solutions was established for $\gamma>\frac{7}{3}$ $m>\frac{3 \gamma-1}{3 \gamma-7}$ and either Navier or Dirichlet boundary conditions for the velocity.

The case $\alpha=0$

The situation when the viscosity is independent of the temperature was studied in

Piotr B. Mucha, M.P.: On the steady compressible Navier-Stokes-Fourier system, Comm. Math. Phys. 288 (2009), 349-377.
固
Piotr B. Mucha, M.P.: Weak solutions to equations of steady compressible heat conducting fluids, Math. Models Methods Appl. Sci. 20 (2010), 785-813.

- The a priori estimates for the velocity were obtained from momentum equation, not from the entropy inequality, therefore it was possible have the velocity gradient in $L^{2}(\Omega)$
- The entropy inequality was used to control the temperature, Bogovskii-type estimates for the density
- In the first paper, combining the estimates with a special approximation, we obtained for Navier boundary conditions for the velocity existence of more regular solutions for $\gamma>3$ and $m>\frac{3 \gamma-1}{3 \gamma-7}$:
- $\varrho \in L^{\infty}(\Omega)$
- $\mathbf{u} \in W^{1, q}\left(\Omega ; \mathbb{R}^{3}\right), 1 \leq q<\infty$
- $\vartheta \in W^{1, q}(\Omega), 1 \leq q<\infty$

The case $\alpha=0$

The situation when the viscosity is independent of the temperature was studied in

Piotr B. Mucha, M.P.: On the steady compressible Navier-Stokes-Fourier system, Comm. Math. Phys. 288 (2009), 349-377.

Diotr B. Mucha, M.P.: Weak solutions to equations of steady compressible heat conducting fluids, Math. Models Methods Appl. Sci. 20 (2010), 785-813.

- The a priori estimates for the velocity were obtained from momentum equation, not from the entropy inequality, therefore it was possible have the velocity gradient in $L^{2}(\Omega)$
- The entropy inequality was used to control the temperature, Bogovskii-type estimates for the density
- In the first paper, combining the estimates with a special approximation, we obtained for Navier boundary conditions for the velocity existence of more regular solutions for $\gamma>3$ and $m>\frac{3 \gamma-1}{3 \gamma-7}$:
- $\varrho \in L^{\infty}(\Omega)$
- $\mathbf{u} \in W^{1, q}\left(\Omega ; \mathbb{R}^{3}\right), 1 \leq q<\infty$
- $\vartheta \in W^{1, q}(\Omega), 1 \leq q<\infty$
- In the second paper, existence of weak solutions was established for $\gamma>\frac{7}{3}$, $m>\frac{3 \gamma-1}{3 \gamma-7}$ and either Navier or Dirichlet boundary conditions for the velocity.

Changes for $0<\alpha<1$
Recall that

$$
\|\mathbf{u}\|_{1, p} \leq C\left(\int_{\Omega} \frac{1}{\vartheta} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u} \mathrm{d} x\right)^{\frac{1}{2}}\|\vartheta\|_{3 m}^{\frac{1-\alpha}{2}},
$$

i.e., for $\alpha<1$ we control only $W^{1, p}$-norm of the velocity, $p<2$.

For $\gamma>\frac{3}{2}$ it is possible to estimate the density by the Bogovskii-type estimates and in dependence on γ and m it is possible to obtain either the weak or the variational entropy solutions as was shown in
國 Ondřej Kreml, Šárka Nečasová, M. P: On the steady equations for compressible radiative gas, Z. Angew. Math. Phys. 64 (2013), 539-571. Therein, the steady flow of compressible, heat-conducting, radiative gas was studied.

For small γ and/or m it is possible to repeat the estimates of the pressure and momentum from the previous part. However, it is not possible to get from them the estimates of the velocity and density as above. Moreover, the integration-by-parts argument does not work! We can replace it with certain properties of Bessel kernels and Bessel potential spaces. The proof itself is similar, but more technical and the results are more messy, we have three parameters: α, γ and m. This is a recent project with O . Kreml.

Changes for $0<\alpha<1$

Recall that

$$
\|\mathbf{u}\|_{1, p} \leq C\left(\int_{\Omega} \frac{1}{\vartheta} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u} \mathrm{d} x\right)^{\frac{1}{2}}\|\vartheta\|_{3 m}^{\frac{1-\alpha}{2}},
$$

i.e., for $\alpha<1$ we control only $W^{1, p}$-norm of the velocity, $p<2$.

For $\gamma>\frac{3}{2}$ it is possible to estimate the density by the Bogovskii-type estimates and in dependence on γ and m it is possible to obtain either the weak or the variational entropy solutions as was shown in
© Ondřej Kreml, Šárka Nečasová, M.P.: On the steady equations for compressible radiative gas, Z. Angew. Math. Phys. 64 (2013), 539-571.
Therein, the steady flow of compressible, heat-conducting, radiative gas was studied.

For small γ and/or m it is possible to repeat the estimates of the pressure and momentum from the previous part. However, it is not possible to get from them the estimates of the velocity and density as above. Moreover, the integration-by-parts argument does not work! We can replace it with certain properties of Bessel kernels and Bessel potential spaces. The proof itself is similar, but more technical and the results are more messy, we have three parameters: α, γ and m. This is a recent project with O. Kreml

Changes for $0<\alpha<1$

Recall that

$$
\|\mathbf{u}\|_{1, p} \leq C\left(\int_{\Omega} \frac{1}{\vartheta} \mathbb{S}(\vartheta, \nabla \mathbf{u}): \nabla \mathbf{u} \mathrm{d} x\right)^{\frac{1}{2}}\|\vartheta\|_{3 m}^{\frac{1-\alpha}{2}}
$$

i.e., for $\alpha<1$ we control only $W^{1, p}$-norm of the velocity, $p<2$.

For $\gamma>\frac{3}{2}$ it is possible to estimate the density by the Bogovskii-type estimates and in dependence on γ and m it is possible to obtain either the weak or the variational entropy solutions as was shown in
䍰 Ondřej Kreml, Šárka Nečasová, M.P.: On the steady equations for compressible radiative gas, Z. Angew. Math. Phys. 64 (2013), 539-571.
Therein, the steady flow of compressible, heat-conducting, radiative gas was studied.

For small γ and/or m it is possible to repeat the estimates of the pressure and momentum from the previous part. However, it is not possible to get from them the estimates of the velocity and density as above. Moreover, the integration-by-parts argument does not work! We can replace it with certain properties of Bessel kernels and Bessel potential spaces. The proof itself is similar, but more technical and the results are more messy, we have three parameters: α, γ and m. This is a recent project with O . Kreml.

Chemically reacting mixtures I

$$
\begin{gather*}
\operatorname{div}(\varrho \mathbf{u})=0 \\
\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}+\nabla \pi=\varrho \mathbf{f}, \\
\operatorname{div}(\varrho E \mathbf{u})+\operatorname{div}(\pi \mathbf{u})+\operatorname{div} \mathbb{Q}-\operatorname{div}(\mathbb{S} \mathbf{u})=\varrho \mathbf{f} \cdot \mathbf{u} \tag{53}\\
\operatorname{div}\left(\varrho Y_{k} \mathbf{u}\right)+\operatorname{div} \mathbf{F}_{k}=m_{k} \omega_{k}, \quad k \in\{1, \ldots, n\}
\end{gather*}
$$

with the boundary conditions

$$
\begin{gathered}
\mathbf{u}=\mathbf{0} \\
\mathbf{F}_{k} \cdot \mathbf{n}=0 \\
-\mathbf{Q} \cdot \mathbf{n}+L\left(\vartheta-\Theta_{0}\right)=0
\end{gathered}
$$

and the given total mass

$$
\int_{\Omega} \varrho \mathrm{d} x=M>0
$$

Chemically reacting mixtures I

$$
\begin{gather*}
\operatorname{div}(\varrho \mathbf{u})=0 \\
\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}+\nabla \pi=\varrho \mathbf{f}, \\
\operatorname{div}(\varrho E \mathbf{u})+\operatorname{div}(\pi \mathbf{u})+\operatorname{div} \mathbb{Q}-\operatorname{div}(\mathbb{S} \mathbf{u})=\varrho \mathbf{f} \cdot \mathbf{u} \tag{53}\\
\operatorname{div}\left(\varrho Y_{k} \mathbf{u}\right)+\operatorname{div} \mathbf{F}_{k}=m_{k} \omega_{k}, \quad k \in\{1, \ldots, n\}
\end{gather*}
$$

with the boundary conditions

$$
\begin{gather*}
\mathbf{u}=\mathbf{0} \tag{54}\\
\mathbf{F}_{k} \cdot \mathbf{n}=0 \tag{55}\\
-\mathbf{Q} \cdot \mathbf{n}+L\left(\vartheta-\Theta_{0}\right)=0 \tag{56}
\end{gather*}
$$

and the given total mass

$$
\begin{equation*}
\int_{\Omega} \varrho \mathrm{d} x=M>0 \tag{57}
\end{equation*}
$$

Chemically reacting mixtures I

$$
\begin{gather*}
\operatorname{div}(\varrho \mathbf{u})=0 \\
\operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u})-\operatorname{div} \mathbb{S}+\nabla \pi=\varrho \mathbf{f}, \\
\operatorname{div}(\varrho E \mathbf{u})+\operatorname{div}(\pi \mathbf{u})+\operatorname{div} \mathbb{Q}-\operatorname{div}(\mathbb{S} \mathbf{u})=\varrho \mathbf{f} \cdot \mathbf{u}, \tag{53}\\
\operatorname{div}\left(\varrho Y_{k} \mathbf{u}\right)+\operatorname{div} \mathbf{F}_{k}=m_{k} \omega_{k}, \quad k \in\{1, \ldots, n\}
\end{gather*}
$$

with the boundary conditions

$$
\begin{gather*}
\mathbf{u}=\mathbf{0} \tag{54}\\
\mathbf{F}_{k} \cdot \mathbf{n}=0 \tag{55}\\
-\mathbf{Q} \cdot \mathbf{n}+L\left(\vartheta-\Theta_{0}\right)=0 \tag{56}
\end{gather*}
$$

and the given total mass

$$
\begin{equation*}
\int_{\Omega} \varrho \mathrm{d} x=M>0 \tag{57}
\end{equation*}
$$

Indeed, $\sum_{k=1}^{n} \mathbf{F}_{k}=\mathbf{0}, \sum_{k=1}^{n} m_{k} \omega_{k}=0$ and we must construct solutions such that $\sum_{k=1}^{N} Y_{k}=1$.

Chemically reacting mixtures II

Based on similar ideas presented for the N-S-F system the existence of weak and variational entropy solutions can be established in the case of the same molar masses (closely connected with information from the entropy inequality which plays a central role here).

周 V. Giovangigli, M.P., E. Zatorska: On the steady flow of reactive gaseous mixture, Analysis (Berlin) 35 (2015), no. 4, 319-341.
T. T. Piasecki, M.P.: Weak and variational entropy solutions to the system describing steady flow of a compressible reactive mixture, Nonlinear Anal. 159 (2017), 365-392.

目
T. Piasecki, M.P.: On steady solutions to a model of chemically reacting heat conducting compressible mixture with slip boundary conditions. Mathematical analysis in fluid mechanics-selected recent results, 223-242, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018.

Chemically reacting mixtures II

Based on similar ideas presented for the N-S-F system the existence of weak and variational entropy solutions can be established in the case of the same molar masses (closely connected with information from the entropy inequality which plays a central role here).

R V. Giovangigli, M.P., E. Zatorska: On the steady flow of reactive gaseous mixture, Analysis (Berlin) 35 (2015), no. 4, 319-341.
T. T. Piasecki, M.P.: Weak and variational entropy solutions to the system describing steady flow of a compressible reactive mixture, Nonlinear Anal. 159 (2017), 365-392.

T- T. Piasecki, M.P.: On steady solutions to a model of chemically reacting heat conducting compressible mixture with slip boundary conditions. Mathematical analysis in fluid mechanics-selected recent results, 223-242, Contemp. Math., 710, Amer. Math. Soc., Providence, RI, 2018.
The case of different molar masses for a slightly different thermodynamic concept is ongoing project with M. Bulíček, A. Jüngel and N. Zamponi.

Time periodic solutions I

Time periodic solutions to the compressible Navier-Stokes-Fourier system were constructed in
E- E. Feireisl, Eduard, Piotr B. Mucha, Antonín Novotný, MP: Time-periodic solutions to the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal. 204 (2012), 745-786.
\Rightarrow The proof combines the evolutionary with estimates similar to the steady problem

- Due to the lack of time-compactness of the temperature the variational entropy formulation must be considered
- The difficult part is also the construction of the approximate solutions

The result was extended in
家
Š. Axmann, M.P.: Time-periodic solutions to the full Navier-Stokes-Fourier system with radiation on the boundary, J. Math. Anal. Appl. 428 (2015), 414-444.

Time periodic solutions I

Time periodic solutions to the compressible Navier-Stokes-Fourier system were constructed in

固
E. Feireisl, Eduard, Piotr B. Mucha, Antonín Novotný, MP: Time-periodic solutions to the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal. 204 (2012), 745-786.

- The proof combines the evolutionary with estimates similar to the steady problem
- Due to the lack of time-compactness of the temperature the variational entropy formulation must be considered
- The difficult part is also the construction of the approximate solutions

The result was extended in
雨
Š. Axmann, M.P.: Time-periodic solutions to the full
Navier-Stokes-Fourier system with radiation on the boundary, J. Math. Anal. Appl. 428 (2015), 414-444

Time periodic solutions I

Time periodic solutions to the compressible Navier-Stokes-Fourier system were constructed inE. Feireisl, Eduard, Piotr B. Mucha, Antonín Novotný, MP: Time-periodic solutions to the full Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal. 204 (2012), 745-786.

- The proof combines the evolutionary with estimates similar to the steady problem
- Due to the lack of time-compactness of the temperature the variational entropy formulation must be considered
- The difficult part is also the construction of the approximate solutions

The result was extended in
通
Š. Axmann, M.P.: Time-periodic solutions to the full Navier-Stokes-Fourier system with radiation on the boundary, J. Math. Anal. Appl. 428 (2015), 414-444.

Homogenization for the steady NSF problem I

Let $\varepsilon>0$ be a small number, measures the mutual distance between the holes

$$
\begin{equation*}
\Omega_{\varepsilon}=\Omega \backslash \bigcup_{n=1}^{N(\varepsilon)} \bar{T}_{n, \varepsilon}, \tag{58}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{3}$ is a bounded C^{2}-domain and $\left\{T_{n, \varepsilon}\right\}_{n=1}^{N(\varepsilon)}$ are C^{2}-domains of the diameter comparable to ε^{α} for some $\alpha \geq 1$ such that there exist δ_{0}, δ_{1} and δ_{2} positive for which

$$
\begin{equation*}
T_{n, \varepsilon}=x_{\varepsilon, n}+\varepsilon^{\alpha} T_{n, 1}^{0} \subset B_{\delta_{0} \varepsilon^{\alpha}}\left(x_{n, \varepsilon}\right) \subset B_{2 \delta_{0} \varepsilon^{\alpha}}\left(x_{n, \varepsilon}\right) \subset B_{\delta_{1} \varepsilon}\left(x_{n, \varepsilon}\right) \subset B_{\delta_{\mathbf{2}} \varepsilon}\left(x_{n, \varepsilon}\right) \subset \Omega \tag{59}
\end{equation*}
$$

The balls $B_{\delta_{2} \varepsilon}\left(x_{n, \varepsilon}\right)$ centred at $x_{\varepsilon, n}$ with diameter $\delta_{2} \varepsilon$ are pairwise disjoint and we assume that the domains $\left\{T_{n, 1}^{0}\right\}_{n=1}^{N(\varepsilon)}$ are uniformly C^{2}-domains.

Homogenization for the steady NSF problem II

Theorem

Let $\mathbf{f} \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right), M_{\varepsilon}>0$ with $\sup _{\varepsilon} M_{\varepsilon}=M_{1}<\infty, \inf _{\varepsilon} M_{\varepsilon}=M_{0}>0$, $L>0$ and let $\vartheta_{0} \geq T_{0}>0$ in Ω be defined so that it has finite L^{q}-norm over arbitrary smooth two-dimensional surface with finite surface area contained in Ω for some $q>1$. Let ($\varrho_{\varepsilon}, \mathbf{u}_{\varepsilon}, \vartheta_{\varepsilon}$) denote the corresponding renormalized weak entropy solution to our problem for fixed $\varepsilon>0$, extended suitably to the whole Ω, for which in particular the extensions preserve their values in Ω_{ε}. Let $\alpha>3$, $m>2$ and $\gamma>2$ fulfil $\alpha>\max \left\{\frac{2 \gamma-3}{\gamma-2}, \frac{3 m-2}{m-2}\right\}$. Then, for $\varepsilon \in(0,1]$ the solutions are uniformly bounded

$$
\begin{equation*}
\left\|\varrho_{\varepsilon}\right\|_{L \gamma+\Theta(\Omega)}+\left\|\mathbf{u}_{\varepsilon}\right\|_{W_{0}^{1,2}(\Omega)}+\left\|\vartheta_{\varepsilon}\right\|_{W^{1,2} \cap L^{3 m}(\Omega)} \leq C, \tag{60}
\end{equation*}
$$

where $\Theta:=\min \left\{2 \gamma-3, \gamma \frac{3 m-2}{3 m+2}\right\}$ and C is independent of ε. Moreover, the corresponding weak limit of the sequence for $\varepsilon \rightarrow 0^{+}$is a renormalized weak solution to our problem in Ω, i.e., it fulfils the continuity equation in the weak and renormalized sense, the mass balance and the total energy balance in the weak sense in Ω, and $\varrho \geq 0$ and $\vartheta>0$ a.e. in Ω.
Y. Lu, M.P. Homogenization of stationary

Homogenization for the steady NSF problem II

Theorem

Let $\mathbf{f} \in L^{\infty}\left(\Omega ; \mathbb{R}^{3}\right), M_{\varepsilon}>0$ with $\sup _{\varepsilon} M_{\varepsilon}=M_{1}<\infty, \inf _{\varepsilon} M_{\varepsilon}=M_{0}>0$, $L>0$ and let $\vartheta_{0} \geq T_{0}>0$ in Ω be defined so that it has finite L^{q}-norm over arbitrary smooth two-dimensional surface with finite surface area contained in Ω for some $q>1$. Let ($\varrho_{\varepsilon}, \mathbf{u}_{\varepsilon}, \vartheta_{\varepsilon}$) denote the corresponding renormalized weak entropy solution to our problem for fixed $\varepsilon>0$, extended suitably to the whole Ω, for which in particular the extensions preserve their values in Ω_{ε}. Let $\alpha>3$, $m>2$ and $\gamma>2$ fulfil $\alpha>\max \left\{\frac{2 \gamma-3}{\gamma-2}, \frac{3 m-2}{m-2}\right\}$. Then, for $\varepsilon \in(0,1]$ the solutions are uniformly bounded

$$
\begin{equation*}
\left\|\varrho_{\varepsilon}\right\|_{L \gamma+\Theta(\Omega)}+\left\|\mathbf{u}_{\varepsilon}\right\|_{W_{0}^{1,2}(\Omega)}+\left\|\vartheta_{\varepsilon}\right\|_{W^{1,2} \cap L^{3 m}(\Omega)} \leq C, \tag{60}
\end{equation*}
$$

where $\Theta:=\min \left\{2 \gamma-3, \gamma \frac{3 m-2}{3 m+2}\right\}$ and C is independent of ε. Moreover, the corresponding weak limit of the sequence for $\varepsilon \rightarrow 0^{+}$is a renormalized weak solution to our problem in Ω, i.e., it fulfils the continuity equation in the weak and renormalized sense, the mass balance and the total energy balance in the weak sense in Ω, and $\varrho \geq 0$ and $\vartheta>0$ a.e. in Ω.
The details are contained in

Y. Lu, M.P.: Homogenization of stationary Navier-Stokes-Fourier system in domains with tiny holes, accepted to J. Differ. Equations (2021).

THANK YOU VERY MUCH

 FOR YOUR ATTENTION!