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Compressible Oldroyd-B model I

The following model was derived in

J. W. Barrett, Y. Lu, E. Süli: Existence of large-data finite-energy global
weak solutions to a compressible Oldroyd–B model. Comm. Math. Sci. 15
(2017) 1265–1323.

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%)− divx S(∇xu) = divx

(
T− (kLη + ζ η2) I

)
+ % f,

∂tη + divx(ηu) = ε∆xη,

∂tT + Divx(uT)−
(
∇xuT + T∇T

x u
)

= ε∆xT +
k

2λ
η I− 1

2λ
T.

(1)
Above,

S(∇xu) = µS

(
∇xu +∇T

x u
2

− 1
3

(divx u)I
)

+ µB(divx u)I,

is the Newtonian stress tensor with µS > 0 and µB ≥ 0, T is the extra stress
tensor, p(%) = a%γ is the fluid pressure, kLη + ζη2 can be interpreted as
polymer pressure, ε, k, λ, ζ and L are positive numbers.



Compressible Oldroyd-B model II

The authors derived existence of global in time solutions for this model, under
a fundamental assumption that ε > 0. A similar result was derived for a slightly
different model in

M. Bulíček, E. Feireisl, J. Málek: On a class of compressible viscoelastic
rate-type fluids with stress-diffusion. Nonlinearity 32 (2019) 4665–4681.

They also considered so-called stress diffusion which corresponds to ε > 0.

In reality, the stress diffusion is by several orders lower than other physical
constants and therefore is often in modeling neglected. We shall try to address
this problem, at least in some specific situations.
We shall introduce several simplification/variants of the original model in order
to be able to study the problem from the point of view of existence of global in
time solution for arbitrarily large data.



Compressible Oldroyd-B model III
The derivative

∂tT + Divx(uT)−
(
∇xuT + T∇T

x u
)

is called the upper convected derivative and it is an example of a frame
invariant derivative of the tensor field. Inspired by the famous result for the
incompressible Oldroyd-B model

P. L. Lions and N. Masmoudi: Global solutions for some Oldroyd models of
non-Newtonian flows. Chin. Ann. Math., Ser. B 21(2) (2000), 131–146.

we replace it by the upper convected corotational derivative

∂tT + Divx(uT)− (ω(∇u)T− Tω(∇u)) ,

where ω(∇u) =
(
∇xu−∇T

x u
)
/2 is the vorticity tensor. Next, similarly as in the

paper by Bulíček, Feireisl, Málek we assume that the extra stress tensor has a
simpler form

T = τI
with τ a scalar function. Assuming ε = 0 we get instead of (1)4

∂tτ + divx(τu) =
k

2λ
η − 1

2λ
τ.

By introducing τ̃ = τ − kη, we deduce from (1)3 and the equation above

∂t τ̃ + divx(τ̃u) = − 1
2λ
τ̃ .



Compressible Oldroyd-B model IV

By neglecting the tilde we end up with the following system of equations

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇x

(
p(%) + q(η)− τ

)
− divx S(∇xu) = % f,
∂tη + divx(ηu) = 0,

∂tτ + divx(τu) = − 1
2λ
τ.

(2)

Above, p(%) = a%γ (as above) while q(η) = k(L− 1)η + ζη2. We consider
system (2) in QT = (0,T )× Ω with Ω ⊂ R3 and consider the boundary
condition

u = 0 on (0,T )× ∂Ω. (3)

Finally we prescribe the initial conditions for %, %u, η and τ in Ω.

The resulted problem is very similar to a multifluid system studied recently by

A. Novotný, M. Pokorný: Weak solutions for some compressible
multicomponent fluid models. Arch. Rational Mech. Anal. 235 (2020)
355–403.



Compressible Oldroyd-B model V

The main differences to the problems studied before are
I The "pressure"contains a negative contribution from τ

I The transport equation for τ has nontrivial right-hand side

Those problems can be overcome, as will be shown later.
There are further results dealing with the same problem (in the case of two
fluids)

A. Vasseur, H. Wen, C. Yu: Global weak solution to the viscous two-fluid
model with finite energy, J. Math. Pures Appl. 125 (2019) 247–282.

D. Bresch, P.B. Mucha, E. Zatorska: Finite-Energy Solutions for
Compressible Two-Fluid Stokes System, Arch. Ration. Mech. Anal. 232
(2019) 987–1029.

H. Wen: Global existence of weak solution to compressible two-fluid model
without any domination condition in three dimensions, arXiv: 1902.05190.



Weak solution I

We assume
%0 ≥ 0 a.e. in Ω, %0 ∈ Lγ(Ω),

%0u0 ∈ L1(Ω;R3), %0|u0|2 ∈ L1(Ω),

η0 ≥ 0 a.e. in Ω, η0 ∈ L2(Ω),

τ0 ≥ 0 a.e. in Ω, τ0 log τ0 ∈ L1(Ω).

(4)

Definition
Let T > 0 and Ω ⊂ R3 be a bounded C 2,β domain with 0 < β ≤ 1. We say
that (%, u, η, τ) is a finite-energy weak solution in QT to the system of
equations (2)–(3), supplemented by the initial data (4), if:
I % ≥ 0 a.e. in (0,T )× Ω, % ∈ Cw ([0,T ]; Lγ(Ω)),

u ∈ L2(0,T ;W 1,2
0 (Ω;R3)),

%u ∈ L∞([0,T ]; L1(Ω;R3)), %|u|2 ∈ L∞(0,T ; L1(Ω)),

η ≥ 0 a.e. in (0,T )× Ω, η ∈ Cw ([0,T ]; L2(Ω)),

τ ≥ 0 a.e. in (0,T )× Ω, τ log τ ∈ Cw ([0,T ]; L1(Ω)).



Weak solution II

I For any t ∈ (0,T ) and any test function φ ∈ C∞([0,T ]× Ω), one has∫ t

0

∫
Ω

[
%∂tφ+ %u ·∇φ

]
dx dt′ =

∫
Ω

%(t, ·)φ(t, ·) dx −
∫

Ω

%0φ(0, ·) dx , (5)

∫ t

0

∫
Ω

[
η∂tφ+ηu ·∇φ

]
dx dt′ =

∫
Ω

η(t, ·)φ(t, ·) dx −
∫

Ω

η0φ(0, ·) dx , (6)∫ t

0

∫
Ω

[
τ∂tφ+τu·∇φ− 1

2λ
τφ
]
dx dt′ =

∫
Ω

η(t, ·)φ(t, ·) dx−
∫

Ω

η0φ(0, ·) dx .

(7)



Weak solution III
I For any t ∈ (0,T ) and any test function ϕ ∈ C∞([0,T ];C∞c (Ω;R3)), one

has∫ t

0

∫
Ω

[
%u · ∂tϕ + (%u⊗ u) : ∇ϕ +

(
p(%) + q(η)− τ

)
divx ϕ− S(∇xu) : ∇ϕ

]
dx dt′

= −
∫ t

0

∫
Ω

% f ·ϕdx dt′ +

∫
Ω

%u(t, ·) ·ϕ(t, ·) dx −
∫

Ω

%0u0 ·ϕ(0, ·) dx .

(8)
I For a.e. t ∈ (0,T ), the following energy inequality holds∫

Ω

[
1
2
%|u|2 + H(%, η, τ)

]
(t, ·) dx +

∫ t

0

∫
Ω

S(∇xu) : ∇xu dx dt′

≤
∫

Ω

[
1
2
%0|u0|2 + H(%0, η0, τ0)

]
dx +

∫ t

0

∫
Ω

% f · u dx dt′

+
1
2λ

∫ t

0

∫
Ω

(τ log τ + τ) dx dt′,

(9)

where the Helmholtz free energy is defined as

H(%, η, τ) = P(%) + Q(η)− τ log τ (10)

with

Q(η) = δ η2 + k(L− 1)η log η, P(%) =


a

γ − 1
%γ , if γ 6= 1,

a% log %, if γ = 1.
(11)



Main result

Theorem
Let Ω ⊂ R3 be a bounded C 2,β domain with β ∈ (0, 1]. Let 0 < γ ≤ 2, the
constant parameters λ, δ be positive, and k, L be non-negative. We further
assume that the initial data satisfies the domination relation:

%0 ≤ Cη0, τ0 ≤ Cη0 a.e. in Ω for some C > 0. (12)

Then, for any T > 0, there exists a finite-energy weak solution (%, u, η, τ) in
the sense of Definition above with initial data (4) by replacing the integrability
on % and τ by

% ∈ Cw ([0,T ]; L2(Ω)), τ ∈ Cw ([0,T ]; L2(Ω)).

Moreover, the domination condition preserves for all times:

%(t, x) ≤ Cη(t, x), τ(t, x) ≤ Cη(t, x) for a.a. (t, x) ∈ QT . (13)



Multifluid system I

Recall that in the paper by Novotný and Pokorný (ARMA) we studied the
following problem

∂t%+ div(%u) = 0,

∂tZi + div(Ziu) = 0, i = 1, 2, . . . ,K ,

∂t
(
(%+

K∑
i=1

Zi )u
)

+ div
(
(%+

K∑
i=1

Zi )u⊗ u) +∇P(%,Z0,Z1, . . . ,ZK )

= µ∆u + (µ+ λ)∇ div u,

(14)

together with the boundary condition u = 0 on (0,T )× ∂Ω, and the initial
conditions in Ω

%(0, x) = %0(x),

Zi (0, x) = Zi0(x), i = 1, 2, . . . ,K ,(
%+

K∑
i=1

Zi

)
u(0, x) = m0(x).

(15)



Multifluid system II

We assumed the following
Hypothesis (H1).

(%0,Z10,Z20, . . . ,ZK0) ∈ O~a :=
{

(%,Z1,Z2, . . . ,ZK ) ∈ RK+1|% ∈ [0,∞),

ai% < Zi < ai%
}
,

(16)

where 0 ≤ ai < ai <∞, i = 1, 2, . . . ,K .

Hypothesis (H2).

%0 ∈ Lγ(Ω), Zi0 ∈ Lβi (Ω) if βi > γ,

m0 ∈ L1(Ω;R3), (%0 +
K∑
i=1

Zi0)|u0|2 ∈ L1(Ω), i = 1, 2, . . . ,K .
(17)



Multifluid system III

Hypothesis (H3). Function P ∈ C(O~a) ∩ C 1(O~a) and

∀% ∈ (0, 1), sup
s∈ΠK

i=1[ai ,ai ]

|P(%, %s1, %s2, . . . , %sK )| ≤ C%α with some C > 0 and α > 0,

(18)
and

C(%γ +
K∑
i=1

Zβii − 1) ≤ P(%,Z1, . . . ,ZK ) ≤ C(%γ +
K∑
i=1

Zβii + 1) in O~a (19)

with γ ≥ 9
5 , βi > 0, i = 1, 2, . . . ,K . We moreover assume for i = 1, 2, . . . ,K

|∂ZiP(%,Z1,Z2, . . . ,ZK )| ≤ C(%−Γ + %Γ−1) in O~a (20)

with some 0 ≤ Γ < 1, and with some 0 < Γ < γ + γBOG if ai = 0,
0 < Γ < max{γ + γBOG , βi + (βi )BOG} if ai > 0.



Multifluid system IV

Hypothesis (H4). We assume

P(%, %s1, %s2 . . . , %sK ) = P(%, s1, s2, . . . , sK )−R(%, s1, s2, . . . , sK ), (21)

where [0,∞) 3 % 7→ P(%, s1, s2, . . . , sK ) is non decreasing for any si ∈ [ai , ai ],
i = 1, 2, . . . ,K , and % 7→ R(%, s1, s2, . . . , sK ) is for any si ∈ [ai , ai ],
i = 1, 2, . . . ,K a non-negative C 2-function in [0,∞) with uniformly bounded
C 2-norm with respect to si ∈ [ai , ai ], i = 1, 2, . . . ,K and with compact support
uniform with respect to si ∈ [ai , ai ], i = 1, 2, . . . ,K . Here, ai , ai are the
constants from relation (16).

Hypothesis (H5). Functions % 7→ P(%,Z1,Z2, . . . ,ZK ), Zi > 0, i = 1, 2, . . . ,K
resp. (Z1,Z2, . . . ,ZK ) 7→ ∂ZjP(%,Z1,Z2, . . . ,ZK ), % > 0, are Lipschitz on
∩K

i=1(Zi/ai ,Zi/ai ) ∩ (r ,∞)K resp. ΠK
i=1(ai%, ai%) ∩ (r ,∞)K for all r > 0 with

Lipschitz constants

L̃P ≤ C(r)(1 + |Z |A) resp. L̃P ≤ C(r)(1 + %A) (22)

with some non negative number A. Number C(r) may diverge to +∞ as
r → 0+.



Multifluid system V

In the paper with A. Novotný we proved:

Theorem
Let γ > 9

5 . Then under Hypotheses (H1–H5), there exists at least one weak
solution to problem (14)–(15). Moreover, the densities
% ∈ Cweak([0,T ); Lγ(Ω)), Zi ∈ Cweak([0,T ); Lmax{γ,βi}(Ω)), i = 1, 2, . . . ,K ,
(%+

∑K
i=1 Zi )u ∈ Cweak([0,T ); Lq(Ω;R3)) for some q > 1, and

P(%,Z1,Z2, . . . ,ZK ) ∈ Lq(Ω) for some q > 1.

Note that also the case γ = 9
5 was covered, but we do not need the case here.

Recall also that the main purpose of the paper was to study a more complex
problem which is the "real"multifluid model, the problem presented above was
only an auxiliary problem to which we were able to transform it. Finally note
that the proof for multifluid or bi-fluid problem is in principle the same and we
will therefore consider now only the bi-fluid system.



Approximation I
We first take δ > 0 and a sufficiently large B � 1. Further, we take
ηδ(x) = η(x/δ) a smooth cut-off function

η(z) =


1 for 0 ≤ z ≤ 1/2
0 for 1 < z

∈ (0, 1) for 1/2 < z < 1

 ,

0 ≤ −η′(z) ≤ 2 for all z

(23)

and define

Πδ(%,Z) = Pδ(%,Z) + δ
(
%B + ZB +

1
2
%2ZB−2 +

1
2
Z 2%B−2

)
, (24)

where
Pδ(%,Z) =

(
1− ηδ(

√
%2 + Z 2)

)
P(%,Z).

Without loss of generality the initial conditions are regular enough with
densities (%0,Z0) out of vacuum (if not we regularize it), namely

0 < (a + δ)%0 ≤ Z0 ≤ a%0, (%0,Z0) ∈ C 3(Ω), (∂n%0, ∂nZ0)|∂Ω = (0, 0) (25)

u0 ∈ C 3(Ω;R3) ∩W 1,2
0 (Ω;R3).

We take ε > 0 to regularize the continuity equations. Finally we take
{ΦΦΦj}∞j=1 ⊂ C 2(Ω;R3)) ∩W 1,2

0 (Ω;R3) an orthonormal basis in L2(Ω;R3)) and
consider for a fixed N ∈ N an orthogonal projection of the momentum equation
onto the linear hull LIN{ΦΦΦj}Nj=1.



Approximation II

Our approximation looks as follows:

Definition
The triple (%N,ε,δ,ZN,ε,δ, uN,ε,δ) = (%,Z , u) is a solution to our approximate
problem, provided ∂t%, ∂tZ , ∇2% and ∇2Z ∈ Lr (I × Ω) for some r ∈ (1,∞),
u(t, x) =

∑N
j=1 c

N
j (t)ΦΦΦj(x) with cNj ∈ C 1(0,T ) ∩ C([0,T ]) for j = 1, 2, · · · ,N,

the regularized continuity equation problems

∂t%+ div(%u) = ε∆%

∂%

∂n

∣∣∣
∂Ω

= 0

%(0, x) = %0,

(26)

and
∂tZ + div(Zu) = ε∆Z

∂Z

∂n

∣∣∣
∂Ω

= 0

Z(0, x) = Z0

(27)

hold in the a.a. sense, and the Galerkin approximation for the momentum
equation



Approximation III

∫ T

0

∫
Ω

(
∂t
(
(%+ Z)u

)
ϕϕϕ− (%+ Z)(u⊗ u) : ∇ϕϕϕ− Πδ(%,Z) divϕϕϕ

)
dxdt

=

∫ T

0

∫
Ω

(
µ∇u : ∇ϕϕϕ+ (µ+ λ) div u divϕϕϕ− ε

(
∇(%+ Z) · ∇u

)
·ϕϕϕ
)
dxdt

(28)
holds for any ϕϕϕ ∈ LIN{ΦΦΦ}Nj=1, and

u(0, x) = PN(u0) (29)

with PN the orthogonal projection onto LIN{ΦΦΦ}Nj=1 in L2(Ω;R3).



Existence for the approximate problem I

The existence proof is standard and is based on estimates for suitable linear
problems, energy equality and a fixed point argument. We additionally use the
following comparison principle.

Proposition
Suppose that %0 ∈W 1,2(Ω), u ∈ L∞(0,T ;W 1,∞(Ω;R3)), u|(0,T )×∂Ω = 0.
Then we have:

1. The parabolic problem (26) admits a unique solution in the
class

% ∈ L2(I ;W 2,2(Ω)) ∩W 1,2(I ; L2(Ω)). (30)

2. If moreover 0 < % ≤ %0 ≤ % <∞ a.a. in Ω, then there is
0 < c < c <∞ dependent on τ, %, % and ‖div u‖L1(I ;L∞(Ω))

such that

for all τ ∈ I , c ≤ %(τ, x) ≤ c for a.a. x ∈ Ω.

It ensures that
(a + δ)% ≤ Z ≤ a%

in QT .



Existence for the approximate problem II
Note further that the estimate of the density in the energy equality are
provided via the term Hδ(%,Z) = HPδ (%,Z) + hδ(%,Z), where
hδ(%,Z) = δ

B−1 (%B + ZB + 1
2%

2ZB−2 + 1
2Z

2%B−2) and

HPδ (%,Z) = %

∫ %

1

Pδ(s, s Z
%

)

s2 ds if % > 0, HP(0, 0) = 0.

We end up with the energy inequality
d

dt

( 1

2

(
‖(%N + ZN )|uN |2‖

L1(Ω)
+ ‖%N , ZN‖2

L2(Ω)

)
+

∫
Ω
Hδ (%N , ZN )dx

)

+ε

∫
Ω

1{%N+ZN≥K}(%N , ZN )
( ∂2HPδ

∂%2
(%N , ZN )|∇%N |2

+2
∂2HPδ

∂%∂Z
(%N , ZN )∇%N · ∇ZN +

∂2HPδ

∂Z2
(%N , ZN )|∇ZN |2

)
dx

+ε

∫
Ω

1{%N+ZN<K}(%N , ZN )
( ∂2HPδ

∂%2
(%N , ZN )|∇%N |2

+2
∂2HPδ

∂%∂Z
(%N , ZN )∇%N · ∇ZN +

∂2HPδ

∂Z2
(%N , ZN )|∇ZN |2

)
dx

+εδB

∫
Ω

( ∂2hδ

∂%2
(%N , ZN )|∇%N |2 + 2

∂2hδ

∂%∂Z
(%N , ZN )∇%N · ∇ZN

+
∂2hδ

∂Z2
(%N , ZN )|∇ZN |2

)
dx

+

∫
Ω

(
µ|∇uN |2 + (µ + λ)| div uN |2

)
dx = 0.

(31)



Limit passages I
We will not discuss the limit passages N →∞ and ε→ 0 as they are either
easy or the difficulties are similar to those appearing in the passage δ → 0
which we discuss in detail.
So we look at∫ T

0

∫
Ω

(
%∂tψ + %u · ∇ψ

)
dxdt +

∫
Ω

%0ψ(0, ·)dx = 0,∫ T

0

∫
Ω

(
Z∂tψ + Zu · ∇ψ

)
dxdt +

∫
Ω

Z0ψ(0, ·)dx = 0
(32)

for any ψ ∈ C 1
c ([0,T )× Ω),∫ T

0

∫
Ω

(
(%+ Z)u · ∂tϕϕϕ+ (%+ Z)(u⊗ u) : ∇ϕϕϕ+ Πδ(%,Z) divϕϕϕ

)
dxdt

=

∫ T

0

∫
Ω

(µ∇u : ∇ϕϕϕ+ (µ+ λ) div u divϕϕϕ
)
dxdt −

∫
Ω

m0 ·ϕϕϕ(0, ·)dx
(33)

for any ϕϕϕ ∈ C∞c ([0,T )× Ω;R3), and the energy inequality
1
2
‖(%+ Z)|u|2(t)‖L1(Ω) +

∫
Ω
Hδ(%,Z)(t)dx

+

∫ t

0

∫
Ω

(
µ|∇u|2 + (µ+ λ)| div u|2

)
dx dτ

≤
1
2

∫
Ω

|m0|2

Z0 + %0
dx +

∫
Ω
Hδ(%0,Z0)dx .

(34)



Limit passages II

This yields the estimates

‖(%δ + Zδ)|uδ|2‖L∞(I ;L1(Ω)) + ‖uδ‖L2(I ;W 1,2(Ω)) + ‖%δ‖L∞(I ;Lγ (Ω))

+ ‖Zδ‖L∞(I ;L
qγ,β (Ω)) + δ1/B(‖%δ‖L∞(I ;LB (Ω)) + ‖Zδ‖L∞(I ;LB (Ω))) ≤ C .

(35)

The Bogovskii estimates together with the comparison principle provide

‖%δ‖Lγ+γBOG (I×Ω) + ‖Zδ‖Lqγ,β+γBOG (I×Ω)
≤ C , (36)

δ

∫ T

0
ψ

∫
Ω

(%B+γBOG + ZB+γBOG )dxdt ≤ C , (37)

‖P(%δ, zδ)‖Lq(I×Ω) ≤ C (38)

for some q > 1, and

δ

∫ T

0
ψ

∫
Ω

ZB+βBOG dxdt ≤ C (39)

if β > γ and a > 0, where γBOG := min{ 2
3γ − 1, γ2 }.



Limit passages III

We easily get (%δ,Zδ)→ (%,Z) in Cweak(I ; Lγ(Ω)), uδ ⇀ u in L2(I ;W 1,2(Ω)),
(%δuδ,Zδuδ) ⇀∗ (%u,Zu) in L∞(I ; L

2γ
γ+1 (Ω)), (%δ + Zδ)uδ → (%+ Z)u in

Cweak(I ; L
2γ
γ+1 (Ω)).

Next we write

Pδ(%δ,Zδ) = −ηδ(
√
%2
δ + Z 2

δ )P(%δ,Zδ) + P(%δ,Zδ),

where
‖ηδ(

√
%2
δ + Z 2

δ )P(%δ,Zδ)‖Lq(QT ) → 0.

We write, using Hypothesis (H4)

P(%δ,Zδ) = P(%δ, %δsδ)− P(%δ, %δs) + P(%δ, s) +R(%δ, s),

and get
‖P(%δ, %δsδ)− P(%δ, %δs)‖Lq(QT ) → 0.

This is based on the following:



Limit passages IV

Proposition
1. Let

un ∈ L2(I ,W 1,2
0 (Ω;R3)), (%n,Zn) ∈ O0 ∩

(
C(I ; L1(Ω)) ∩ L2(QT )

)2
.

Suppose that

sup
n∈N

(
‖%n‖L∞(I ;Lγ (Ω)) + ‖Zn‖L∞(I ;Lγ (Ω))

+ ‖%n‖L2(QT ) + ‖un‖L2(I ;W 1,2(Ω))

)
<∞,

where γ > 6/5, and that both couples (%n, un), (Zn, un) satisfy continuity
equation. Then, up to a subsequence (not relabeled)

(%n,Zn)→ (%,Z) in (Cweak(I ; Lγ(Ω)))2,

un ⇀ u in L2(I ;W 1,2(Ω;R3)),

where (%,Z) belongs to spaces

O0 ∩ (L2(QT ))2 ∩ (L∞(I , Lγ(I ,Ω)))2 ∩ (C(I ; L1(Ω))2



Limit passages V

and (%, u) as well as (Z,u) verify continuity equation in the renormalized sense.
2. We define in agreement as above for all t ∈ I ,

sn(t, x) =
Zn(t, x)

%n(t, x)
, s(t, x) =

Z(t, x)

%(t, x)
. (40)

Suppose in addition to assumptions of item 1. that∫
Ω

%n(0, x)s2
n (0, x)dx →

∫
Ω

%(0, x)s2(0, x) dx .

Then sn, s ∈ C(I ; Lq(Ω)), 1 ≤ q <∞ and for all t ∈ I , 0 ≤ sn(t, x) ≤ a,
0 ≤ s(t, x) ≤ a for a.a. x ∈ Ω. Moreover, both (sn, un) and (s, u) satisfy
transport equation.
3. Finally, ∫

Ω

(%n|sn − s|p)(τ, ·) dx → 0 with any 1 ≤ p <∞ (41)

for all τ ∈ I .



Limit passages VI

We have that the continuity equations are fulfilled in the renormalized sense.

Proposition
Let couples (%, u), (Z , u)

% ∈ L2(QT ), (%,Z) ∈ O0, u ∈ L2(I ;W 1,2(Ω;R3)),

verify continuity equation. Then for any

b ∈ C 1([0,∞)2), (∂%b, ∂Zb) ∈ L∞(O0;R2)

the function b(%,Z) verifies the renormalized continuity equation

∂tb(%,Z) + div(b(%,Z)u) (42)

+(%∂%b(%,Z) + Z∂Zb(%,Z)− b(%,Z))divu = 0 in D′(QT ).



Limit passages VII

Proposition
Let %,Z belong to C(I ; L1(Ω)). We define for all t ∈ I , s(t, x) = Z(t,x)

%(t,x)
as

above. Then we have:
1. If for all t ∈ I , 0 ≤ Z(t, ·) ≤ a%(t, ·) a.e. in Ω, then

for all t ∈ I , 0 ≤ s(t, ·) ≤ a a.e. in Ω. (43)

2. Suppose moreover that

% ∈ L2(QT ) ∩ L∞(I ; Lγ(Ω)), with some γ > 1

and that both couples (%, u) and (Z , u) satisfy continuity equation with
u ∈ L2(I ;W 1,2(Ω;R3)). Then

s ∈ C(I ; Lq(Ω)) for all 1 ≤ q <∞ (44)

and the couple (s, u) satisfies the transport equation.
3. If moreover u ∈ L2(I ;W 1,2

0 (Ω;R3)), then transport equation holds up to the
boundary in the time integrated form.



Limit passages VIII

Proposition
1. Let

% ∈ L2(QT ), s ∈ L∞(QT ), u ∈ L2(I ;W 1,2(Ω;R3)),

and let the couple (%, u) verify the continuity equation and the couple (s, u) the
transport equation. Then s ∈ C(I ; L1(Ω)) and the product s% satisfies the
continuity equation in the sense of distributions on QT .
2. If moreover we have % ∈ L∞(I ; Lγ(Ω)) with some γ > 1 and
u ∈ L2(I ,W 1,2

0 (Ω;R3)), then

% ∈ C(I ; L1(Ω)), s% ∈ C(I ; L1(Ω))

and the continuity equation for s% holds in the time integrated form up to the
boundary:∫

Ω

(s%ϕ)(τ, ·) dx −
∫

Ω

(s%ϕ)(0, ·) dx =

∫ τ

0

∫
Ω

(
s%∂tϕ+ s%u · ∇ϕ

)
dx dt (45)

for all τ ∈ I and ϕ ∈ C 1(QT ).



Limit passages IX

Therefore letting δ → 0∫ T

0

∫
Ω

(
(%+ Z)u · ∂tϕϕϕ+ (%+ Z)(u⊗ u) : ∇ϕϕϕ+ P(%, %s) divϕϕϕ

)
dxdt

=

∫ T

0

∫
Ω

(µ∇u : ∇ϕϕϕ+ (µ+ λ) div u divϕϕϕ
)
dxdt −

∫
Ω

m0 ·ϕϕϕ(0, ·)dx
(46)

for any ϕϕϕ ∈ C 1
c ([0,T )× Ω;R3), where P(%, %s) is the weak limit of P(%δ, s%δ),

and ∫ T

0

∫
Ω

(
%∂tψ + %u · ∇ψ

)
dxdt +

∫
Ω

%0ψ(0, ·)dx = 0,∫ T

0

∫
Ω

(
Z∂tψ + Zu · ∇ψ

)
dxdt +

∫
Ω

Z0ψ(0, ·)dx = 0
(47)

for any ψ ∈ C 1
c ([0,T )× Ω).

It remains to prove the strong (or pointwise a.a.) convergence of %δ.



Strong convergence of densities I

We can now prove the following version of the effective viscous flux identity
(Tk is the standard concave (near infinity) cut-off function)

Proposition
Identity

P(%, %s)Tk(%)−(2µ+λ)Tk(%) div u = P(%, %s)Tk(%)−(2µ+λ)Tk(%) div u (48)

holds a.a. in I × Ω.



Strong convergence of densities II

For γ = 9/5 we furthermore need the estimate of the oscillation defect measure

Proposition
The sequence %δ satisfies

oscγ+1[%δ ⇀ %](QT ) := sup
k>1

lim sup
δ→0

∫
QT

|Tk(%δ)− Tk(%)|γ+1 dx dt <∞. (49)

We now follow the idea from

E. Feireisl: Compressible Navier-Stokes equations with a non-monotone
pressure law, J. Differential Equations 184, 97–108, 2002.

We take Lk , the solution to zL′k(z)− Lk(z) = Tk(z) and using that %k and %
both satisfy the renormalized continuity equation we get∫

Ω

(Lk(%δ)− Lk(%))(τ, ·)dx =

∫ τ

0

∫
Ω

(Tk(%) div u− Tk(%) div uδ)dxdt

+

∫ τ

0

∫
Ω

(Tk(%)− Tk(%δ)) div uδdxdt
(50)

for all τ ∈ I .



Strong convergence of densities III

Using the effective viscous flux identity and Hypothesis (H4) we get∫
Ω

(Lk(%)− Lk(%))(τ, ·)dx =

∫ τ

0

∫
Ω

(Tk(%)− Tk(%)) div udxdt

+
1

2µ+ λ

∫ τ

0

∫
Ω

(
P(%, s)Tk(%)− P(%, s)Tk(%)

)
dxdt

+
1

2µ+ λ

∫ τ

0

∫
Ω

(
R(%, s)Tk(%)−R(%, s)Tk(%)

)
dxdt

(51)

for all τ ∈ I . The first term on the rhs is bounded by (for γ + γBOG > 2 we can
proceed without the oscillation defect measure estimate)

‖Tk(%)− Tk(%)‖L2(QT )‖ div u‖L2(QT ) ≤ c lim sup
δ→0

‖Tk(%δ)− Tk(%)‖
γ−1
2γ

L1(QT )
,

the second term is non-positive and the third term can be estimated by

cΛ(1 + R0)

∫ τ

0

∫
Ω

(
% ln %− % ln %

)
dx dt

for Λ sufficiently large, where R0 is connected with the support of R.



Strong convergence of densities IV

Since
‖Tk(%)− Tk(%)‖L1(QT ) → 0, k →∞,

we may let k →∞ to get∫
Ω

(% ln %− % ln %)(τ, ·)dx ≤ CcΛ(1 + R0)

∫ τ

0

∫
Ω

(
% ln %− % ln %

)
dx dt.

By Gronwall lemma and strict convexity of % 7→ % ln % on [0,∞)

%δ → % a.a. in QT .

Hence by our previous Propositions

Zδ → Z a.a. in QT

and we also show the energy inequality. The theorem is proved.



Oldroyd-B: Existence of a solution I

We have to show that the proof applies also to the reformulated problem for
the Oldroyd-B fluid.

Hypothesis (H1).

(η0, %0, τ0) ∈ O~a :=
{

(Z0,Z1,Z2) ∈ R3|Z0 ∈ [0,∞),

aiZ0 < Zi < aiZ0
}
, i = 1, 2

(52)

where 0 ≤ ai < ai <∞, i = 1, 2.

Assumption:

%0 ≤ Cη0, τ0 ≤ Cη0 a.e. in Ω for some C > 0. (53)

Hypothesis (H1) is fulfilled with a1 = a2 = 0 and a1 = a2 = C . Note that this
choice of the domination corresponds to the fact that the estimated quantity is
η fro which we have quadratic growth, i.e. it corresponds to the choice γ = 2 in
the theorem by Novotný–Pokorný. If the growth of the gas pressure is faster
than quadratic, we just use as the main quantity the density % and modify
appropriately the domination condition.



Oldroyd-B: Existence of a solution II

Hypothesis (H2).

η0 ∈ Lγ(Ω), %0 ∈ Lβ1(Ω), τ0 ∈ Lβ2 if βi > γ,

m0 ∈ L1(Ω;R3), %0|u0|2 ∈ L1(Ω).
(54)

This hypothesis is fulfilled by our assumption on the initial data. Recall that
momentum and kinetic energy contains only %



Oldroyd-B: Existence of a solution III

We denote the total pressure

h(η, %, τ) := q(η) + p(%)− τ = δ η2 + k(L− 1)η + a%γ − τ. (55)

Hypothesis (H3). Function h ∈ C(O~a) ∩ C 1(O~a) and

∀% ∈ (0, 1), sup
s∈Π2

i=1[ai ,ai ]

|h(η, ηs1, τs2)| ≤ C%α with some C > 0 and α > 0,

(56)
and

C(ηγ + %β1 + τβ2 − 1) ≤ h(η, %, τ) ≤ C(ηγ + %β1 + τβ2 + 1) in O~a (57)

with γ ≥ 9
5 , βi > 0, i = 1, 2. We moreover assume

|∂%h(η, %, τ)|+ |∂τh(η, %, τ)| ≤ C(η−Γ + ηΓ−1) in O~a (58)

with some 0 ≤ Γ < 1, and with some 0 < Γ < γ + γBOG if ai = 0,
0 < Γ < max{γ + γBOG , βi + (βi )BOG} if ai > 0.



Oldroyd-B: Existence of a solution IV

We denote

S := {(η, %, τ) ∈ R3 : 0 < % < Cη, 0 < τ < Cη} (59)

and
S := {(η, %, τ) ∈ R3 : 0 ≤ % ≤ Cη, 0 ≤ τ ≤ Cη}. (60)

Then h(η, %, τ) ∈ C(S) and h(η, %, τ) ∈ C 1(S). Moreover, for all η ∈ (0, 1) and
for all (η, %, τ) ∈ S

|h(η, %, τ)| ≤ δη2 + k|L− 1|η + aC
γ
ηγ + Cη ≤ C(η + ηγ) ≤ Cη. (61)

Next, in S ,

C1(η2 + %γ − τ − 1) ≤ h(η, %, τ) ≤ C2(η2 + %γ + τ + 1) (62)

for some positive constants C1,C2. Using the domination assumption and the
resulted domination for all times

C1(η2 + %γ + τ − 1) ≤ h(η, %, τ) ≤ C2(η2 + %γ + τ + 1). (63)



Oldroyd-B: Existence of a solution V

Moreover,

C1(η2 + %γ + τ | log τ | − 1) ≤ H(η, %, τ) ≤ C2(η2 + %γ + τ | log τ |+ 1), (64)

which follows from the form of our Helmholtz free energy (note that it is
different in comparison to [NP]). Furthermore, for each (η, %, τ) ∈ S ,

|∂τh(η, %, τ)| = 1, |∂%h(η, %, τ)| = |aγ%γ−1|. (65)

For γ ≥ 1 it implies that (58) is fulfilled for the choice a1 = 0. However, for
γ ∈ (0, 1) we cannot fulfil this assumption for a1 = 0, as γ − 1 < 0 and we
need to control the function % by η from below. However, this condition is in
fact in our case not needed and we have an alternative way how to overcome
its use. It is connected with much easier form of the pressure than the general
case assumed in [NP]. Thus, the main part of Hypothesis (H3) is satisfied, the
rest can be overcome.



Oldroyd-B: Existence of a solution VI

Hypothesis (H4). We assume

h(η, ηs1, ηs2) = P(η, s1, s2)−R(η, s1, s2), (66)

where [0,∞) 3 % 7→ P(η, s1, s2)is non decreasing for any si ∈ [ai , ai ], i = 1, 2,
and % 7→ R(%, s1, s2) is for any si ∈ [ai , ai ], i = 1, 2 a non-negative C 2-function
in [0,∞) with uniformly bounded C 2-norm with respect to si ∈ [ai , ai ], i = 1, 2
and with compact support uniform with respect to si ∈ [ai , ai ], i = 1, 2. Here,
ai , ai are the constants from relation (16).



Oldroyd-B: Existence of a solution VII

For each (η, %, τ) ∈ S , we define the following functions

s% :=


%

η
, if η > 0,

0, if η = 0,
sτ :=


τ

η
, if η > 0,

0, if η = 0.
(67)

Clearly s%, sτ ∈ [0,C ] for all (η, %, τ) ∈ S . Then for each (η, %, τ) ∈ S , we can
write

h(η, %, τ) = h(η, ηs%, ηsτ ) = δ, η2 + k(L− 1)η + aηγsγ% − ηsτ , s%, sτ ∈ [0,C ].
(68)

We write the total pressure as

h(η, ηs%, ηsτ ) = P(η, s%, sτ )−R(η, s%, sτ ), (69)

with
P(η, s%, sτ ) = δ η2 + kLη + aηγsγ% −

(
1− χ(η)

)(
kη + ηsτ

)
,

R(η, s%, sτ ) = χ(η)
(
kη + ηsτ

)
.

(70)

By choosing R1 (and thus also R) large enough, it is straightforward to check
that the decomposition (69)–(70) satisfies Hypothesis (H4).



Oldroyd-B: Existence of a solution VIII

Hypothesis (H5). Functions η 7→ h(η, %, τ), % > 0, τ > 0 resp.
(%, τ) 7→ ∂%h(η, %, τ), and (%, τ) 7→ ∂τh(η, %, τ) η > 0, are Lipschitz on
(%/C ,∞)× (τ/C ,∞) ∩ (r ,∞)2 resp. (0,Cη)× (0,Cη) ∩ (r ,∞)2 for all r > 0
with Lipschitz constants

L̃P ≤ C(r)(1 + (|%|+ |τ |)A) resp. L̃P ≤ C(r)(1 + ηA) (71)

with some non negative number A. Number C(r) may diverge to +∞ as
r → 0+.

Hypothesis (H5) is used in the construction of the approximate problem, is
connected with the form of the Helmholtz free energy and it yields that
|∇2

η,%,τH(η, %, τ)| ≤ C(r)(1 + ηA) in the set {η2 + %2 + τ2 > r2} ∩ S . Hence,
for our choice of the Helmholtz energy, we only need that

|∇2
ηq(η)|+ |∇2

%p(%)|+ |1/τ | ≤ C(r)(1 + ηA)

in the set {η2 + %2 + τ2 > r2} ∩ S . However, it follows directly with the choice
A = 0 from the form of the pressure. The modified Hypothesis (H5) is fulfilled.



Oldroyd-B: Existence of a solution IX

We are left with modifications caused by different form of the transport
equation for τ . First, by standard properties of the transport equation it follows

inf
x∈Ω

τ0(x) exp

(
−
∫ t

0
‖ divx u‖L∞() dt′ − t

2λ

)
≤ τ(t, x)

yielding non-negativity of τ provided the initial condition is so. Next by a
similar argument we get

0 ≤ %(t, x) ≤ Cη(t, x), 0 ≤ τ(t, x) ≤ Cη(t, x), for all t, x ∈ QT . (72)

Finally, to show that the energy inequality holds (i.e., to pass to the limit in the
energy inequality for the approximate problem) we have to employ the
renormalized continuity equation in order to show

%γn → %γ , ηn log ηn → η log η, τn log τn → τ log τ in Cw ([0,T ], L1(Ω)).

Other details are standard. The theorem is proved.
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