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The model I

We consider a model describing steady flow of compressible, heat conducting
mixture of chemically reacting gases. We restrict ourselves to the model with
one velocity for the whole mixture (barycentric) and use the
Navier–Stokes–Fourier system combined with the Maxwell–Stefan cross
diffusion equation in the Fick–Onsager form.

The resulting system of PDEs reads

div(ρiv + Ji ) = ri , i = 1, . . . ,N,

div(ρv ⊗ v − S) +∇p = ρb,
div (ρEv + Q− Sv + pv) = ρb · v.

Above: ~ρ = (ρ1, . . . , ρN) are the densities of the separate species, ρ =
∑N

i=1 ρi
is the total density of the mixture, v is the barycentric velocity, Ji ,
i = 1, 2, . . . ,N are the partial fluxes, ri , i = 1, 2, . . . ,N are the source terms
due to the chemical reactions, S is the stress tensor, p is the pressure, b is the
external force, E is the specific total energy and Q is the heat flux.



The model II

We consider the following boundary conditions:

Ji · ννν = 0, i = 1, . . . ,N,

v · ννν = 0, (I− ννν ⊗ ννν)(Sννν + α1v) = 0,
Q · ννν + α2(θ0 − θ) = 0.

Here, ννν is the external normal to ∂Ω, θ0 ≥ T0 > 0 is the external temperature,
α1 ≥ 0 and α2 > 0.

We also prescribe the total mass of the mixture:

1
|Ω|

∫
Ω

ρ dx = ρ.

The total energy balance may be formally replaced by the entropy balance

− divJ + Ξ = 0,

where J is the entropy flux and Ξ is the entropy production rate.



Constitutive relations I
I Entropy flux

J = ρsv −
N∑
i=1

µi

θ
Ji +

1
θ
Q,

where ~µ are the chemical potentials.
I Entropy production

Ξ = −
N∑
i=1

Ji · ∇
µi

θ
+ Q · ∇1

θ
+

S : ∇v
θ
−

N∑
i=1

ri
µi

θ
.

Due to the Second law of thermodynamics the entropy production Ξ must
be non-negative. We will guarantee that

−
N∑
i=1

Ji · ∇
µi

θ
+ Q · ∇1

θ
≥ 0,

S : ∇v
θ
≥ 0, −

N∑
i=1

ri
µi

θ
≥ 0.

I Viscous stress tensor

S = 2λ1(θ)

(
D(v)− 1

3
div(v)I

)
+ λ2(θ) div(v)I, (1)

where λ1(θ) and λ2(θ) are the temperature-dependent shear and bulk
viscosity coefficients, respectively.



Constitutive relations II

I Heat flux

Q = −κ(θ)∇θ −
N∑
i=1

Mi∇
µi

θ
, (2)

where κ(θ) is the thermal conductivity and the coefficients Mi depend on
~ρ and θ.

I Diffusion flux

Ji = −
N∑
j=1

Mij∇
µj

θ
−Mi∇

1
θ
, i = 1, . . . ,N, (3)

where Mij = Mij(~ρ, θ) are diffusion coefficients, by Onsager’s principle
symmetric.



Constitutive relations III

Due to the mass conservation we require
∑N

i=1 Ji = 0,
∑N

i=1 ri = 0. We assume

N∑
i=1

Mij =
N∑
i=1

Mi = 0, j = 1, . . . ,N, (4)

and

∃CM > 0 :
N∑

i,j=1

Mijzizj ≥ CM |Π~z |2 for all ~z ∈ RN ,

where Π = I−~1⊗~1/N is the orthogonal projector on span{~1}⊥.
I Source terms

ri = ri (Π(~µ/θ), θ), i = 1, . . . ,N,
∃Cr > 0, ζ > 0, β > 0 : −

∑N
i=1 ri (Π(~q), θ)qi ≥ Cr |Π~q|2,

|ri (Π(~q), θ)| ≤ Cr (|Π~q|5(6−ζ)/6 + θ5(3β−ζ)/6) for all ~q ∈ RN , θ > 0,

for some ζ > 0 possibly very small, β > 0, and all i = {1, 2, . . . ,N}.



Thermodynamics

We denote the Helmholtz free energy as %ψ. It determines other
thermodynamic quantities:

µi =
∂(ρψ)

∂ρi
, p = −ρψ +

N∑
i=1

ρiµi ,

ρe = ρψ − θ ∂(ρψ)

∂θ
, ρs = −∂(ρψ)

∂θ
,

with e the specific internal energy and s the specific entropy. We denote

hθ(~ρ) := ρψ(~ρ, θ).

Under assumptions stated below we define

h∗θ(~µ) = sup
~ρ∈RN

+

(~ρ · ~µ− hθ(~ρ))

the Legendre transform of hθ, which in fact equals the pressure p. Further

~µ = ∇hθ(~ρ) if and only if ~ρ = ∇h∗θ(~µ).



Hypotheses I

We assume γ > 3
2 and set ν := γmin

{
2γ−3
γ
, 3β−2

3β+2

}
.

Main hypotheses
(H1) Domain: Ω ⊂ R3 is a bounded domain with a C 2 boundary that is not
axially symmetric.

The smoothness can be relaxed to Lipschitz domain, however, it is technical.
The assumption on the symmetry is connected with Korn’s inequality and (H2).

(H2) Data: α1 = 0, α2 > 0, θ0 ∈ L1(∂Ω), ess inf∂Ω θ0 > 0, b ∈ L∞(Ω;R3).

It is possible to take α1 > 0 and relax the assumption on Ω, more technicalities.

(H3) Viscosity and heat conductivity: λ1, λ2, κ ∈ C 0(R+) and there exist
constants c1, c2, κ1, κ2, such that for all θ > 0,

c1(1 + θ) ≤ λ1(θ) ≤ c2(1 + θ),

0 ≤ λ2(θ) ≤ c2(1 + θ),

κ1(1 + θ)β ≤ κ(θ) ≤ κ2(1 + θ)β .

The linear growth in the viscosity can be relaxed to sublinear, but more
technicalities appear.



Hypotheses II

(H4) Diffusion coefficients: There exists ζ > 0 (a fixed small positive number)
such that for all i , j = 1, . . . ,N, the coefficients Mij , Mi ∈ C 0(RN

+,0 ×R+)
satisfy and

|Mij(~ρ, θ)|+ |Mi (~ρ, θ)|
θ

≤ C̃M(ρ(γ+ν−ζ)/3 + θ(3β−ζ)/3 + 1)

for all (~ρ, θ) ∈ RN
+ ×R+ and some constants C̃M .

(H5) Reaction terms: Additionally to the above
∑N

i=1 ri = 0.

(H6) Free energy density: hθ ∈ C 2(RN
+) is for fixed θ > 0 strictly convex

function with respect to ~ρ. Furthermore, it fulfils some growth conditions and
some conditions on the behaviour next zero for the functions, its first and
second gradient.

The conditions are slightly technical, but they in general ensure some
integrability properties of the thermodynamic potentials and properties of the
Legendre transform.



Hypotheses III

(H7) We assume that there exists ω ∈ (1, γ), c̃p > 0 and C̃p > 0 such that for
all θ ∈ R+, all ~ρ ∈ RN

+ and all ~x ∈ RN there holds

c̃p|~x |2
(
θ

ρ
+ ργ−2

)
≤

N∑
i,j=1

∂2hθ(~ρ)

∂ρi∂ρj
xixj ≤ C̃p|~x |2

(
θ

ρ
+ ργ−2 + ρω−2

)
.

This assumption in particular ensures that the pressure p satisfies for some
cp,Cp > 0

cp(ρθ + ργ) ≤ p(~ρ, θ) ≤ Cp(1 + ρθ + ργ)

for all (~ρ, θ) ∈ RN
+,0 ×R+.

All hypotheses and previous assumptions can be fulfilled by the choice

ρψ = θ

N∑
i=1

ni log ni + nγ − cW ρθ log θ,

where ni = ρ/mi , n =
∑N

i=1 ni . There also exists suitable choice of terms
describing chemical reactions.



Weak and variational entropy solutions I

Weak formulation of the species balance

N∑
i=1

∫
Ω

(
− ρiv +

N∑
j=1

Mij∇
µj

θ
+ Mi∇

1
θ

)
· ∇φi dx =

N∑
i=1

∫
Ω

riφi dx

for all φ1, . . . , φN ∈W 1,∞(Ω);

Weak formulation of the momentum balance,∫
Ω

(−ρv ⊗ v + S) : ∇u dx +

∫
∂Ω

α1v · u ds =

∫
Ω

(p div u + ρb · u) dx ,

for all u ∈W 1,∞
ν (Ω);

Weak formulation of the total energy balance∫
Ω

(−ρEv−Q +Sv−pv)·∇ϕ dx+

∫
∂Ω

(α1|v |2 +α2(θ−θ0))ϕ ds =

∫
Ω

ρb ·vϕ dx ,

for all ϕ ∈W 1,∞(Ω);



Weak and variational entropy solutions II
Weak formulation of the entropy inequality∫

Ω

(
ρsv +

N∑
i=1

µi

θ

( N∑
j=1

Mij∇
µj

θ
+ Mi∇

1
θ

)
− 1
θ

(
κ(θ)∇θ +

N∑
i=1

Mi∇
µi

θ

))
· ∇Φ dx

+

∫
Ω

( N∑
i,j=1

Mij∇
µi

θ
· ∇µj

θ
+ κ(θ)|∇ log θ|2 +

S : ∇v
θ
−

N∑
i=1

ri
µi

θ

)
Φ dx

≤ α2

∫
∂Ω

θ − θ0
θ

Φ ds,

for every Φ ∈W 1,∞(Ω) with Φ ≥ 0 a.e. in Ω
Total energy equality
(It is in fact weak formulation of the total energy balance with ψ ≡ 1)∫

∂Ω

(α1|v |2 + α2(θ − θ0)) ds =

∫
Ω

ρb · v dx .

Summing weak formulations of mass balances with φi ≡ 1 we obtain∫
Ω

ρv · ∇Φ dx = 0,

for all Φ ∈W 1,∞(Ω).



Weak and variational entropy solutions III

We need also Renormalized form of this equation: for ϕ ∈W 1,∞(Ω) and
b ∈ C 1(R), b(0) = 0 with b′ having compact support,∫

Ω

(
b(ρ)v · ∇ϕ− ϕ(ρb′(ρ)− b(ρ)) div v

)
dx = 0.

Definition (Weak solutions)
We call the functions

ρ1, . . . , ρN ∈ Lγ(Ω), v ∈ H1
ν(Ω), log θ, θβ/2 ∈ H1(Ω)

such that
ρ|v|2v, S(θ,∇v)v, p(~ρ, θ)v ∈ L1(Ω;R3)

a renormalized weak solution to our problem if there holds the weak
formulations of the species equation, momentum equation, total energy balance
and the total density ρ :=

∑N
i=1 ρi is a renormalized solution to the continuity

equation.



Weak and variational entropy solutions IV

Definition (Variational entropy solutions)
We call the functions

ρ1, . . . , ρN ∈ Lγ(Ω), v ∈ H1
ν(Ω), log θ, θβ/2 ∈ H1(Ω)

such that
ρ|v|2 ∈ L1(Ω)

a renormalized variational entropy solution to our problem if there holds the
weak formulations of the species equation, momentum equation, entropy
inequality and total energy equality, and the total density ρ :=

∑N
i=1 ρi is a

renormalized solution to the continuity equation.

Theorem (Large-data existence of solutions)
Let Hypotheses (H1)–(H7) hold. Let β > 2/3 and γ > 3/2. Then there exists
a renormalized variational entropy solution to our problem. Moreover, if β > 1
and γ > 5/3, then the solution is also a renormalized weak solution.



Comments I

The paper contains proof of existence of a solution for large data for chemically
reacting mixtures without the assumption that the molar masses are the same
for each component as it was the case in previous works based on a mixture
model developed by V. Giovangigli:

V. Giovangigli, M.P., E. Zatorska. On the steady flow of reactive gaseous
mixture. Analysis (Berlin) 35 (2015), 319–341.

T. Piasecki, M.P. Weak and variational entropy solutions to the system
describing steady flow of a compressible reactive mixture. Nonlin. Anal.
159 (2017), 365–392.

T. Piasecki, M.P. On steady solutions to a model of chemically reacting
heat conducting compressible mixture with slip boundary conditions.
Mathematical analysis in fluid mechanics–selected recent results, 223–242,
Contemp. Math. 710, Amer. Math. Soc., Providence, RI, 2018.

We obtained similar results as in our paper, including the situation when the
exponent γ is very close to one as well as we captured differences for the
Navier and homogeneous Dirichlet boundary conditions which appear in the
situation when the exponent γ is close to one.



Comments II

The model used in the presentation is based on the model developed in

W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved
Nernst–Planck–Poisson models of compressible isothermal electrolytes. Z.
Angew. Math. Phys. 71 (2020), Paper No. 119, 68 pp.

An important role is played by the convexity of the Helmholtz free energy and
it uses tools of convex analysis in order to verify the strong convergence of
partial densities. In the paper above more complex (and evolutionary) problem
was studied, including chemical reactions on the boundary, but the temperature
was assumed to be constant.



Comments III

The main difficulty is connected with strong convergence of the densities. The
strategy (taken from the series of papers [DDGG]) is based on the strong
convergence of the projection of chemical potentials combined with the strong
convergence of the total density.

One of the developments of our paper is a modified proof of the strong
convergence of the total density introduced briefly below uses a modification of
the Feireisl’s idea of oscillation defect measure estimates. It allows to get rid of
some restrictions for the parameters γ and β with respect to the results for the
single constituent heat-conducting fluids.

The result can be extended for arbitrary γ > 1 based on similar idea as
described in

A. Novotný, M.P. Weak and variational solutions to steady equations for
compressible heat conducting fluids. SIAM J. Math. Anal. 43 (2011),
1158–1188.

P.B. Mucha, M.P. E. Zatorska. Existence of stationary weak solutions for
compressible heat conducting flows. In: Handbook of mathematical
analysis in mechanics of viscous fluids. 2595–2662, Springer, Cham, 2018.



Comments IV

The main problem are estimates of the density which must be obtained
differently then presented below (by another suitable test function in the
momentum balance), it is possible only for the steady problem and differs for
the homogeneous Dirichlet and Navier boundary conditions. It would
technically complicate the proof, thus it is not considered here.



Main ideas of the proof

We present main ideas of the proof of weak compactness of solutions, the
construction of approximate solutions will be mentioned briefly at the end.

I A priori estimates

I Estimates from entropy inequality and total energy equality
I Additional density estimates

I Limit passage based on direct compactness

I Strong convergence of densities

I Effective viscous flux identity
I A variant of control of oscillations
I Renormalized continuity equation
I Strong convergence of the total density
I Strong convergence of partial densities



A priori estimates I

Step 1: A priori estimates coming from entropy inequality and total energy
equality:
We use the entropy inequality with the test function identically one and the
total energy equality together with our Hypotheses to get (~q = ~µ/θ)

‖v‖H1(Ω) + ‖Π(~q)‖H1(Ω) ≤ C ,

‖∇ log θ‖L2(Ω) + ‖∇θβ/2‖L2(Ω) + ‖1/θ‖L1(∂Ω) ≤ C ,

‖θ‖L1(∂Ω) + ‖ log θ‖H1(Ω) + ‖θβ/2‖2/β
H1(Ω)

+ ‖θ‖L3β (Ω) ≤ C
(
1 + ‖ρ‖L6/5(Ω)

)
.

Step 2: Additional density estimates:

We apply as test function in the momentum equation

B
(
ρν − 1

|Ω

∫
Ω

ρν dx
)

with ν := γmin
{

2γ−3
γ
, 3β−2

3β+2

}
. We get

‖ρ‖Lγ+ν (Ω) ≤ C , ν > 0 provided γ > 3/2, β > 2/3

and thus we control all norms mentioned above uniformly.



Limit passage I

We now assume that we have a sequence of data

bδ → b strongly in Lp(Ω;R3) for all p <∞,

bδ ⇀∗ b weakly∗ in L∞(Ω;R3),

ρδ → ρ > 0 in R,

(θ0)δ → θ0 strongly in L1(∂Ω).

We assume that for each δ > 0 we have a corresponding solution and the
sequence fulfils the a priori estimates presented above. We aim at showing
that, modulo subsequence, the limit of solutions given by the estimates is again
a solution to the original problem.

The estimates immediately yield the strong convergence of the velocity,
projection of the chemical potentials and the temperature, however, only weak
convergence of the pressure and the total density (as well as density of each
species).



Limit passage II

Limit in the species equation

N∑
i=1

∫
Ω

(
−ρiv+

N∑
j=1

Mij( ~ρδ, θδ)∇qj−
Mi ( ~ρδ, θδ)

θδ

∇θ
θ

)
·∇φi dx =

n∑
i=1

∫
Ω

ri (~q, θ)φi dx ,

where the bar over a quantity denotes the corresponding weak limit.

Limit in the momentum equation∫
Ω

(−ρv⊗v+S(θ,∇v)) : ∇u dx+

∫
∂Ω

α1v ·u ds =

∫
Ω

(p(~ρδ, θδ) div u +ρb ·u) dx .

Limit in the total energy balance

Here we need β > 1 and γ > 5/3!∫
Ω

(
− 1

2
ρ|v |2v − ρδe( ~ρδ, θδ)v + κ(θ)∇θ +

N∑
i=1

Mi ( ~ρδ, θδ)

θδ
∇qi

+ Sv − p(~ρδ, θδ)v
)
· ∇ϕ dx +

∫
∂Ω

(α1|v |2 + α2(θ − θ0))ϕ ds =

∫
Ω

ρb · vϕ dx .



Limit passage III

Limit in the entropy inequality

∫
Ω

[
ρδs( ~ρδ, θδ)v +

N∑
i=1

qi

( N∑
j=1

Mij( ~ρδ, θδ)

θδ
∇qj −

Mi ( ~ρδ, θδ)

θδ

∇θ
θ

)

−
(
κ(θ)

θ
∇θ +

N∑
i=1

Mi ( ~ρδ, θδ)

θδ
∇qi

)]
· ∇Φ dx

+

∫
Ω

( N∑
i,j=1

Mij(~ρδ, θδ)∇µi

θ
· ∇µj

θ
+ κ(θ)|∇ log θ|2 +

S : ∇v
θ
−

N∑
i=1

ri
µi

θ

)
Φ dx

≤ α2

∫
∂Ω

θ − θ0
θ

Φ ds.

In order to conclude, we need to show that

~ρδ → ~ρ a.e. in Ω

which implies due to estimates strong convergence of the sequence in
Lq(Ω;RN) for any 1 ≤ q < ν + γ.



Strong convergence of densities I

Step 1: Effective viscous flux identity

Let Tk be the standard sequence of cut-off functions, i.e.

T1(z) :=


z for 0 ≤ z ≤ 1,
concave, increasing, C 1-function for 1 < z < 3,
2 for z ≥ 3.

Tk(z) := kT1(z/k).

Then we have the effective viscous flux identity

pδTk(ρδ)− pTk(ρδ) =

(
λ2(θ) +

4
3
λ1(θ)

)(
Tk(ρδ) div vδ − Tk(ρδ) div v

)
,

where pδ := p(~ρδ, θδ) and p := p(~ρδ, θδ). It follows by testing the momentum
equation by

∇∆−1Tk(ρδ) and ∇∆−1Tk(ρδ)

and exploiting special structure of the momentum equation to be able to apply
the Div-Curl lemma.



Strong convergence of densities II

Step 2: Control of oscillations
Part 1:

Set
Wk := pδTk(ρδ)− pTk(ρδ).

Then for all k ∈ N,

0 ≤Wk ≤Wk+1 a.e. in Ω,

0 ≤ θ
(
ρδTk(ρδ)− ρTk(ρδ)

)
≤ K2Wk a.e. in Ω,

where K2 is a fixed constant given by properties of hθ.

The proof is based on convexity of hθ(·) and our assumptions on the structural
properties of this function.



Strong convergence of densities III

Step 2: Control of oscillations
Part 2:

Furthermore∫
Ω

Wk

λ1(θ) + λ2(θ)
dx ≤ C sup

δ>0

∫
Ω

λ1(θδ) + λ2(θδ)

θδ
(div vδ)2 dx ≤ C .

Thus, due to the monotonicity of (Wk) and monotone convergence, the
sequence (Wk/(λ1(θ) + λ2(θ))k∈N is strongly converging in L1(Ω) to a
non-negative integrable function.

The proof uses the effective viscous flux and the result from Step 1. It yields
Tk(ρδ) div vδ − Tk(ρδ) div v ≥ 0. Other steps are straightforward.



Strong convergence of densities IV

Step 2: Control of oscillations
Part 3:

Finally, the quantities

Qk := pδ(Tk(ρδ)− ρδT ′k(ρδ))− p(Tk(ρδ)− ρδT ′k(ρδ)),

Ok := Tk(ρ)− Tk(ρδ)

are non-negative and satisfy for all k ∈ N,

θO2
k ≤ CWk and lim

k→∞

∫
Ω

Qk + θO2
k

λ1(θ) + λ2(θ)
dx = 0.

The proof is similar to the proof of Part 1 and uses structural properties of
hθ(·) and the concavity and sub-linearity of the cut-off function Tk(·) as well as
the equi-integrability of the sequence ρδ.



Strong convergence of densities V

Step 3: Renormalized continuity equation

Due to the estimates above, if (ρδ, vδ) are a renormalized solution to the
continuity equation, then also the limit (ρ, v) is a renormalized solution to the
continuity equation.

The proof is similar to the proof in the case when we have the control of the
oscillation defect measure. It uses the renormalization of the limit of the
renormalized continuity equation with b(ρδ) := Tk(ρδ) and subsequent limit
k →∞ and uses the above proved results in Step 2. The advantage of this
approach in comparison to the standard proof based on oscillation defect
measure estimate is the fact that it does not introduce any further restrictions
on the exponents β and γ.



Strong convergence of densities VI

Step 4: Strong convergence of the total density
As it is now standard in the mathematical theory of compressible fluids, ρδ → ρ
strongly in L1(Ω).

The proof is a slight modification of the approach in case of the control of
oscillation defect measure. It is based on suitable application of the
renormalized continuity equation combined with effective viscous flux identity
and results from Step 2.



Strong convergence of densities VII

Step 5: Strong convergence of partial densities and further properties

Consequently, also ~ρδ → ~ρ strongly in L1(Ω;RN).

This follows by the strong convergence of Π
(
~µδ
θδ

)
, strong convergence of ρδ and

properties of the Legendre transform.

Finally, we also have
Π(~µδ)→ θΠ~q a.e. in Ω,

where Π
(
~µδ
θδ

)
→ Π~q a.e. in Ω.



Approximations

The construction of the approximate solutions is quite complex (based on six
parameters). We need to regularize the thermodynamic quantities, improve
properties of the pressure and heat conductivity. Instead of the total energy
balance we work with internal energy balance and apply Galerkin approximation
approximation on the velocity. Altogether it requires 6 parameters. The first
limit passages are easy to perform, the last one is based on the ideas from the
weak compactness part.
More details can be found in

M. Bulíček, A. Jüngel, M. Pokorný, N. Zamponi. Existence analysis of a
stationary compressible fluid model for heat-conducting and chemically
reacting mixtures. arXiv:2001.06082.
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