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Introduction

Consider compressible Navier–Stokes equations:

∂t%+ div(%u) = 0,

∂t(%u) + div(%u⊗ u)− div(S(∇u)) +∇p(%) = %f

Open problem: regularity of solutions for regular data
Known: it is connected with the presence of vacuum regions
Questions: if the vacuum zone develops, is it possible that it appears
instantaneously on a "large" set?
What are the conditions to exclude the presence of vacuum regions without
assuming small data or short time interval?

Aim of this talk is to discuss these problems from the point of view of
properties of continuity equation

Based on the paper:

A. Novotný, M. Pokorný: Continuity equation and vacuum regions in
compressible flows. Journal of Evolution Equations, online first.
https://doi.org/10.1007/s00028-021-00704-3.
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Continuity (transport) equation I

∂t%+ div(%u) = 0 in I × Ω,

%(0, ·) = %0 in Ω,
(1)

where Ω ⊂ Rd , d ≥ 2 is an open set and I = (0,T ), 0 < T <∞.
Assume: u ∈ L1(I × Ω;Rd), div u ∈ L1(I × Ω)
Then the function % ∈ L1(I × Ω) with %u ∈ L1(I × Ω;Rd) is

Distributional solution to the continuity equation, if∫ T

0

∫
Ω

(%∂tϕ+ %u · ∇ϕ) dx dt = 0 (2)

holds for arbitrary ϕ ∈ C∞c (I × Ω).

Weak solution to the continuity equation, if (2) holds for any ϕ ∈ C∞c (I × Ω).
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Continuity equation II

Time integrated distributional solution to the continuity equation, if
% ∈ Cweak(I ; L1(Ω)) and∫

Ω

(%ϕ)(τ, ·)dx −
∫

Ω

(%ϕ)(0, ·)dx =

∫ τ

0

∫
Ω

(%∂tϕ+ %u · ∇ϕ) dx dt = 0 (3)

holds for arbitrary ϕ ∈ C∞c (I × Ω) and any τ ∈ I .

Time integrated weak solution to the continuity equation, if
% ∈ Cweak(I ; L1(Ω)) and (3) holds for any ϕ ∈ C∞(I × Ω) and any τ ∈ I .

Renormalized distributional solution to the continuity equation, if in addition to
(2) ∫ T

0

∫
Ω

(
b(%)∂tϕ+ b(%)u · ∇ϕ−

(
b′(%)%− b(%)

)
div uϕ

)
dx dt = 0 (4)

holds for arbitrary ϕ ∈ C∞c (I × Ω) and all b ∈ C 1([0,∞)), b′ ∈ Cc([0,∞)).
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Continuity equation III

Renormalized weak solution to the continuity equation, if it is a weak solution
and (4) holds for any ϕ ∈ C∞c (I × Ω) and any b specified above.

Renormalized time integrated distributional solution to the continuity equation,
if it is a time integrated distributional solution, for any b specified above
b ∈ Cweak(I ; L1(Ω)) and∫
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dx dt

(5)

holds for all ϕ ∈ C∞c (I × Ω), all b as above and all τ ∈ I .

Renormalized time integrated weak solution to the continuity equation, if it is a
time integrated weak solution, for any b specified above b ∈ Cweak(I ; L1(Ω))
and (5) holds for any ϕ ∈ C∞(I × Ω), any b specified above and any τ ∈ I .
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Continuity (transport) equation IV

∂ts + u · ∇s = 0 in I × Ω,

s(0, ·) = s0 in Ω
(6)

Let u ∈ L1(I × Ω;Rd), div u ∈ L1(I × Ω). Then for s ∈ L1(I × Ω), su and
s div u ∈ L1(I × Ω) we define by analogy the Distributional, Weak, Time
integrated distributional, etc. solutions to the transport equation. Recall that
the distributional formulation means∫ T

0

∫
Ω

(s∂tϕ+ su · ∇ϕ+ s div uϕ) dx dt = 0 (7)

for all ϕ ∈ C∞c (I × Ω) and the renormalized distributional formulation is∫ T

0

∫
Ω

(b(s)∂tϕ+ b(s)u · ∇ϕ+ b(s) div uϕ) dx dt = 0 (8)

for all ϕ ∈ C∞c (I × Ω) and all b as above.
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Main results I

Theorem (1)
Let Ω ⊂ Rd be a bounded domain. Let 1 ≤ q, p ≤ ∞ and
u ∈ Lp(0,T ;W 1,q(Ω;Rd)). Let

0 ≤ % ∈ Cweak(I ; Lγ(Ω)), γ > 1 (9)

be a renormalized time integrated weak solution to the continuity equation (1)
with transporting velocity u.
Then the map t 7→ s%(t, ·) := 1{x∈Ω|%(t,x)=0}(·) belongs to C([0,T ]; Lr (Ω))
with any 1 ≤ r <∞ and it is a time integrated renormalized weak solution of
the transport equation (6) with transporting velocity u. In particular,

|{x ∈ Ω|%(t, x) = 0}|d ∈ C([0,T ]). (10)

In the above |A|d denotes the d-dimensional Lebesgue measure of the set A.
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Main results II

Theorem (2)
Let Ω ⊂ Rd be a bounded Lipschitz domain. Let

1 ≤ q, p, α, β ≤ ∞, (q, β) 6= (1,∞),
1
β

+
1
q
≤ 1,

1
α

+
1
p
≤ 1. (11)

Let % from class (9) be a renormalized time integrated weak solution to the
continuity equation (1) with transporting velocity u ∈ Lp(0,T ;W 1,q

0 (Ω;Rd)).
Let

0 ≤ R ∈ L∞(0,T ; Lγ̃(Ω)) ∩ Lα(0,T ; Lβ(Ω)), γ̃ > 1 (12)

be a distributional solution to the continuity equation (1) with the same
transporting velocity u.
Then
1/ Function R belongs to

R ∈ Cweak([0,T ]; Lγ̃(Ω)) ∩ C([0,T ]; Lr (Ω)), 1 ≤ r < γ̃ (13)

and it is a renormalized time integrated weak solution of the continuity
equation (1).
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Main results III

Theorem (2 cont.)

2/ The map t 7→ (s%R)(t) belongs to C([0,T ]; Lr (Ω)) with any 1 ≤ r < γ̃ and
it is a renormalized time integrated weak solution of the continuity equation (1)
(with the same transporting velocity). In particular,∫

Ω

(s%R)(t, ·)dx =

∫
Ω

(s%R)(0, ·)dx (14)

for all t ∈ [0,T ].

3/ If further %(0, ·) > 0 a.e. in Ω, then, up to sets of d-dimensional Lebesgue
measure zero, for all t ∈ (0,T ]

{x ∈ Ω|%(t, x) = 0} ⊂ {x ∈ Ω|R(t, x) = 0}.
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Comments and corollaries I
First theorem:
The result means that it is not possible that the vacuum region appears at one
instant on a large portion of the domain.

Second theorem:
The result indicates that either there are not too many solutions of the
continuity equation with the given velocity field, or there is no vacuum created,
if there was no vacuum region at the initial time.

More precisely, we have the following corollaries:

Corollary (4)
Let q, p, α, β verify conditions (11) and γ̃, γ > 1. Let Ω, %, u verify
assumptions of Theorem 2, where %(0, x) > 0. (In particular, % is a
renormalized time integrated weak solution of the continuity equation (1) with
transporting velocity u.)
Let τ ∈ (0,T ). Suppose that continuity equation (1) with transporting velocity
u admits at least one distributional solution R belonging to class (12) which
does not admit in Ω a vacuum at time τ , i.e. R(τ) > 0 a.e. in Ω. Then % does
not admit a vacuum at time τ , i.e.

|{x ∈ Ω|%(τ, x) = 0}|d = 0.
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Comments and corollaries II

Corollary (5)
Let (q, p, α, β) and (q, p, α̃, β̃) verify conditions (11) and γ̃, γ > 1. Let Ω, u be
as in Theorem 2. Suppose that % belongs to class

0 ≤ % ∈ L∞(I ; Lγ(Ω)) ∩ Lα(I ; Lβ(Ω)) (15)

while R belongs to class (15)α̃,β̃,γ̃ , and that each of % and R represents a
distributional solution to the continuity equation (1) with the transporting
velocity u. Then, % ∈ Cweak([0,T ]; Lγ(Ω)), R ∈ Cweak([0,T ]; Lγ̃(Ω)), and they
are both renormalized time integrated solutions of the continuity equation (1).
Moreover, if %(0, ·) > 0 and R(0, ·) > 0 a.e. in Ω then up to sets of
d-dimensional Lebesgue measure zero, for all t ∈ (0,T ]

{x |%(t, x) = 0} = {x |R(t, x) = 0}.
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Comments and corollaries III

Corollary (6)
Let q, α, β, γ, γ̃ verify assumptions of Corollary 4 with p =∞.
Let Ω, %, u verify assumptions of Corollary 4. (In particular, 0 ≤ % is a
renormalized time integrated weak solution of the continuity equation (1) with
transporting velocity u and %(0, x) > 0.) We assume that u is time
independent, i.e. u = u(x), u ∈W 1,q

0 (Ω;Rd).
Suppose that continuity equation (1) with transporting velocity u admits at
least one (local in time) distributional solution R on (0,T ′)× Ω with some
T ′ > 0 belonging to class (12)T=T ′ which does not admit in Ω a vacuum at
time τ ∈ (0,T ′), i.e. there exists τ ∈ (0,T ′) such that R(τ) > 0 a.e. in Ω.
Then % does not admit a vacuum at any time in [0,T ], i.e.

∀t ∈ [0,T ], |{x ∈ Ω|%(t, x) = 0}|d = 0.
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independent, i.e. u = u(x), u ∈W 1,q

0 (Ω;Rd).
Suppose that continuity equation (1) with transporting velocity u admits at
least one (local in time) distributional solution R on (0,T ′)× Ω with some
T ′ > 0 belonging to class (12)T=T ′ which does not admit in Ω a vacuum at
time τ ∈ (0,T ′), i.e. there exists τ ∈ (0,T ′) such that R(τ) > 0 a.e. in Ω.
Then % does not admit a vacuum at any time in [0,T ], i.e.

∀t ∈ [0,T ], |{x ∈ Ω|%(t, x) = 0}|d = 0.



Application to the compressible NS equations I

Compressible Navier–Stokes equations in barotropic regime:

∂t%+ div(%u) = 0

∂t(%u) + div(%u⊗ u) +∇p(%) = div S(∇u) + %f
(16)

which we consider in (0,T )× Ω, together with the initial conditions in Ω

%(0, ·) = %0, (%u)(0, ·) = m0 (17)

and so called no-slip boundary condition on (0,T )× ∂Ω

u(t, x) = 0. (18)

The homogeneous boundary condition (18) can be replaced by Navier (slip)
boundary conditions or by periodic boundary conditions if Ω is a periodic cell.

S(∇u) = µ
(
∇u +∇ut − 2

d
div uI

)
+ λdiv uI. (19)

The viscosity coefficients are assumed to be constant: µ > 0 and λ ≥ 0.
Function % 7→ p(%) denotes the pressure. One supposes that

p ∈ C 1([0,∞)).
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Application to the compressible NS equations II

Definition
Let %0 ∈ Lγ(Ω), 0 ≤ %0 ∈ Lγ(Ω) a.e. in Ω, γ > 1, r > 1,
(%u)(0, ·) = m0 ∈ L1(Ω;Rd) and f ∈ L∞((0,T )× Ω;Rd). A couple (%, u) is a
renormalized weak solution to the initial boundary value problem (16–18) iff:

1. The couple (%, u) belongs to functional spaces

0 ≤ % ∈ Cweak(I ; Lγ(Ω)), u ∈ L2(I ;W 1,2
0 (Ω;Rd)), p(%) ∈ L1(Q),

%u ∈ Cweak(I ; Lr (Ω;Rd)), %(u⊗ u), S(∇u) ∈ L1((0,T )× Ω;Rd×d).

2. % is a time integrated renormalized weak solution to the continuity
equation (16)1 with transporting velocity u.

3. The couple (%, u) verifies the momentum equation (16)2 in the following
sense:∫ T

0

∫
Ω

(
− %u · ∂tϕϕϕ− %(u⊗ u) : ∇ϕϕϕ+ S(∇u) : ∇ϕϕϕ− %γ divϕϕϕ

)
dx dt

−
∫

Ω

m0 ·ϕϕϕ(0, ·)dx =

∫ T

0

∫
Ω

%f ·ϕϕϕ dx dt

(20)
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Application to the compressible NS equations III

Corollary (8)
Let γ > 1 verify γ ≥ 2d

d+2 . Then the claims of Theorems 1 and 2 (and
Corollaries 4, 5 and 6) hold for any renormalized weak solution to the
compressible Navier–Stokes equations specified in Definition 7 (with p = 2 in
Theorem 1).

Note that existence of such solutions is known, e.g., for p(%) = %γ and γ > 1 if
d = 2, γ > 3

2 if d = 3.
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Preliminaries I

Proposition (9)
Let Ω ⊂ Rd , d ≥ 2 be a bounded domain with Lipschitz boundary. Let
u ∈ Lp(I ;W 1,q(Ω;Rd)), 1 ≤ p, q ≤ ∞. Suppose that

0 ≤ % ∈ L∞(I ; Lγ(Ω)), γ > 1. (21)

Then the following statements are true:

1. If % is a renormalized distributional solution of the continuity equation
with transporting velocity u, then function % and functions b(%) with any
b from the definition of the renormalized solution belong to
Cweak(I ; Lγ(Ω)) ∩ C(I ; Lr (Ω)) for any 1 ≤ r < γ and % is a renormalized
time integrated distributional solution of the continuity equation with
transporting velocity u.

2. If % is a renormalized weak solution of the continuity equation with
transporting velocity u, then function % and functions b(%) with any b
from the definition of the renormalized solution belong to
Cweak(I ; Lγ(Ω)) ∩ C(I ; Lr (Ω)) for any 1 ≤ r < γ and it is a renormalized
time integrated weak solution of the continuity equation with transporting
velocity u.

A similar statement holds for solutions to the transport equation.
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Preliminaries II

Proposition (10)
Let Ω ⊂ Rd , d ≥ 2 be a bounded domain with Lipschitz boundary. Further, let
u ∈ Lp(I ;W 1,q(Ω;Rd)), 0 ≤ % ∈ Lα(I ; Lβ(Ω)), where p, q, α, β satisfy

1 ≤ q, p, α, β ≤ ∞, (q, β) 6= (1,∞),
1
β

+
1
q
≤ 1,

1
α

+
1
p
≤ 1.

1/ Assume that % is a distributional solution of the continuity equation with
transporting velocity u. Then the following statements are true:

1.1 % is a renormalized distributional solution.
1.2 If moreover

u ∈ Lp(I ;W 1,q
0 (Ω;Rd)), (22)

then % is a renormalized weak solution of the continuity
equation.
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Preliminaries III

Proposition (10 cont.)
2/ Assume that % belongs to class

% ∈ Cweak(I ; Lγ(Ω)) with some γ > 1 (23)

and is a time integrated distributional solution of the continuity equation with
transporting velocity u. Then the following statements are true:

2.1 Functions % and b(%) belong to Cweak(I ; Lγ(Ω)) ∩ C(I ; Lr (Ω))
for any 1 ≤ r < γ. Moreover, % is a renormalized time
integrated distributional solution.

2.2 If moreover u has zero traces, then % is a renormalized time
integrated weak solution of the continuity equation.

A similar statement holds for solutions to the transport equation.
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Preliminaries IV

Proposition (12)
Let Ω be a bounded domain with Lipschitz boundary. Suppose that

1 ≤ q, p, α%, β%, αs , βs ≤ ∞, (q, β%) 6= (1,∞), (q, βs) 6= (1,∞),

1
α%

+
1
αs

+
1
p
≤ 1,

1
r%

+
1
rs

+
1
q
≤ 1,

where

r%

{
∈ [1,∞) if q > 1 and β% =∞

= β% otherwise

}
, rs

{
∈ [1,∞) if q > 1 and βs =∞

= βs otherwise

}
.

Let

% ∈ Lα%(I ; Lβ%(Ω)), s ∈ Lαs (I ; Lβs (Ω)), u ∈ Lp(I ;W 1,q(Ω;Rd)).

Then there holds:



Preliminaries V
Proposition (12 cont.)

1. Assume additionally that

1
t%

+
1
ts

+
1
p
≤ 1,

where

t%

{
∈ [1,∞) if p > 1 and α% =∞

= α% otherwise

}
, ts

{
∈ [1,∞) if p > 1 and αs =∞

= αs otherwise

}
.

If % is a distributional (resp. weak) solution of the continuity equation and
s a distributional (resp. weak) solution of the transport equation with
transporting velocity u, then %s is a renormalized distributional (resp.
weak) solution of the continuity equation with the same transporting
velocity u.

2. If % ∈ Cweak(I ; Lγ%(Ω)) is a time integrated distributional (resp. weak)
solution of the continuity equation and s ∈ Cweak(I ; Lγs (Ω)) a time
integrated distributional (resp. weak) solution of the transport equation
with transporting velocity u (where 1 < γ%, γs ≤ ∞, 1

γ%
+ 1

γs
:= 1

γ
< 1),

then %s ∈ C(I ; Lr (Ω)), 1 ≤ r < γ is a renormalized distributional (resp.
weak) solution of the continuity equation with the same transporting
velocity u.
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Proof of main theorems I

Proof of Theorem 1

• (%, u) is renormalized solution, use bδ(%) := δ
δ+%

with δ > 0 in the
renormalized formulation

•
∂t
( δ

δ + %

)
+ div

( δ

δ + %
u
)
− δ

δ + %
div u +

δ%

(δ + %)2 div u = 0.

• % ∈ Cweak([0,T ]; Lγ(Ω)) ∩ C([0,T ]; Lr (Ω)), 1 ≤ r < γ, thus
δ
δ+%
∈ C([0,T ]; Lr (Ω)), 1 ≤ r <∞.

• weak time integrated formulation of the renormalized equation∫
Ω

δ

δ + %(t, ·)ϕ(t, ·)dx −
∫

Ω

δ

δ + %(0, ·)ϕ(0, ·)dx

−
∫ T

0

∫
Ω

( δ

δ + %
∂tϕ+

δ

δ + %
u · ∇ϕ+

( δ

δ + %
− δ%

(δ + %)2

)
div u

)
dx dt = 0

(24)
for all ϕ ∈ C∞([0,T ]× Ω)
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Proof of main theorems II

• weak formulation with constant test function∫
Ω
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δ + %(τ, ·)dx −
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δ + %(0, ·)dx =

∫ τ

0

∫
Ω

( δ
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(δ + %)2
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div u dx dt
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for all τ ∈ (0,T ]

• let δ → 0+ both in (24) and (25) to get (recall δ
δ+%(t,x)

= 1 provided
%(t, x) = 0) ∫ T

0

∫
Ω

(
s%∂tϕ+ s%u · ∇ϕ+ s% div uϕ

)
dx dt = 0 (26)

for all ϕ ∈ C∞c ((0,T )× Ω), and∫
Ω

s%(τ, ·) dx −
∫

Ω

s%(0, ·) dx =

∫ τ

0

∫
Ω

s% div u dx dt, (27)

where s% denotes the characteristic function of the set, where % = 0

• (s%, u) fulfills the transport equation; recall∫
Ω
s%(τ, ·)dx = |{x ∈ Ω; %(τ, x) = 0}|d .
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Proof of main theorems III

• subtract equations (27) for τ := τ1 and τ := τ2 to get∣∣∣ ∫ τ2

τ1

s% div u dx dt
∣∣∣→ 0 for τ1 → τ2.

•
|{x ∈ Ω; %(τ, x) = 0}|d ∈ C([0,T ]).

• furthermore s% ∈ Cweak([0,T ]; Lr (Ω)) for any 1 ≤ r <∞, and

s% ∈ C([0,T ]; Lr (Ω)), for any 1 ≤ r <∞.
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Proof of main theorems IV

Proof of Theorem 2

• assumptions of the first theorem are fulfilled, thus s% = χ{x∈Ω;%(t,x)=0} solves
(in the time integrated renormalized weak sense) the transport equation

∂ts% + u · ∇s% = 0

and s% ∈ C([0,T ]; Lr (Ω)) ∩ L∞((0,T )× Ω), 1 ≤ r <∞, arbitrary

• R is also a renormalized up to the boundary solution to the continuity
equation and R ∈ C([0,T ]; Lr (Ω)), 1 ≤ r < γ̃. Hence s%R ∈ C([0,T ]; Lr (Ω))
for 1 ≤ r < γ̃. By Propositions 12 and 10 s%R fulfills the continuity equation

∂t(s%R) + div(s%Ru) = 0 (28)

in the time integrated renormalized weak sense.

• then ∫
Ω

R(t, ·)χ{x∈Ω;%(t,x)=0}dx =

∫
Ω

R(0, ·)χ{x∈Ω;%(0,x)=0}dx

The last claim is evident.
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