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Bi-fluid system I

We consider a model of two compressible viscous fluids with the same velocity
as introduced e.g. in

M. Ishii, T. Hibiki: Thermo-fluid dynamics of two-phase flow, Springer
Verlag, 2006.

in the inviscid case or in

D. Bresch, B. Desjardins, J.-M. Ghidaglia, E. Grenier, M. Hilliairet:
Multifluid models including compressible fluids, Handbook of
Mathematical Analysis in Mechanics of Viscous Fluids, Eds. Y. Giga et A.
Novotný, 2018, pp. 52.

for the viscous case.

The model assumes that the velocity is the same for both fluids and we
distinguish only the mass fractions. At each space-point both fluids may be
present, there is no interface between the fluids. On the other hand, we assume
a certain algebraic relation between the models of each fluid: the pressures for
both components are the same and the whole model can be viewed as a result
of some kind of averaging (homogenization) and can be obtained physically
rigorously. Summing up the balances of linear momentum for each fluid we end
up with the model in QT = (0,T )× Ω ⊂ R4
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Bi-fluid system II

∂t(a%+) + div(a%+u) = 0,

∂t((1− a)%−) + div((1− a)%−)u) = 0,

∂t
(
(a%+ + (1− a)%−))u

)
+

div
((

a%+ + (1− a)%−
)
u⊗ u

)
+∇P+(%+) = µ∆u + (µ+ λ)∇ div u,

P+(%+) = P−(%−),

(1)

Above, u is the (common) velocity, while P± are given functions characterizing
the species in the mixture. Next, 0 ≤ a ≤ 1, %+ ≥ 0, %− ≥ 0 and u are
unknown functions. They have the following meaning: a, a%+, (1− a)%− denote
the rate of amount of the first species, density of the first and the second
species in the mixture, respectively. The constants µ and λ are the shear and
bulk (average) viscosities of the mixture. We assume µ > 0 and 2µ+ 3λ ≥ 0.
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Bi-fluid system III

We consider the boundary conditions

u = 0 (2)

on (0,T )× ∂Ω, and the initial conditions in Ω

a%+(0, x) = a0%+,0(x) := %0(x),

(1− a)%−(0, x) = (1− a0)%−,0(x) := Z0(x),

(a%+ + (1− a)%−)u(0, x) = (a0%0,+ + (1− a0)%−,0)u0(x) := M0.

(3)

and call the system (1)–(3) the bi-fluid system with algebraic closure.



Bi-fluid system IV
Another system was also recently investigated in

A. Vasseur, H. Wen, C. Yu: Global weak solution to the viscous two-fluid
model with finite energy, J. de Math. Pures et Appl. 125, 247–282, 2019.

∂t%+ div(%u) = 0,

∂tZ + div(Zu) = 0,

∂t
(
(%+ Z)u

)
+ div

(
(%+ Z)u⊗ u) +∇P(%,Z) = µ∆u + (µ+ λ)∇ div u

(4)

with the boundary condition
u = 0 (5)

on (0,T )× ∂Ω and the initial conditions in Ω

%(0, x) = %0(x), Z(0, x) = Z0(x), (%+ Z)u(0, x) = m0(x). (6)

We will call this problem the tranformed two-densities system. In fact, the
authors considered a special case P(%,Z) = %γ + Zβ for some γ > 9

5 and
β ≥ 1. A similar system (however, as an auxiliary system for another problem)
was considered for γ > 3

2 and %+ Z replaced by % also in

D. Maltese, M. Michálek, P.B. Mucha, A. Novotný, M. Pokorný, E.
Zatorska: Existence of weak solutions for compressible Navier–Stokes
equations with entropy transport, J. Differential Equations 261,
4448–4485, 2016.
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Bi-fluid system V

A similar problem was considered in

D. Bresch, P.B. Mucha, E. Zatorska: Finite-Energy Solutions for
Compressible Two-Fluid Stokes System, Archive for Rational Mechanics
and Analysis 232, 987–1029, 2019.

The authors simplified significantly the momentum equations in order to apply
the method of

D. Bresch, P.-E. Jabin: Global Existence of Weak Solutions for
Compresssible Navier–Stokes Equations: Thermodynamically unstable
pressure and anisotropic viscous stress tensor, Ann. of Math. (2) 188,
577–684, 2018.

for large range of pressures.

Aim of the talk: to present as general as possible existence theory for the
bi-fluid system with algebraic closure (with special emphasis on the power-like
behaviour of the pressure functions P± near zero and near infinity.
It will be achieved by careful study of the transformed two-densities system
(based on several non trivial tools presented below) and on a transformation of
the bi-fluid system with algebraic closure to the two-densities system.



Bi-fluid system V

A similar problem was considered in

D. Bresch, P.B. Mucha, E. Zatorska: Finite-Energy Solutions for
Compressible Two-Fluid Stokes System, Archive for Rational Mechanics
and Analysis 232, 987–1029, 2019.

The authors simplified significantly the momentum equations in order to apply
the method of

D. Bresch, P.-E. Jabin: Global Existence of Weak Solutions for
Compresssible Navier–Stokes Equations: Thermodynamically unstable
pressure and anisotropic viscous stress tensor, Ann. of Math. (2) 188,
577–684, 2018.

for large range of pressures.

Aim of the talk: to present as general as possible existence theory for the
bi-fluid system with algebraic closure (with special emphasis on the power-like
behaviour of the pressure functions P± near zero and near infinity.
It will be achieved by careful study of the transformed two-densities system
(based on several non trivial tools presented below) and on a transformation of
the bi-fluid system with algebraic closure to the two-densities system.



Bi-fluid system V

A similar problem was considered in

D. Bresch, P.B. Mucha, E. Zatorska: Finite-Energy Solutions for
Compressible Two-Fluid Stokes System, Archive for Rational Mechanics
and Analysis 232, 987–1029, 2019.

The authors simplified significantly the momentum equations in order to apply
the method of

D. Bresch, P.-E. Jabin: Global Existence of Weak Solutions for
Compresssible Navier–Stokes Equations: Thermodynamically unstable
pressure and anisotropic viscous stress tensor, Ann. of Math. (2) 188,
577–684, 2018.

for large range of pressures.

Aim of the talk: to present as general as possible existence theory for the
bi-fluid system with algebraic closure (with special emphasis on the power-like
behaviour of the pressure functions P± near zero and near infinity.
It will be achieved by careful study of the transformed two-densities system
(based on several non trivial tools presented below) and on a transformation of
the bi-fluid system with algebraic closure to the two-densities system.



Weak solution for the two-densities model I

Definition
The triple (%,Z , u) is a bounded energy weak solution to problem (4–6), if
%,Z ≥ 0 a.e. in I × Ω, % ∈ L∞(I ; Lγ(Ω)), Z ∈ L∞(I ; Lγ(Ω)),
u ∈ L2(I ;W 1,2

0 (Ω;R3)), (%+ Z)|u|2 ∈ L∞(I ; L1(Ω)), P(%,Z) ∈ L1(I × Ω), and∫ T

0

∫
Ω

(
%∂tψ + %u · ∇ψ

)
dx dt +

∫
Ω

%0ψ(0, ·) dx = 0∫ T

0

∫
Ω

(
Z∂tψ + Zu · ∇ψ

)
dx dt +

∫
Ω

Z0ψ(0, ·) dx = 0
(7)

for any ψ ∈ C 1
c ([0,T )× Ω),∫ T

0

∫
Ω

(
(%+ Z)u · ∂tϕϕϕ+ (%+ Z)(u⊗ u) : ∇ϕϕϕ+ P(%,Z) divϕϕϕ

)
dx dt

=

∫ T

0

∫
Ω

(µ∇u : ∇ϕϕϕ+ (µ+ λ) div u divϕϕϕ
)
dx dt −

∫
Ω

m0 ·ϕϕϕ(0, ·) dx
(8)

for any ϕϕϕ ∈ C 1
c ([0,T )× Ω;R3),



Weak solution for the two-densities model II

and the energy inequality holds∫
Ω

(1
2

(%+ Z)|u|2 + HP(%,Z)
)

(τ, ·) dx

+

∫ τ

0

∫
Ω

(
µ|∇u|2 + (µ+ λ)(div u)2) dx dt

≤
∫

Ω

( |m0|2

2(%0 + Z0)
+ HP(%0,Z0)

)
dx

(9)

for a.a. τ ∈ (0,T ).

We consider the Helmholtz free energy function HP(%,Z) corresponding to P is
a solution of the partial differential equation of the first order in (0,∞)2

P(%,Z) = %
∂HP(%,Z)

∂%
+ Z

∂HP(%,Z)

∂Z
− HP(%,Z). (10)

It is not uniquely determined. We take

H = HP(%,Z) = %

∫ %

1

P(s, s Z
%

)

s2 ds if % > 0, HP(0, 0) = 0. (11)
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Hypotheses I
Hypothesis (H1). We denote

Oa := {(%,Z) ∈ R2 | % ∈ [0,∞), a% < Z < a%}, 0 ≤ a < a <∞ (12)

and assume

(%0,Z0) ∈ Oa = {(%,Z) ∈ R2 | % ∈ [0,∞), a% ≤ Z ≤ a%}, 0 ≤ a < a <∞.
(13)

In what follows we will always use the following convention for the calculus of
fractions Z

%
provided (%,Z) ∈ Oa, namely

s =
Z

%
:=

{
Z
%
if % > 0,

0 if % = 0.
(14)

Hypothesis (H2).

%0 ∈ Lγ(Ω), Z0 ∈ Lβ(Ω) if β > γ, (15)

m0 ∈ L1(Ω;R3), (%0 + Z0)|u0|2 ∈ L1(Ω).
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Hypotheses II

Hypothesis (H3).
We suppose that pressure P ∈ C(Oa) ∩ C 1(Oa) is such that

∀% ∈ (0, 1), sup
s∈[a,a]

|P(%, %s)| ≤ C%α with some α > 0. (16)

and for all (%,Z) ∈ Oa

C(%γ + Zβ − 1) ≤ P(%,Z) ≤ C(%γ + Zβ + 1), (17)

with γ ≥ 9
5 and β > 0, where C , C are two positive constants.

We moreover assume

|∂ZP(%,Z)| ≤ C(%−Γ + %Γ−1) in Oa (18)

with some 0 ≤ Γ < 1, and with some 0 < Γ < γ + γBOG if a = 0,
0 < Γ < max{γ + γBOG , β + βBOG} if a > 0, where γBOG := min{ 2

3γ − 1, γ2 } is
the improvement of the integrability due to the Bogovskii operator estimates.
Similarly for βBOG .
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Hypotheses III

Hypothesis (H4).
We assume

P(%, %s) = P(%, s)−R(%, s), (19)

where [0,∞) 3 % 7→ P(%, s) is non decreasing for any s ∈ [a, a], and
% 7→ R(%, s) is for any s ∈ [a, a] a non-negative C 2-function in [0,∞) uniformly
bounded with respect to s ∈ [a, a] with compact support uniform with respect
to s ∈ [a, a]. Here, a, a are the constants from relation (12). Moreover, if
γ = 9

5 , we suppose that

P(%, s) = f (s)%γ + π(%, s), (20)

where [0,∞) 3 % 7→ π(%, s) is non decreasing for any s ∈ [a, a] and
f ∈ L∞(a, a), ess infs∈(a,a)f (s) ≥ f > 0. Finally,

∀% ∈ (0, 1), sup
s∈[a,a]

P(%, %s) ≤ c%α with some c > 0 and α > 0. (21)



Hypotheses IV

Hypothesis (H5).
Function % 7→ P(%,Z) is for all Z > 0 locally Lipschitz on (0,∞) and function
Z 7→ ∂ZP(%,Z) is for all % > 0 locally Lipschitz on (0,∞) with Lipschitz
constant

L̃P(%,Z) ≤ C(r)(1 + %A)

L̃P(%,Z) ≤ C(r)(1 + ZA)

for all r > 0, (%,Z) ∈ Oa ∩ (r ,∞)2

(22)

with some non negative number A. Number C(r) may diverge to +∞ as
r → 0+.



Examples I

We may take

P(%,Z) = %γ + Zβ +
M∑
i=1

Fi (%,Z), (23)

where Fi (%,Z) = Ci%
riZ si , 0 ≤ ri < γ, 0 ≤ si < β, ri + si < max{γ, β}. It is an

easy matter to check that all Hypotheses (H3–H5) are fulfilled.
Another possibility is

P(%,Z) = (%+ Z)γ +
M∑
i=1

Fi (%,Z), (24)

where Fi are as above (for β = γ).
One more nontrivial example will be presented later, when we consider the real
bi-fluid system.



Results I

Theorem
Let γ ≥ 9

5 , 0 < β <∞. Then under Hypotheses (H1–H5) problem (4–6)
admits at least one weak solution in the sense of Definition 1. Moreover, for all
t ∈ [0,T ], (%(t, x),Z(t, x)) ∈ Oa for a.a. x ∈ Ω,
% ∈ Cweak([0,T ]; Lγ(Ω))∩C([0,T ]; L1(Ω)),
Z ∈ Cweak([0,T ]; Lqγ,β (Ω))∩C([0,T ]; L1(Ω)),
(%+ Z)u ∈ Cweak([0,T ]; Lq(Ω;R3)) for some q > 1 and P(%,Z) ∈ Lq(I × Ω)
for some q > 1. In the above

qγ,β = γ if β < γ, qγ,β = β if β ≥ γ.



Weak solution for the bi-fluid system with algebraic closure I

Definition
The quadruple (a, %−, %+, u) is a bounded energy weak solution to problem
(1–3), if 0 ≤ a ≤ 1, %± ≥ 0 a.a. in I × Ω, %± ∈ L∞(I ; L1(Ω)),
u ∈ L2(I ;W 1,2

0 (Ω;R3)), (a%+ + (1− a)%−)|u|2 ∈ L∞(I ; L1(Ω)),
P−(%−) = P+(%+) ∈ L1(I × Ω), and:
I Continuity equations (7) are satisfied with % = a%+ and Z = (1− a)%−;
I Momentum equation (8) is satisfied with % = a%+, Z = (1− a)%− and

with function P(%,Z) replaced by P+(%+);
I There is a non negative function H : (0, 1)× (0,∞)2 such that∫

Ω

(1
2

(%+ Z)|u|2 + H(a, %−, %+)
)

(τ, ·) dx (25)

+

∫ τ

0

∫
Ω

(
µ|∇u|2 + (µ+ λ)(div u)2) dx dt

≤
∫

Ω

( |M0|2

2(%0 + Z0)
+ H(a0, %−,0, %+,0)

)
dx

for a.a. τ ∈ (0,T ).



Results for the bi-fluid system with algebraic closure I

Theorem
Let 0 ≤ a < a <∞. Let G := γ+ + γ+

BOG if a = 0 and
G := max{γ+ + γ+

BOG , γ
− + γ−BOG} if a > 0. Assume

0 < γ− <∞, γ+ ≥ 9
5
, Γ < G , (26)

where

Γ =

{
max{γ+ − γ+

γ− + 1, γ− + γ−

γ+ − γ+

γ− } if a = 0

max{γ+ − γ+

γ− + 1, γ− + γ−

γ+ − 1} if a > 0

}
.

Suppose that

0 ≤ a0 ≤ 1, aa0%+,0 ≤ (1− a0)%−,0 ≤ aa0%+,0,P−(%−,0) = P+(%+,0) (27)

%+,0 ∈ Lγ
+

(Ω),
|M0|2

a0%+,0 + (1− a0)%−,0
∈ L1(Ω).



Results for the bi-fluid system with algebraic closure II

Assume further that

P± ∈ C([0,∞)) ∩ C 2((0,∞)), P±(0) = 0, P′±(s) > 0, s > 0, (28)

a−s
γ−−1 − b− ≤ P′−(s), P−(s) ≤ a−s

γ− + b−,

a+s
γ+−1 − b+ ≤ P′+(s) ≤ a+s

γ+−1 + b+,

|P′′±(s)| ≤ d±s
A± + e±, s ≥ r > 0, P′′+(s) ≥ 0, s ∈ (0,∞)

with some positive constants a±, b±, d±, e± and A±. Suppose further that

1.

sup
s∈(0,1)

sΓ P′+(s + q−1(as))(s + q−1(as))2

sq(s)
≤ c <∞ (29)

with some Γ ∈ [0, 1), where

q = P−1
− ◦P+. (30)

2.
0 < q = inf

s∈(0,∞)

q(s)

sq′(s) + q(s)
. (31)



Results for the bi-fluid system with algebraic closure III

Then problem (1–3) admits at least one weak solution in the sense of
Definition 3. Moreover, a%+ belongs to the space Cweak([0,T ); Lγ

+

(Ω)) and
(1− a)%− belongs to the space Cweak([0,T ); L

q
γ+,γ− (Ω)), the vector field

(a%+ + (1− a)%−)u belongs to Cweak([0,T ); Lr (Ω;R3)) for some r > 1,
P±(%±) ∈ Lr ((0,T )× Ω) for some r > 1 and the function H in the energy
inequality (25) is given by formula

H(a, %−, %+) = a%+

∫ a%+

0

P+ ◦R
(
s,

(1−a)%−
a%+

s
)

s2 ds,

where R(s, z) is the unique solution in [a%+,∞) of equation

Rq(R)− q(R)s −Rz = 0.



Examples I

The results of both Theorems remain valid — after well known modifications in
the definition of weak solutions in these cases — in the space periodic setting
or if we replace the no-slip boundary conditions by the Navier conditions

u · n|∂Ω = 0,
[
µ
(
∇u +∇uT − 2

3
Idivu) + (λ− µ

3
)Idivu

]
n× n|∂Ω = 0.

Assumptions of Theorem 4 imposed on partial pressure laws are numerous but
not so much restrictive: If P±(%) ∼0 %

α±
and P±(%) ∼∞ %γ

±
. Then all

hypotheses are satisfied provided α+ > 0, α− > α+√
α++1

, γ+ ≥ 9/5 and, if

a = 0, 0 < γ− < 3γ+

6−2γ+ for γ+ < 3, and γ−+ (γ−)2−(γ+)2

γ−γ+ < G ; if a > 0, then
γ− > 0 arbitrary.



Existence of a solution to the bi-fluid system with algebraic closure I

We introduce new unknowns

% = a%+, Z = (1− a)%− (32)

and use
P+(%+) = P−(%−)

to express quantities (a, %+, %−) in terms of new quantities (%,Z). We get

%+q(%+)− q(%+)%− Z%+ = 0, where q = P−1
− ◦P+. (33)

It admits for any % ≥ 0, Z ≥ 0 a unique solution{
0 < %+ = %+(%,Z) ∈ [%,∞) if % > 0 or Z > 0,

%+(0, 0) = 0

}
(34)

such that
%+(%, 0) = %, %+(0,Z) = q−1(Z). (35)



Existence of a solution to the bi-fluid system with algebraic closure II

We define
P(%,Z) := P+(%+(%,Z)). (36)

We now compute

0 < ∂%%+(%,Z) =
%+q(%+)

%q(%+) + %+q′(%+)(%+ − %)
=

Q ′(%+)

q′(%+)− %Q ′′(%+)
(37)

and

0 < ∂Z%+(%,Z) =
(%+)2

%q(%+) + %+q′(%+)(%+ − %)
, (38)

where Q(s) =
∫ s

0
q(z)
z

dz . Using this we may verify that we reformulated our
problem into the academic bi-fluid problem and under the assumptions of our
theorem we verify that Hypotheses (H1–H5) are fulfilled.

This finishes the proof of the second theorem.
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