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The system of PDE’s

Let Ω ⊂ R3 be a bounded domain with a smooth boundary, T > 0, L ≥ 2 be
the number of the constituent. We consider in ΩT = (0,T )× Ω the following
system of equations

i = 1, 2, . . . , L : ∂tci + div(civ + qi
c)− ri = 0 (1)

∂tv + div(v ⊗ v − T ) + Q∇ϕ = 0 (2)

div v = 0 (3)

−∆ϕ = Q (4)

∂te + div(ev + qe)− T : ∇v +
L∑

i=1

ziq
i
c · ∇ϕ = 0. (5)

Above: c := (c1, . . . , cL) are the species concentrations, v = (v1, v2, v3) is the
velocity field, ϕ is the electrostatic potential, qi

c = (q1
c , . . . , q

L
c ) are the fluxes of

the corresponding concentrations ci , qe = (q1
e , q

2
e , q

3
e ) denotes the heat flux,

r = (r1, . . . , rL) are reaction/productions terms for the concentration c,
z = (z1, . . . , zL) are the specific electric charges of c, Q :=

∑L
i=1 cizi is the

total electric charge, T is the Cauchy stress tensor and e is the internal energy
of the fluid.



Boundary and initial conditions

System (1)–(5) is completed by the the initial conditions

c(0) = c0, v(0) = v0, e(0) = e0, (6)

and by the following set of boundary conditions on ΓT := (0,T )× Ω

v · ν = 0, (I − ν ⊗ ν)T ν = −γv (7)

qi
c · ν = qi

cΓ, qe · ν = qeΓ, ∇ϕ · ν = qϕΓ, (8)

where ν denotes the unit outward normal vector to ∂Ω.



Model

Simplifications:
I we consider the volume additivity and model the whole mixture as being

incompressible (the density is set equal to one)
I the magnetic field and polarization is neglected, the Maxwell equations are

reduced to (4) (the permittivity is equal to one)
I the Lorenz force is reduced to Q∇ϕ.

Model may include:
I the Peltier effect
I the Joule heat
I the Fourier law
I the Fick law
I the Ohm law
I the Soret effect
I the Dufour effect



Total energy formulation

The term T : ∇v is sometimes difficult to treat. Therefore the internal energy
balance is sometimes replaced by the total energy balance

∂tE + div

((
|v |2

2
+ e + Qϕ

)
v + ϕ

L∑
i=1

ziq
i
c + qe − T v − ϕ∇∂tϕ

)
= 0, (9)

where E = |v |2/2 + e + |∇ϕ|2/2 is the specific total energy. The initial
condition for |∇ϕ|2 can be read from (4).
Advantage: the nonlinear term in velocity gradient disappeared
Disadvantage: the convective term ∼ |v |3 can be sometimes not defined, the
weak formulation will contain also the pressure



Entropy equation

We assume that the entropy density associated to system (1)–(9) is a function
of the internal energy e and the concentration vector c, i.e., s := s∗(c, e). We
define the chemical potential ζ and the temperature θ as

ζ = ζ∗(c, e) := −∂cs∗(c, e), θ = θ∗(c, e) :=
1

∂es∗(c, e)
.

We can deduce the entropy identity

∂ts + div

(
sv −

L∑
i=1

ζiq
i
c +

qe
θ

)

= −ζ · r +
T : ∇v
θ

−
L∑

i=1

qi
c ·
(
∇ζi +

zi
θ
∇ϕ
)

+ qe · ∇
1
θ
.

(10)

The second principle of thermodynamics dictates that the right-hand side of
(10) has to be non-negative. We introduce the constitutive relations for
parameters that will be designed to satisfy this constraint.



Consistency

We assume

L∑
i=1

ri =
L∑

i=1

zi ri = 0.

and

L∑
i=1

qi
c = 0.

Then for ` = (1, . . . , 1)

∂t(c · `) + div ((c · `)v) = 0.



Constitutive assumptions I
Denote for a ∈ RL

Pa := I − a⊗ a

|a|2 .

Reaction term
r := r∗(c, θ, ζ), where

|r∗(c, θ, ζ)| ≤ C1, ζ · r∗(c, θ, ζ) ≤ 0,

r∗(c, θ, ζ) · ` = z · r∗(c, θ, ζ) = 0.

Fluxes qc and qe

qi
c := −

L∑
j=1

Mij(c, θ)
(
∇ζj +

zj
θ
∇ϕ
)
−mi (c, θ)∇1

θ
,

qe := −κ(c, θ)∇θ −
L∑

i=1

mi (c, θ)
(
∇ζi +

zi
θ
∇ϕ
)
,

where for some β > 1

C1 ≤
κ(c, θ)

1 + θ−β
≤ C2.



Constitutive assumptions II

Further M is a continuous symmetric matrices valued mapping and m is a
continuous vector valued mapping fulfilling for all (c, θ) ∈ RL × R+

L∑
i=1

Mij(c, θ) =
L∑

i=1

mi (c, θ) = 0, for all j = 1, . . . , L,

for all w ∈ RL

C1M(θ)|P`w |2 ≤
L∑

i,j=1

Mij(c, θ)wiwj ≤ C2M(θ)|P`w |2

and for some α > 0

C1 min(1, θβ−α) ≤ M(θ) ≤ C(1 + θ)
5
3−α,

|m(c, θ)|2 ≤ C2

{
min{M(θ)θ−β+α, θ−2(β−1)+α} for θ < 1,

M(θ)θ for θ ≥ 1.



Constitutive assumptions III

Cauchy stress
T = −pI + S ,

where p : ΩT → R is the mean normal stress — the pressure, and S is the
constitutively determined part given by

S = S∗(c, θ,Dv)

with Dv denotes the symmetric part of the velocity gradient. The mapping
S∗ : RL × R× Rd×d

sym → Rd×d
sym is continuous and for all

(c, θ,D,B) ∈ RL × R+ × Rd×d × Rd×d and some r > 3/2

S∗(c, θ,D) : D ≥ C1|D|r − C2,

|S∗(c, θ,D)| ≤ C2(1 + |D|r−1),

S∗(c, θ, 0) = 0, (S∗(c, θ,D)− S∗(c, θ,B)) : (D − B) ≥ 0.



Constitutive assumptions IV
Entropy

The entropy s decomposes as the sum of two contributions, one from the
internal energy e and another from the concentration vector c, i.e.,

s = se(e) + sc(c),

where se : R+ → R+ and sc : RL → R+ are strictly concave C2 functions.
For sc we assume that for all c, x ∈ RL

−
L∑

i,j=1

xixj∂
2
ci cj sc(c) ≥ C |x |2

and that for all K > 0 there exists ε > 0 such that for all c ∈ RL and all
i = 1, . . . , L we have

|∂csc(c)| ≤ K =⇒ ci ≥ ε.

For se we assume that it is strictly increasing non-negative function fulfilling for
all e > 1

C1 ≤ −
s ′′e (e)

s ′e(e)2 ≤ C2.



Constitutive assumptions V

In addition, concerning its behaviour near zero, we assume that

lim
e→0+

1
se(e)

= lim
e→0+

s ′e(e) = lim
e→0+

− s ′′e (e)

s ′e(e)2 =∞.

Further, for e > 1

C1 ≤
θ∗(e)

e
≤ C2

and for all e ≥ 0
e − 2se(e) + C2 ≥ 0.

A model example for sc used frequently in praxis is e.g.

sc(c) =
L∑

i=1

(ci − ci log(ci ))

and a possible example for se is

se(e) =

{
C1 + C2 log(e + C3), e > 1

C4e
a, 0 ≤ e < 1, 0 < a < 1.



Constitutive assumptions VI

Second law of thermodynamics
We have

∂ts + div

(
sv −

L∑
i=1

ζiq
i
c +

qe
θ

)
= −ζ · r∗(c, θ, ζ) +

S∗(c, θ,Dv) : Dv

θ

+ M(c, θ)
(
∇ζ +

z

θ
∇ϕ
)
·
(
∇ζ +

z

θ
∇ϕ
)

+
κ(c, θ)|∇θ|2

θ2 ≥ 0.



Constitutive assumptions VII
Boundary conditions
We have

v · ν = 0, (I − ν ⊗ ν)Sν = −γ(c, θ)v on Γ,

where γ is a non-negative continuous function fulfilling for all (c, θ) ∈ RL × R+

0 ≤ γ(c, θ) ≤ C2.

Next,

qi
cΓ =

L∑
j=1

Dij(x , c, θ)
(
ζj − ζΓ

j + zj(ϕ− ϕΓ)
)

on Γ,

qeΓ = −κΓ(x , c, θ)

(
1
θ
− 1
θΓ

)
on Γ,

qϕΓ = −λΓ(x)(ϕ− ϕΓ) on Γ.

We assume
∑L

i=1 Dij(x , c, θ) = 0,

C1d(x)|P`w |2 ≤
L∑

i,j=1

Dij(c, x , θ)wiwj ≤ C2d(x)|P`w |2

and ∫
∂Ω

d(x) dσ > 0.



Constitutive assumptions VIII

Further
C1κ(x) ≤ κΓ(x , c, θ) ≤ C2κ(x)

with ∫
∂Ω

κ(x) dσ > 0.

Finally λΓ ∈ C1(∂Ω) is a non-negative function∫
∂Ω

λΓ(x) dσ > 0.

We assume

(θΓ)−1 ∈ L2(Γ),P`ζ
Γ ∈ L2(Γ;RL), ϕΓ ∈W 1,1(0,T ; C1,1(∂Ω)).

Initial conditions

c0 ∈ L∞([0, 1]L), c0 · ` = 1 a.e. in Ω,

v0 ∈ L2
0,div(Ω) := C∞0,div(Ω;R3),

e0 ∈ L1(Ω).



Weak solution I

Weak solution with internal energy
Species equations: for i = 1, . . . , L∫ T

0

∫
Ω

(ci∂tψ+(civ+qi
c)·∇ψ+riψ) dx dt+

∫
Ω

ci (0)ψ(0, ·) dx =

∫ T

0

∫
∂Ω

qi
cΓψ dσ dt

(11)
for all ψ ∈ C∞0 ([0,T )× Ω)

Momentum equation:∫ T

0

∫
Ω

(v · ∂tψ + (v ⊗ v − S) : Dψ − Q∇ϕ · ψ) dx dt

+

∫
Ω

v0 · ψ(0, ·) dx =

∫ T

0

∫
∂Ω

γ(c, θ)v · ψ dσ dt
(12)

for all ψ ∈ C∞0 ([0,T )× Ω) with divψ = 0 and ψ · ν = 0 on ∂Ω

Electrostatic potential:∫
Ω

∇ϕ · ∇ψ dx =

∫
∂Ω

qϕΓψ dσ +

∫
Ω

Qψ dx (13)

for all ψ ∈ C∞(Ω)



Weak solution II
Internal energy:∫ T

0

∫
Ω

(e∂tψ + (ev + qe) · ∇ψ + S : D(v)ψ −
L∑

i=1

ziq
i
c · ∇ϕψ) dx dt

+

∫
Ω

e0ψ(0, ·) dx =

∫ T

0

∫
∂Ω

qeΓψ dσ dt

(14)

for all ψ ∈ C∞0 ([0,T )× Ω)
Weak solution with total energy
The weak formulation for the species, momentum and electrostatic potential
remain the same. Instead of the internal energy equation we consider
Total energy:∫ T

0

∫
Ω

(
E∂tψ +

(
(|v |2/2 + e + Qϕ+ p)v − Sv

)
· ∇ψ

)
dx dt

+

∫ T

0

∫
Ω

(
ϕ

L∑
i=1

ziq
i
c + qe − ϕ∇∂tϕ

)
· ∇ψ dx dt

+

∫
Ω

E0ψ(0, ·) dx =

∫ T

0

∫
∂Ω

(
qeΓ + ϕ

L∑
i=1

ziq
i
cΓ − ϕ∂tqϕΓ + γ(c, θ)|v |2)ψ dσ dt

(15)
for all ψ ∈ C∞0 ([0,T )× Ω), where E0 = e0 + |v0|2/2 + |∇ϕ(0)|2/2



Variational energy solution

The weak formulation for the species, momentum and electrostatic potential
remain the same. Instead of the internal energy equation we consider
internal energy inequality:∫ T

0

∫
Ω

(e∂tψ + (ev + qe) · ∇ψ + S : D(v)ψ −
L∑

i=1

ziq
i
c · ∇ϕψ) dx dt

+

∫
Ω

e0ψ(0, ·) dx ≤
∫ T

0

∫
∂Ω

qeΓψ dσ dt

(16)

for all non-negative ψ ∈ C∞0 ([0,T )× Ω) and the total energy balance
integrated over Ω∫

Ω

E(t) dx +

∫ t

0

∫
∂Ω

(
qeΓ +

L∑
i=1

ziq
i
Γ − ϕ∂tqϕΓ + γ(c, θ)|v |2) dσ dτ =

∫
Ω

E0 dx

for all t ∈ (0,T ].



Main result

Theorem
Under the assumptions above, for any r > 3/2, there exists a variational energy
solution to our problem. If r > 9/5, the solution fulfills also the total energy
balance and if r ≥ 11/5, the solution fulfills also the internal energy balance.

Comments:
I If r > 3/2, the convective term in the momentum equation makes sense

(v ∈ L2(ΩT )) and the convective term ev is integrable
I If r > 9/5, the convective in the total energy balance makes sense

(v ∈ L3(ΩT ))
I If r ≥ 11/5, we prove strong convergence of ∇v in Lr (QT ) and the

quadratic term in the internal energy balance is O.K.
I Weak strong compatibility holds, i.e. if we have smooth a variational

energy solution, then it is a classical solution to our problem



Known result

This paper extends the results of the paper by Bulíček, Havrda (2015) treating
larger interval for r and including the electrostatic field. Other similar results:
e.g. Bulíček, Málek, Rajagopal (2009), Roubíček (2005,2006,2007) for
incompressible fluid models, Feireisl, Petzeltová, Trivisa (2008) or Mucha,
Pokorný, Zatorska (2015) and Xi, Xie (2016) for compressible fluid models.



A priori bounds I

Concentrations:
As c0 · ` = 1 a.a. in Ω, div v = 0 and v · ν = 0 on ∂Ω, we get due to

∂t(c · `) + div ((c · `)v) = 0

that c · ` ≡ 1 a.a. in ΩT . Moreover, due to the assumption on the entropy we
have ci ≥ 0 a.a. in ΩT for any i = 1, . . . , L, thus ci ∈ L∞(ΩT ).
Electrostatic potential:
As Q = z · c is bounded, we have that ϕ ∈ L∞((0,T );W 2,q(Ω)) for any
q <∞.



A priori bounds II
Bounds from total energy balance and entropy inequality:

Total energy balance yields:

d

dt

(∫
Ω

E dx +

∫
∂Ω

λΓ|ϕ|2

2
dσ
)

+

∫
∂Ω

γ(c, θ)|v |2 dσ

=

∫
∂Ω

(
κΓ(c, θ)

(
1
θ
− 1
θΓ

)
−

L∑
i,j=1

Dijϕzi
(
ζj − ζΓ

j + zj(ϕ− ϕΓ)
))

dσ

+

∫
∂Ω

ϕλΓ∂tϕ
Γ dσ.

Entropy inequality yields:
d

dt

∫
Ω

−s dx +

∫
Ω

(S∗(c, θ,Dv) : Dv

θ
− ζ · r∗(c, θ, ζ)

)
dx

+

∫
Ω

(
M(c, θ)

(
∇ζ +

z

θ
∇ϕ
)
·
(
∇ζ +

z

θ
∇ϕ
)

+
κ(c, θ)|∇θ|2

θ2

)
dx

=

∫
∂Ω

(
−

L∑
i=1

ζiq
i
c · ν +

qe · ν
θ

)
dσ

= −
∫
∂Ω

( L∑
i,j=1

Dij

(
ζj − ζΓ

j + zj(ϕ− ϕΓ)
)
ζi + κΓ(x , c, θ)

(
1
θ
− 1
θΓ

)
1
θ

)
dσ.



A priori bounds III

Summing up and using our assumptions

sup
t∈(0,T )

∫
Ω

(E(t)− s(t) + C2) dx +

∫ T

0

∫
Γ

(γ(c, θ)|v |2 + κθ−2 + d |P`ζ|2) dσ dt

+

∫
ΩT

( |S : Dv |
θ

+ M(θ)
∣∣∣P` (∇ζ +

z

θ
∇ϕ
)∣∣∣2 + |∇ ln θ|2 + |∇θ−

β
2 |2
)

dx dt ≤ C .

Hence:
sup

t∈(0,T )

(‖v(t)‖2 + ‖e(t)‖1 + ‖s(t)‖1 + ‖θ(t)‖1) ≤ C , (17)

∫ T

0
(‖ ln θ‖21,2 + ‖θ−

β
2 ‖1,2 + ‖θ−2‖1,∂Ω) dt ≤ C . (18)



A priori bounds IV

Bounds from kinetic energy balance:
Using as test function in the momentum equation v :

1
2
d

dt

∫
Ω

|v |2

2
dx +

∫
∂Ω

γ(c, θ)|v |2 dσ +

∫
Ω

S : Dv dx = −
∫

Ω

Qv · ∇ϕ.

Thus∫ T

0
(‖√γv‖2L2(∂Ω) + ‖v‖

5r
3
5r
3

+ ‖v‖r1,r + ‖S‖r
′
r′) dt ≤ C(T , v0, c, z ,Ω). (19)

Due to the slip boundary conditions we have

p = p1 + p2 + p3 + p4,

where
sup

t∈(0,T )

‖p4(t)‖∞ +

∫
ΩT

(|p1|r
′

+ |p3|2 + |p2|
5r
6 ) dx dt ≤ C . (20)



A priori bounds V
Bounds from internal energy balance:
We take f (s) ∈ C∞(0,∞) such that |f (s)| ≤ 1, f (s) = 0 for s ∈ (0, 1) and
f (s) := (1 + s)−λ for s ≥ 2, where λ ∈ (0, 1). Multiplying the internal energy
balance by f (e) and integrating over Ω gives

− d

dt

∫
Ω

F (e) dx +

∫
∂Ω

f (e)κΓ(x , c, θ)

(
1
θ
− 1
θΓ

)
dσ +

∫
Ω

f (e)S · Dv dx

−
∫

Ω

f ′(e)

(
κ(c, θ)∇θ · ∇e +

L∑
i=1

mi (c, θ)
(
∇ζi +

zi
θ
∇ϕ
)
· ∇e

)
dx

+

∫
Ω

(
f (e)M(c, θ)

(
∇ζ +

z

θ
∇ϕ
)
· (z∇ϕ)− f (e)(m(c, θ) · z)

θ2 ∇θ · ∇ϕ
)

dx = 0,

where F ′ = f . We get∫
ΩT

|∇θ|2

(1 + θ)λ+1 dx dt ≤ C(λ)

(
1 +

∫
ΩT

(1 + θ)
5
3−ε0 dx dt

)
.

Using Gagliardo–Nirenberg inequality we conclude∫
ΩT

|∇θ|2

(1 + θ)λ+1 dx dt ≤ C(λ) for all 0 < λ < 1. (21)

and∫
ΩT

(
|θ|

5
3−λ + |∇θ|

5
4−λ +

|∇θ|2

(1 + θ)λ+1

)
dx dt ≤ C(λ) for all 0 < λ < 1.

(22)



A priori bounds VI

Bounds for fluxes: Using assumptions on m(θ) and M(θ)∫
ΩT

|qc |q dx dt ≤ C

∫
ΩT

( ∣∣∣M(c, θ)P`
(
∇ζ +

z

θ
∇ϕ
)∣∣∣q +

|m|q|∇θ|q

θ2q

)
dx dt

≤ C(λ) + C

∫
ΩT

|M(θ)|
q

2−q dx dt + C

∫
{θ≥1}

( |m|
2q

2−q

(1 + θ)
4q

2−q
− q(1+λ)

2−q

)
dx dt

+

∫
{θ<1}

|m|
2q

2−q

θ
q(2−β)
2−q

dx dt.

Therefore∫
ΩT

|qc |q dx dt ≤ C + C

∫
ΩT

(θ( 5
3−ε0) q

2−q χ{θ≥1} + θ
− q(β−ε0)

2−q χ{θ≤1}) dx dt

which yields that ∫
ΩT

|qc |q dx dt ≤ C (23)

for some q > 1.



A priori bounds VII
Similarly∫

ΩT

|qe |q dx dt ≤ C

∫
ΩT

|κ(c, θ)|q|∇θ|q + |m(c, θ)|q
∣∣∣P` (∇ζi +

zi
θ
∇ϕ
)∣∣∣q dx dt

≤ C

∫
ΩT

|∇θ|qχ{θ≥1} +
|∇θ|q

θβq
χ{θ≤1} dx dt

+

∫
ΩT

|m(c, θ)|
2q

2−q

|M(θ)|
q

2−q

+ M(θ)
∣∣∣P` (∇ζi +

zi
θ
∇ϕ
)∣∣∣2 dx dt

Hence∫
ΩT

|qe |q dx dt ≤ C(q) +

∫
ΩT

(
|∇θ|2

θβ+2

) q
2
(

1
θβ−2

) q
2
χ{θ≤1} dx dt

+

∫
ΩT

(θ
q

2−q + θ
− q(β−ε0)

2−q ) dx dt

≤ C(q) +

∫
ΩT

(
|∇θ|2

θβ+2 + θ
q

2−q + θ
− q(β−ε0)

2−q + θ
− q(β−2)

2−q ) dx dt.

Therefore ∫
ΩT

|qe |q dx dt ≤ C(q). (24)

for some q > 1.



A priori bounds VIII
Bounds for chemical potential:
We have∫

ΩT

|P`∇ζ|q dx dt ≤ C

∫
ΩT

(
∣∣∣P` (∇ζ +

z

θ
∇ϕ
)∣∣∣q +

∣∣∣z
θ
∇ϕ
∣∣∣q) dx dt

≤ C + C

∫
ΩT

(
1

(M(θ))
q

2−q

+
1
θq

) dx dt

≤ C + C

∫
ΩT

(
1

θ
q(β−ε0)

2−q

+
1
θq

) dx dt,

thus ∫
ΩT

|P`∇ζ|q dx dt ≤ C + C

∫
ΩT

1
θβ

dx dt ≤ C ,

provided q ≤ β. Therefore we need β > 1. As we control the trace of P`ζ from
the total energy/entropy bounds, we have∫ T

0
‖P`ζ‖q1,q dt ≤ C

for some q > 1. Using the form of the entropy we finally get∫ T

0
‖ζ‖q1,q dt ≤ C . (25)



A priori bounds IX

Bounds for concentrations:
We have due to the form of the entropy

C1|∂xk c|
2 ≤ −

L∑
i,j=1

∂2
ci cj sc(c)∂xk ci∂xk cj = ∂xk ζ · ∂xk c = ∂xk (P`ζ) · ∂xk c.

Thus for some q > 1 ∫ T

0
‖c‖q1,q dt ≤ C . (26)



Existence of a solution I

Approximation:
We take ε > 0, δ > 0 and introduce

sε,δc (c) =

{
sεc (c), δ < ci <

2
δ
∀i = 1, . . . , L

concave otherwise,

where

sεc (c) = sc(c) + ε
L∑

i=1

log ci .

We define
ζε,δ = −∂csε,δc (c), ζε = −∂csεc (c).

Similarly

sδe (e) =

{
sδe (e), δ < e < 2

δ

concave otherwise,

and set
θ∗,δ = 1/∂esδe (e)



Existence of a solution II

We introduce

Tδ(s) =


0 0 ≤ s ≤ δ
1 2δ ≤ s ≤ 1

δ

0 2
δ
< s

linear otherwise

and
Tδ(c) = ΠL

i=1Tδ(ci ).

We define
qδc = Tδ(c)Tδ(e)qc
qδe = Tδ(c)Tδ(e)qe
rδ = Tδ(c)Tδ(e)r ,
Qδ(c) = Tδ(c)z · c

similarly for the boundary fluxes (no cut-off for the flux of electrostatic field).
We regularize initial and boundary data. Then we introduce Galerkin
approximation for the internal energy (dimension denoted by l), for the
concentrations (dimension is m) and velocity (dimension is n). Furthermore, we
replace the convective term in the momentum equation by a cut-off function
ξk(|v |)v ⊗ v . We finally set

θk,n,m,l,ε,δ = max{0, θ∗,δ(ek,n,m,l,ε,δ)}.



Existence of a solution III
Step 1: Existence of a solution for the approximation:
For fixed ϕ0 we solve locally in time the system of nonlinear ODE’s for the
Galerkin approximation, via fixed point theorem find ϕ and extend the solution
to (0,T ) using the a priori estimates.
Step 2: First limit passages
We first let l →∞ (internal energy) and then m→∞ (concentrations), the
limit passages are relatively easy.
Step 3: Limit passage δ → 0
This is a relatively difficult part, we lose the regularity of all functions.
Step 4: Limit passage ε→ 0 and n→∞
We set εn = 1

n
and perform both limit passages simultaneously. Since the

convective term is bounded, there is no problem in the limit passage for the
velocity (the energy equality holds).
Step 5: Limit passage k →∞ We need to get the strong convergence of the
velocity gradients for which we apply the Lipschitz truncation method (needed
in fact only in the range r ∈ ( 3

2 ,
8
5 ). If r ≥ 11/5, then D(vn)→ D(v) strongly

in Lr (ΩT ) and we may pass to the limit in the internal energy balance, if r > 9
5 ,

we have that vn → v strongly in L3(ΩT ) and we can pass to the limit in the
total energy balance and if r ∈ ( 3

2 ,
9
5 ] we can pass only in the internal energy

inequality and the total energy balance with a constant test function. This
finishes the proof of Theorem 1. The reason for r > 3

2 (and not r > 6
5 ) is the

term ev .



THANK YOU FOR THE ATTENTION!


