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The system of PDE's

Let Q C R3 be a bounded domain with a smooth boundary, T > 0, L > 2 be
the number of the constituent. We consider in Q7 = (0, T) x € the following
system of equations

i=1,2,...,L: dc+diviv+q.)—rn=0 (1)
Ov+divivev—-T)+ QVe =0 (2)
divv =0 (3)
—Dp=Q (4)
L .
Oce +div(ev + qe) — T : Vv+Zz;q'c-V<p:0. (5)
i=1
Above: ¢ := (c1,..., cL) are the species concentrations, v = (v1, vz, v3) is the
velocity field, ¢ is the electrostatic potential, g- = (g, ..., &) are the fluxes of
the corresponding concentrations ¢;, ge = (g%, g2, q2) denotes the heat flux,
r={(r,..., ) are reaction/productions terms for the concentration c,
z = (z1,...,2.) are the specific electric charges of ¢, Q := Z,‘L=1 ¢z is the

total electric charge, T is the Cauchy stress tensor and e is the internal energy
of the fluid.



Boundary and initial conditions

System (1)—(5) is completed by the the initial conditions
c(0)=c" v(0)=1° e(0)=¢°
and by the following set of boundary conditions on 't := (0, T) x Q
vor=0, (I—-vev)Tv=—yv
G V=G, Ge-V=qer, V¢ U=qr,

where v denotes the unit outward normal vector to 9.



Model

Simplifications:
» we consider the volume additivity and model the whole mixture as being
incompressible (the density is set equal to one)

» the magnetic field and polarization is neglected, the Maxwell equations are
reduced to (4) (the permittivity is equal to one)

> the Lorenz force is reduced to QV.
Model may include:

» the Peltier effect

> the Joule heat

» the Fourier law

» the Fick law

> the Ohm law

> the Soret effect

» the Dufour effect



Total energy formulation

The term T : Vv is sometimes difficult to treat. Therefore the internal energy
balance is sometimes replaced by the total energy balance

2 L )
O:E + div <(|V2|+e+Qap) v+g022;q'c+qe7'vgovatgp> =0, (9)

i=1

where E = |v[>/2 4+ e + |Vp|*/2 is the specific total energy. The initial
condition for |V¢|? can be read from (4).

Advantage: the nonlinear term in velocity gradient disappeared
Disadvantage: the convective term ~ |v|* can be sometimes not defined, the
weak formulation will contain also the pressure



Entropy equation

We assume that the entropy density associated to system (1)—(9) is a function
of the internal energy e and the concentration vector ¢, i.e., s := s*(c, e). We
define the chemical potential ¢ and the temperature 6 as

1

¢=C("(c,e) == =05 (c, e), 0=0"(c,e) := G (ce)

We can deduce the entropy identity

L
. i e
O:s + div (sv — -E,l Ciqe + 0)
T’_V - 1 (0
Vv E ’ i 44 B vas
0 _. qc(VC:+9V§0)+qe Ve

i=

:—Cr+

The second principle of thermodynamics dictates that the right-hand side of
(10) has to be non-negative. We introduce the constitutive relations for
parameters that will be designed to satisfy this constraint.



Consistency

We assume
L L
E ri = E Z,'I‘,':O.
i=1 i=1
and
L
i
E qc = 0.
i=1

Then for £ = (1,...,1)

Or(c- L) +div((c-£)v) =0.



Constitutive assumptions |

Denote for a € Rt
a®a

El

P, =1-—

Reaction term
r:=r*(c,0,¢), where

\r*(c,Q,C)| S Cl? C'r*(C’97C)§07
r*(C:G:C) A=z r*(C76,C) =0.

Fluxes g and ge

L
_ sz"f(c, 0) (Ve + Z9) - (e, e)v%,

Ge = —r(c,0)VO — Zm (c,9) (vg, +2 w)

i=1

where for some 8 > 1

k(c, 6) <G

G <
1=1195 =



Constitutive assumptions |l

Further 9t is a continuous symmetric matrices valued mapping and m is a
continuous vector valued mapping fulfilling for all (c,8) € RF x Ry

L L
S Wlen = Lmlen =0, forali=1t
i=1

i=1

for all w e Rt

L
GM(O)|Pew[* < D~ M (c, O)wiw; < GM(6)|Pew|?

ij=1
and for some oo > 0
G min(1,0°7%) < M(6) < C(1+6)3 2,

min{M(0)0~ T 972Dty for g < 1,

Im(c,0)]> < G
M(6)6 for 6 > 1.



Constitutive assumptions Il

Cauchy stress
T=-pl+S5,

where p : Q7 — R is the mean normal stress — the pressure, and S is the
constitutively determined part given by

S =5%(c,0,Dv)

with Dv denotes the symmetric part of the velocity gradient. The mapping
SR x R x RIS — R is continuous and for all
(c,8,D,B) € RE x R, x R¥*? x R¥*? and some r > 3/2
S*(C,e, D) :D > C1|D|r — Cz,
S*(¢,0,D)| < G(1+ (DY),
5"(¢,0,0) =0, (S™(¢,0,D)—S"(c,0,B)):(D—B)>0.



Constitutive assumptions 1V
Entropy

The entropy s decomposes as the sum of two contributions, one from the
internal energy e and another from the concentration vector c, i.e.,

s = su(e) + se(c),

where s, : Ry — R, and s. : Rt — R, are strictly concave C? functions.
For s. we assume that for all ¢,x € Rt

L
_ Z x,-xjafl.cjsc(c) > C|x)?
ij=1

and that for all K > 0 there exists £ > 0 such that for all ¢ € Rt and all
i=1,...,L we have

|Oesc(c)] < K = ci > e.
For s we assume that it is strictly increasing non-negative function fulfilling for

alle>1 "(e)

s (e

< < G.
si(e)? — 2

G < -



Constitutive assumptions V

In addition, concerning its behaviour near zero, we assume that

1!
lim LI lim si(e) = lim _se(e)
e—0; s.(€)  e—0y e—0; si(e)?
Further, for e > 1
G < 0 ie) <G

and for alle >0
e—2s.(e)+ G >0.

A model example for s. used frequently in praxis is e.g.

L

se(c) = Z(Ci — cilog(ci))

i=1
and a possible example for s, is

s(e) = G+ Glog(e+ G), e>1
AN CGe?, 0<e<l,0<a<l.



Constitutive assumptions VI

Second law of thermodynamics
We have

L % .
Bes + div <sv =S Gal + ‘;) = ¢ (e8¢ 2 (@0 DY) Dy (6’9’5‘”) Dy
i=1

+9(c,0) (V¢ + 2V - (Ve + 290) + “(C%)JWF ~o



Constitutive assumptions VII

Boundary conditions
We have

v.r=0, (I-v®v)Sv=—y(c,0)v onT,
where v is a non-negative continuous function fulfilling for all (c,8) € Rt x Ry

0<~(c,0) < G.

Next,
' L
gor = Y Dij(x,¢,0) (Cj ¢ +z(p - wr)) onT,
j=1
ger = *Iir(X, c,0) <% — %) onT,
gor = =N (X)(p — ") onT.

We assume >"F, Dj(x, c,0) =0,
L
Gd(x)[Pew]* < >~ Dj(c, x, O)wiw; < Cod(x)|Pew|?

ij=1

/{m d(x) do > 0.



Constitutive assumptions VIII

Further
GiR(x) < K (x, ¢,0) < GRE(x)

/(99%()() do > 0.

Finally A" € C*(0Q) is a non-negative function

with

/ N (x) do > 0.
o9
We assume
(01) ' e L3(N), P € LA(T;RY), " € WhH(0, T;CH1(69)).
Initial conditions
e L>(0,1]"), - f=1ae inQ,
VO € 1341 (Q) = C5%, (U R3),
e e 11(Q).



Weak solution |

Weak solution with internal energy
Species equations: for i =1,...,L

/0 ’ /Q (CBetp+(civ+al)- Vbt rigp) dx di+ /Q ci(0)(0, ) dx = /0 ’ /8 dlrv dode

(11)
for all v € G§°([0, T) x Q)
Momentum equation:
T
/ /(v-atw+(v®v75):Dwach-w)dxdt
o Ja (12)

.
+/vo«w(0,-)dX:/ / ~v(c,0)v - do dt

Q 0 on
for all ¥ € G§°([0, T) x Q) with dive) =0 and ¢ - v =0 on 9Q

Electrostatic potential:

/QV@-Vl/)dx:/mqq,rwda—F/ﬂdex (13)

for all ¢ € C=(Q)



Weak solution |l

Internal energy:

T L
/ /(eat¢+(ev+qe)~v¢+s :D(v)Y — > ziqe - Vi) dx dt
o Ja i1 (14)

—|—/Qe01/)(0,~) dx:/OT/mCIerw do dt

for all v € G§°([0, T) x Q)

Weak solution with total energy

The weak formulation for the species, momentum and electrostatic potential
remain the same. Instead of the internal energy equation we consider

Total energy:

/OT/Q (Eoww+ ((VP/2+ e + Qo+ p)v = Sv) - Vo) dx dt
T L
+/0 /Q (wgzl'qi + Ge — $VOip) - Vb dx dt

T L )
+ / Eoyp(0,-) dx = / / (qer + @Y zidir — 00:qr + (¢, 0)|v[*)¢ do dt
Q 0 N

i=1
- (15)
for all v € C§°([0, T) x Q), where Eg = eg + |wo|*/2 + |[V(0) /2



Variational energy solution

The weak formulation for the species, momentum and electrostatic potential
remain the same. Instead of the internal energy equation we consider
internal energy inequality:

/ /e8t1p+(ev+qe) Vi +S:D(v)p — Zz,qc V) dx dt

/em/;(O dx</ /BQ gert) do dt

for all non-negative 1 € C§°([0, T) x Q) and the total energy balance
integrated over Q

/E(t dx—i—/ / qer—i-Zz,qr ©0:qer + (¢, 0)|v| )dO’dT—/Eo dx

i=1

(16)

for all t € (0, T].



Main result

Theorem

Under the assumptions above, for any r > 3/2, there exists a variational energy
solution to our problem. If r > 9/5, the solution fulfills also the total energy
balance and if r > 11/5, the solution fulfills also the internal energy balance.

Comments:

> If r > 3/2, the convective term in the momentum equation makes sense
(v € L?(Q27)) and the convective term ev is integrable

> If r > 9/5, the convective in the total energy balance makes sense
(v € L*(Qr))

» If r > 11/5, we prove strong convergence of Vv in L"(Qr) and the
quadratic term in the internal energy balance is O.K.

» Weak strong compatibility holds, i.e. if we have smooth a variational
energy solution, then it is a classical solution to our problem



Known result

This paper extends the results of the paper by Bulicek, Havrda (2015) treating
larger interval for r and including the electrostatic field. Other similar results:
e.g. Bulicek, Malek, Rajagopal (2009), Roubicek (2005,2006,2007) for
incompressible fluid models, Feireis|, Petzeltova, Trivisa (2008) or Mucha,
Pokorny, Zatorska (2015) and Xi, Xie (2016) for compressible fluid models.



A priori bounds |

Concentrations:
Asco-f=1aa. inQ,divv=0and v-v =20 on 99, we get due to

Oc(c-£)+div((c-€v)=0

that ¢-£ =1 a.a. in Q7. Moreover, due to the assumption on the entropy we
have ¢; > 0 a.a. in Q7 forany i =1,..., L, thus ¢; € L*(Q7).

Electrostatic potential:

As Q = z - c is bounded, we have that ¢ € L*((0, T); W?9(Q)) for any

q < 0.



A priori bounds |l

Bounds from total energy balance and entropy inequality:

Total energy balance yields:

r 2
4 (/de+ Mcla>+/ (e, 0)|v]* do
dt \Ja oa 2 B
11 a
r r r
= [ (o (575) -2 e (G-¢+z0-¢D) ) do

+/ oA 00" do.
Flol
Entropy inequality yields:

% Q_de—’_/ﬂ(w—@f*(c,ﬁ,()) dx
[ (reeo (e 590) (64 5v6) + ST o

—AQ(—ZCM;‘I/#—%‘;V) do

- _/ag (ZL:Q” (Cj _CJF"‘ZJ(‘P—QOF)) G+ K (x,c,0) (% _ %) %) Ao

ij=1




A priori bounds Il

Summing up and using our assumptions

sup /(E ) —s(t) + &) dx+/ /(v(c 0)|v|* + 702 + d|PuC|?) do dt

te(0,T)
:D s
+/ (‘5 n V] —|—M(0)’Pg (vc+§w)‘ L VInG? + Ve z|2) dx dt < C.
Qr
Hence:
sup_ (Iv(®)ll2 + lle(e)[lx + lIs(t)ll2 + [[0(t)][1) < C, (17)
te(0,

;
_B _
/ (N 6132 + 11072 12+ 16 *|l1.00) dt < C. (18)
0



A priori bounds IV

Bounds from kinetic energy balance:
Using as test function in the momentum equation v:

li/| v dx—|—/ v(c, 0)|v]? da—|—/5 Dv dx = — /Qv V.

Thus
T 2 5r ’
/ (vAvilizee) + IVILE +lIviz, +[1Sl) dt < (T, w,¢,2,Q).  (19)
0
Due to the slip boundary conditions we have
p=p1+ p2+ p3+ ps,
where

r, 2
sup ||pa(t )Iloo+/ (Ip]” +|ps|® + |p2| ¢ ) dx dt < C. (20)
te(0,T) Qr



A priori bounds V
Bounds from internal energy balance:
We take f(s) € C*°(0, o0) such that |[f(s)] <1, f(s) =0 for s € (0,1) and
f(s) := (L +s)™* for s > 2, where X € (0,1). Multiplying the internal energy
balance by f(e) and integrating over € gives

— % /Q F(e) dx + /89 f(e)s' (x,c,0) (% - %) do + /n f(e)S - Dv dx
_ / f'(e) (n(c, 0)Vl - Ve + i m'(c,0) (VQ + %ch) .Ve> dx
2 i=1

+/Q (f(e)sm(c, 9) (vc + gw) (2V) — an ' w) dx =0,

where F' = f. We get
Vo[ ( /
————dxdt < C(N\) (1
0, (L+ 0T xdt < C(\)(1+ .

Using Gagliardo—Nirenberg inequality we conclude

(1+6)37% dx dt) .

T

2
/ % dxdt < C(\)  forall0 <A< 1. (21)
Qr

and
2
/ (l015 > + [voi2 > + Y0
Qr



A priori bounds VI

Bounds for fluxes: Using assumptions on m(#) and M(6)

|vg|9

. 2o\ Il

/QT\qC| dx dt < C/QT (’im(c,H)Pg (v<+ Oth) + )dxdt
2q
2

<CA)+C [ |M®)|F dxdt+ C (%) dx dt

ar {021} \(1 4 9)75 e
+/ |5 dx dt
X .
(o<1} 0‘7(22:5)

Therefore

(B—¢0)
/ lge|? dxdt < C+ C (9(?5")2%‘%{921} 67 X{o<1}) dx dt
Qr Qr

which yields that

/ gl dx dt < C (23)
Qr
for some g > 1.



A priori bounds VII
Similarly

/ Ige|? dx dt < c/ K(c,0)]|V0|7 + |m(c, )| 'P, (vg,+ w)‘q dx dt
Qr
|q

Vel
<C IVO|"x {051} + 054

Qr

[ O e (v 39)

—=—X{o<1} dx dt

Hence
q

q IVO?\2 [ 1 \2
/QT |qe| dx dt < C(Cl)+/QT <95+2 gr2 ) Xty dxdt
+/ (
Qr

2 B—cq) (5-2)
C(q)—l—/ (VO L gats o "5 4o ) dx e,

[MEY

0B+2

Therefore
/ |ge|? dx dt < C(q). (24)
Qr

for some g > 1.



A priori bounds VIII
Bounds for chemical potential:
We have

/QT |PeVC| dx dt < C/QT(‘PZ (Ve+2ve)| +|5ve[) axat

<Cc+C (%

ar (M(6))==<
1 1

<C+ c/ L )dxdt,

QT(Gq(l;*i()) gq)

1

thus )
/ |PZVC|qudt§C+C/ — dxdt < C,
Qr Qr (%

provided g < . Therefore we need 8 > 1. As we control the trace of P¢¢ from
the total energy/entropy bounds, we have

.
/ IPcle, dt < C
0]

for some g > 1. Using the form of the entropy we finally get

)
/ lcle, de < C. (25)
0



A priori bounds IX

Bounds for concentrations:
We have due to the form of the entropy

C1|8XkC|2 Z 0z €)0x, CiOx € = 0%, - Ox, € = O (PeC) - O
ij=1

Thus for some g > 1

]
el ae < c. (26)
0



Existence of a solution |

Approximation:
We take € > 0, § > 0 and introduce

5(c) = se(c), d<ca<3Vi=1,...,L
< concave  otherwise,

where .
sé(c) = sc(c) + EZ log c;.
i—1
We define
CE’5 = facsﬁ"*(c), ¢® = —0csi(c).
Similarly
5 2
$e) = { soe), 0<e<F
concave otherwise,
and set

0" =1/8.52(e)



Existence of a solution Il

We introduce

0 0<s<$¢
B 1 26<s<i
Ts(s) = 0 % <s
linear otherwise
and
Ts(c) = Nz Ts(c).
We define

qf = Ts(c) Ts(e)qe
e = Ts(c) Ts(e)ge
rf = Ts(c)Ts(e)r,
Q%(c)="Ts(c)z- ¢

similarly for the boundary fluxes (no cut-off for the flux of electrostatic field).
We regularize initial and boundary data. Then we introduce Galerkin
approximation for the internal energy (dimension denoted by /), for the
concentrations (dimension is m) and velocity (dimension is n). Furthermore, we
replace the convective term in the momentum equation by a cut-off function
&k(Jv])v ® v. We finally set

ek,n,rn,l,a,é _ max{O, 0*,6(ek,n,m,/,£,5)}.



Existence of a solution Il

Step 1: Existence of a solution for the approximation:

For fixed g we solve locally in time the system of nonlinear ODE's for the
Galerkin approximation, via fixed point theorem find ¢ and extend the solution
to (0, T) using the a priori estimates.

Step 2: First limit passages

We first let | — oo (internal energy) and then m — oo (concentrations), the
limit passages are relatively easy.

Step 3: Limit passage 6 — 0

This is a relatively difficult part, we lose the regularity of all functions.

Step 4: Limit passage ¢ — 0 and n — oo

We set e, = % and perform both limit passages simultaneously. Since the
convective term is bounded, there is no problem in the limit passage for the
velocity (the energy equality holds).

Step 5: Limit passage k — oo We need to get the strong convergence of the
velocity gradients for which we apply the Lipschitz truncation method (needed
in fact only in the range r € (2, £). If r > 11/5, then D(v,) — D(v) strongly
in L"(Q7) and we may pass to the limit in the internal energy balance, if r > 2,
we have that v, — v strongly in L3(Q27) and we can pass to the limit in the
total energy balance and if r € (%, %] we can pass only in the internal energy
inequality and the total energy balance with a constant test function. This
finishes the proof of Theorem 1. The reason for r > 3 (and not r > 2 ) is the

term ev.



THANK YOU FOR THE ATTENTION!



