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Steady system – formulation I

We consider the following system of PDEs:

div(%u) = 0,
div(%u⊗ u)− div S +∇π = %f,

div(%Eu) + div(πu) + divQ− div(Su) = %f · u,
div(%Yku) + div Fk = mkωk , k ∈ {1, . . . , n}.

(1)

Here, % is the total density, u is the mean velocity field, S is the mean stress
tensor, π is the pressure, E is the specific total energy, E = 1

2 |u|
2 + e with e

the specific internal energy, Q is the heat flux, Yk = %k/% are the mass
fractions, %k is the density of the k-th constituent, Fk , k = 1, . . . , n, are the
multicomponent diffusion fluxes, ϑ is the temperature, mk are the molar
masses, and ωk the chemical source terms, k = 1, 2, . . . , n.



Steady system – formulation II

We consider the following boundary conditions on ∂Ω:

u · n = 0, (Sn + f u)× n = 0 (2)

(f ≥ 0) or
u = 0, (3)

and for the temperature and diffusion flux

Fk · n = 0,
−Q · n + L(ϑ− ϑ0) = 0. (4)

We prescribe: ∫
Ω

% dx = M > 0. (5)



Main assumptions I

Pressure:
We have

π(%, ϑ) = πc(%) + πm(%, ϑ) = %γ +
n∑

k=1

%Yk

mk
ϑ.

Stress tensor:

S = µ(ϑ)
[
∇u + (∇u)t − 2

3
div u I

]
+ ν(ϑ) div u I,

with the viscosity coefficients

µ(ϑ) ∼ (1 + ϑ), 0 ≤ ν(ϑ) ≤ C(1 + ϑ).

Heat flux:

Q =
n∑

k=1

hkFk + q

with
q = −κ(ϑ)∇ϑ, κ(ϑ) = (1 + ϑm)

and the partial enthalpies hk = cpkϑ = (1/mk + cvk)ϑ.



Main assumptions II

Internal energy:
We have

e(%, ϑ) = ec(%) + em(ϑ, ~Y ) =
%γ−1

γ − 1
+ ϑ

n∑
k=1

cvkYk ,

~Y = (Y1,Y2, . . . ,Yn).

Chemical production rate:
We have

ωk(ϑ, ~Y ) ≥ −CY r
k , C , r > 0

ωk bounded functions of ϑ, ~Y . Moreover,
∑n

k=1 mkωk = 0.



Main assumptions III
Diffusion fluxes:

Fk = −Yk

n∑
l=1

Dkldl

with
dk = ∇

( pk
πm

)
+
( pk
πm
− %k

%

)
∇ log πm =

∇pk
πm
− Yk

∇πm

πm
,

|YkDkl | = |YkDkl(ϑ, ~Y ))| ≤ C( ~Y )(1 + ϑa).

The diffusion matrix D fulfills:

D = Dt , N(D) = R ~Y , R(D) = ~Y⊥,

D is positive semidefinite over Rn

and positive definite over (1, . . . , 1)⊥.

(6)

Therefore
n∑

k=1

Fk = 0,

δ〈Y−1~x , ~x〉 ≤ 〈D~x , ~x〉 ∀~x ∈ ~U⊥,

where Y = diag (Y1, . . . ,Yn).



Entropy I

The entropy is defined

s =
n∑

k=1

Yksk

with
sk = cvk log ϑ−

1
mk

log
%Yk

mk
.

Entropy balance:

div(%su) + div

(
Q
ϑ
−

n∑
k=1

gk
ϑ

Fk

)
= σ,

where gk = hk − ϑsk , σ is the entropy production rate

σ =
S : ∇u
ϑ

− Q · ∇ϑ
ϑ2 −

n∑
k=1

Fk · ∇
(gk
ϑ

)
−
∑n

k=1 mkgkωk

ϑ

=
S : ∇u
ϑ

+
κ|∇ϑ|2

ϑ2 −
n∑

k=1

Fk

mk
· ∇ log pk −

∑n
k=1 mkgkωk

ϑ
.



Entropy II

The Second Law of Thermodynamics dictates

σ ≥ 0,

therefore we assume −
∑n

k=1 mkgkωk ≥ 0. Moreover,

−
n∑

k=1

Fk

mk
· ∇ log pk =

πm

%ϑ

n∑
k,l=1

Dkl

[∇pl
πm
− Yl

∇πm

πm

][∇pk
πm
− Yk

∇πm

πm

]
+
πm

%ϑ

n∑
k,l=1

Dkl

[∇pl
πm
− Yl

∇πm

πm

]
Yk
∇πm

πm
≥ 0,

as
∑n

k=1 Fk = 0 implies

n∑
k=1

YkDkl = 0 ∀l = 1, 2, . . . , n.

V. Giovangigli: Multicomponent Flow Modelling 1999



Simplifications

We cannot read estimates of ∇ ~Yk from the entropy inequality. One possibility
was used in

P.B. Mucha, M.P., E. Zatorska: Heat-conducting, compressible mixtures with
multicomponent diffusion: construction of a weak solution, SIMA 2015

It requires information on ∇%, the viscosity was density dependent with the BD
entropy. Not available in the steady case.
Another possibility: take m1 = m2 = · · · = mn = 1. Then πm = %ϑ,
∇pl
πm
− Yl

∇πm
πm

= ∇Yl . Therefore

Fk = −
n∑

l=1

YkDkl∇Yl

and

−
n∑

k=1

Fk

mk
·∇ log pk = −

n∑
k=1

Fk ·
(∇Yk

Yk
+
∇(%ϑ)

%ϑ

)
=

n∑
k,l=1

Dkl∇Yl∇Yk ≥ c|∇ ~Y |2.



Definition of a weak solution I: (%,u, ϑ, {%k}nk=1)

We look for functions % ≥ 0,
∫

Ω
% dx = M, ϑ > 0, %k ≥ 0, % =

∑n
k=1 %k ,

%k = Yk% a.e. in Ω,

% ∈ Lγ(Ω), u ∈W 1,2
0 (Ω)

%|u|3 ∈ L1(Ω), ~Y ∈W 1,2(Ω)
ϑm∇ϑ ∈ L1(Ω), ϑ ∈ L1(∂Ω)

(7)

and the following identities hold
• the weak formulation of the continuity equation∫

Ω

%u · ∇ψ dx = 0 (8)

holds for any test function ψ ∈ C∞(Ω);
• the weak formulation of the momentum equation∫

Ω

(
− % (u⊗ u) : ∇ϕϕϕ+ S : ∇ϕϕϕ

)
dx −

∫
Ω

π divϕϕϕ dx =

∫
Ω

%f ·ϕϕϕ dx (9)

holds for any test function ϕϕϕ ∈ C∞0 (Ω);



Definition of a weak solution II: (%,u, ϑ, {%k}nk=1)

• the weak formulation of the species equations

−
∫

Ω

Yk%u · ∇ψ dx −
∫

Ω

Fk · ∇ψ dx =

∫
Ω

ωkψ dx (10)

holds for any test function ψ ∈ C∞(Ω) and for all k = 1, . . . , n;
• the weak formulation of the total energy balance

−
∫

Ω

(
1
2
%|u|2 + %e

)
u · ∇ψ dx +

∫
Ω

κ∇ϑ · ∇ψ dx −
∫

Ω

(
n∑

k=1

hkFk

)
· ∇ψ dx

=

∫
Ω

%f · uψ dx −
∫

Ω

(Su) · ∇ψ dx +

∫
Ω

πu · ∇ψ dx −
∫

Ω

L(ϑ− ϑ0)ψ dS

(11)
holds for any test function ψ ∈ C∞(Ω).

For the slip b.c. additional terms due to the b.c. appear (if f 6= 0), the velocity
is required to have zero normal trace only and the test function in the
momentum equation has zero normal trace only. (Important!)



Result I

Theorem (Giovangigli, Pokorný, Zatorska ’15)

Let γ > 5
3 , M > 0, m > 1, a < 3m−2

2 . Let Ω ∈ C 2. Then there exists at least
one weak solution to our problem above. Moreover, (%, u) is the renormalized
solution to the continuity equation.

V. Giovangigli, M. Pokorný M., E. Zatorska: On the steady flow of reactive gaseous
mixture, Analysis, 2015.



Variational entropy solutions

We replace the the total energy balance by the entropy inequality and the
global total energy balance (weak formulation of the total energy balance with
test function ψ ≡ 1).

Entropy inequality∫
Ω

S : ∇u
ϑ

ψ dx +

∫
Ω

κ
|∇ϑ|2

ϑ2 ψ dx −
∫

Ω

n∑
k=1

ωkψ

ϑ
(cpk − cvk log ϑ+ logYk) dx

+

∫
Ω

ψ
n∑

k,l=1

Dkl∇Yk∇Yl dx +

∫
∂Ω

L

ϑ
ϑ0ψ dS ≤

∫
κ∇ϑ · ∇ψ

ϑ
dx −

∫
Ω

%su · ∇ψ dx

−
∫

Ω

n∑
k=1

cvk log ϑFk · ∇ψ dx +

∫
Ω

n∑
k=1

logYkFk · ∇ψ dx +

∫
∂Ω

Lψ dS

for any non-negative ψ ∈ C∞(Ω).

Global total energy balance∫
∂Ω

L(ϑ− ϑ0)ψ dS =

∫
Ω

%f · u dx

Changes for f 6= 0 as above in the global total energy balance.



Comments to the variational entropy solutions
The entropy balance has the form

div(%su) + div
(Q
ϑ
−

n∑
k=1

gk
ϑ

Fk

)
= σ

with the entropy production rate

σ =
1
ϑ
S : ∇u− Q · ∇ϑ

ϑ2 −
n∑

k=1

Fk · ∇
(gk
ϑ

)
−
∑n

k=1 gkωk

ϑ
,

the Gibbs function

gk = cpkϑ− ϑsk = cpkϑ− ϑ(cvk log ϑ− log %− logYk)

and the total entropy

s =
n∑

k=1

skYk .

We would have problems in the entropy inequality with terms containing log %
as the density may be equal to zero. But either the terms are of the form %sk ,
or we may use in the definition that

∑n
k=1 ωk = 0,

∑n
k=1 Fk = 0 and we do not

consider these terms in the entropy inequality. The inequality instead of the
equality is a consequence of the limit passages in the proof and the weak lower
semicontinuity of some terms.



Result II (Dirichlet b.c.)

Theorem (Piasecki, Pokorný ’16)

Let γ > 1, M > 0, m > max{ 2
3 ,

2
3(γ−1)

}, a < 3m
2 . Let Ω ∈ C 2. Then there

exists at least one variational entropy solution to our problem above. Moreover,
(%, u) is the renormalized solution to the continuity equation.
In addition, if m > max{1, 2γ

3(3γ−4)
}, γ > 4

3 , a < 3m−2
2 , then the solution is a

weak solution in the sense above.

T. Piasecki, M. Pokorný: Weak and variational entropy solutions to the system describing
steady flow of a compressible reactive mixture, Nonlinear Analysis 2017.



Result III (Navier b.c.)

Theorem (Piasecki, Pokorný ’17)

Let γ > 1, M > 0, m > max{ 2
3 ,

2
3(γ−1)

}, a < 3m
2 , ϑ0 ∈ L1(∂Ω), ϑ0 ≥ K0 > 0

a.e. on ∂Ω. Let Ω ∈ C 2 be not axially symmetric. Then there exists at least one
variational entropy solution to our problem. Moreover, (%, u) is the
renormalized solution to the continuity equation.
In addition, if m > 1, γ > 5

4 , a < 3m−2
2 , then the solution is a weak solution in

the sense above.
If Ω is axially symmetric, let f > 0. Then there exists at least one variational
entropy solution to our problem. In addition, if γ > 5

4 , m > 1, m > 16γ
15γ−16 (if

γ ∈ ( 5
4 ,

4
3 ]) or m > 18−6γ

9γ−7 (if γ ∈ ( 4
3 ,

5
3 )) then the solution is a weak solution in

the sense above.

T. Piasecki, M. Pokorný: On steady solutions to a model of chemically reacting heat
conducting compressible mixture with slip boundary conditions, Contemporary
Mathematics 2018.



Approximation

Take δ > 0 (regularization of pressure and temperature), ε > 0 (parabolic
regularization of the continuity equation), λ > 0 (regularization of the fluxes),
η > 0 (regularization of some constitutive relations), and N ∈ N (Galerkin
approximation of the velocity).
We let subsequently N →∞, η → 0+, λ→ 0+, and ε→ 0+.

I We read the estimates either from the entropy inequality or from the
energy equality, the limit passages are standard.

I For λ > 0 we read estimates on Yk from additional terms.
I As soon as λ = 0, we know that

∑n
k=1 Yk = 1 and we read estimates on

Yk from the diffusion matrix term.



Limit passage I (δ → 0+)

For simplicity, we consider only weak compactness of the solutions. We have
the following estimates independent of δ:
From the total energy balance with constant test function

f ‖uδ‖22,∂Ω + ‖ϑδ‖1,∂Ω ≤ C
(
1 +

∣∣∣ ∫
Ω

%δuδ · f dx
∣∣∣). (12)

From the entropy inequality with constant test function:

‖∇ ~Yδ‖22 + ‖∇ϑ
m
2
δ ‖

2
2 + ‖∇uδ‖22 + ‖ϑ−1

δ ‖1,∂Ω ≤ C . (13)

We have:
∑n

k=1 Yk = 1 and 0 ≤ (Yk)δ ≤ 1, k = 1, 2, . . . , n.



Estimates of the density I (Dirichlet b.c.)

To get the missing density estimates we use the local estimates of the pressure
based on the test function for the momentum equation

x − x0

|x − x0|α
.

We may use it with suitable cut-off function if x0 is far from the boundary to
get ∫

BR0 (x0)

π(%δ, ϑδ)

|x − x0|α
dx

≤ C
(
1 + ‖π(%δ, ϑδ)‖1 + ‖uδ‖1,2(1 + ‖ϑδ‖3m) + ‖%δ|uδ|2‖1

)
,

(14)

provided

α < min
{3m − 2

2m
, 1
}
. (15)

For x0 ∈ ∂Ω we apply

ϕϕϕ1(x) = d(x)∇d(x)(d(x) + |x − x0|a)−α (16)

with d(x) a regularized distance function. It yields the same estimate as above
provided α < 9m−6

9m−2 .



Estimates of the density II (Dirichlet b.c.)

For x0 /∈ ∂Ω, but close to ∂Ω (dist {x0, ∂Ω} = 5ε) we use

ϕϕϕ = Kϕϕϕ1 +ϕϕϕ2,

where K is a suitably chosen positive constant and

ϕϕϕ2(x) =


x−x0
|x−x0|α

(
1− 1

2
α
2

)
, |x − x0| < ε,

(x − x0)
(

1
|x−x0|

α
2
− 1

(|x−x0|+ε)
α
2

)
, |x − x0| > ε, d(x) > ε,

(x − x0)
(

1
|x−x0|

α
2
− 1

(|x−x0|+d(x))
α
2

)
, |x − x0| > ε, d(x) ≤ ε.

(17)
It leads to the same result as above under the same restrictions. These
estimates can be then transformed into the integrability estimate of the velocity
and kinetic energy under some restrictions on the parameters γ and m.



Estimates of the density III (Navier b.c.)

For x0 far from the boundary we proceed as above. To simplify the idea, let us
assume that we deal with the part of boundary of Ω which is flat and is
described by x3 = 0, i.e. n = (0, 0,−1) and τττ1 = (1, 0, 0), τττ2 = (0, 1, 0) the
tangent vectors. The general case can be studied using the standard technique
of flattening the boundary. First let x0 lies on the boundary of Ω, i.e. (x0)3 = 0.
We use as the test function in the approximate momentum equation

w(x) = v(x − x0),

where

v(x) =
1
|x |α (x1, x2, x3) = (x ·τττ1)τττ1+(x ·τττ2)τττ2+((0, 0, x3−z(x ′))·n)n, x3 ≥ 0.

If x0 is close to the boundary but not on the boundary, i.e. (x0)3 > 0, but
small, we lose control of some terms for 0 < x3 < (x0)3. In this case, we must
modify the test functions. We first consider

v1(x) =


1

|x−x0|α
(
(x − x0)1, (x − x0)2, (x − x0)3

)
, x3 ≥ (x0)3

2 ,

1
|x−x0|α

(
(x − x0)1, (x − x0)2, 4(x − x0)3

x2
3

|(x−x0)3|2

)
, 0 < x3 <

(x0)3
2 .



Estimates of the density IV (Navier b.c.)

Nonetheless, we still miss control of some terms from the convective term, more
precisely of those, which contain at least one velocity component u3, however,
only close to the boundary, i.e. for x3 < (x0)3/2. Hence we further consider

v2(x) =


(0, 0, x3)

(x3 + |x − x0|| ln |x − x0||−1)α
, |x − x0| ≤ 1/K ,

(0, 0, x3)

(x3 + 1/K | lnK |−1)α
, |x − x0| > 1/K

for K sufficiently large (but fixed, independently of the distance of x0 from
∂Ω). Both functions have zero normal trace, belong to W 1,q(Ω) and their
norms are bounded uniformly provided 1 ≤ q < 3

α
. We finally use as the test

function in the approximate momentum balance

ϕϕϕ = v1(x) + K1v2(x) (18)

with K1 suitably chosen (large).
More details on both cases can be found in

P.B. Mucha, M. Pokorný M., E. Zatorska: Existence of stationary weak solutions for the
heat conducting fluids, Handbook of Mathematical Analysis in Mechanics of Viscous
Fluids (eds. Y. Giga, A. Novotný), Springer, 2017.



Limit passage II (δ → 0+)

We finish the proof of the strong convergence of the density and thus of the
main result using the standard machinery known for the steady compressible
Navier–Stokes–Fourier system, see e.g. the reference above. We either pass to
the limit only in the entropy inequality and get the variational entropy
solutions, or, if we have enough information, i.e. more restrictions on the
parameters, we may pass to the limit also in the weak formulation of the total
energy balance. The main difference consists in the fact whether or not we can
estimate the kinetic energy in Ls(Ω) for some s > 6

5 . This can be verified for
m > max{1, 2γ

3(3γ−4)
} and γ > 4

3 , while we can only verify s > 1 for γ > 1 and
m > max{ 2

3 ,
2γ

9(γ−1)
}.

The standard machinery to get the strong convergence of the density based on
the effective viscous flux identity and control of oscillation defect measure leads
to further restriction m > 2

3(γ−1)
and the limit passage in the total energy

balance requires a < 3m−2
2 while in the entropy inequality only a < 3m

2 .
Similarly we proceed for the Navier boundary conditions.



Limit passage III (δ → 0+)

The use of the Bogovskii-type estimates only

‖%δ‖γ+α ≤ C , 0 < α ≤ min{2γ − 3,
3m − 2
3m + 2

γ},

leads to immediate restriction γ > 3
2 . Further restriction due to the total

energy balance ∫
Ω

%δ|uδ|3 dx ≤ C

leads to the result in the paper by V. Giovangigli, M.P. and E. Zatorska.



Model DDGG I

In order to avoid the restriction of the same molar masses, we consider another
model which is due to

W. Dreyer, P.-E. Druet, P. Gajewski, C. Guhlke: Existence of weak solutions for improved
Nernst–Planck–Poisson models of compressible reacting electrolytes, Preprint WIAS
2016.

We add the thermal effects, for simplicity neglect electrostatic field and
chemical reactions on the boundary. The model reads

div(%iv + Ji ) = ri , i = 1, 2, . . . ,N

div(σv ⊗ v − S) +∇p = σb
div(σEv + pv + Q− Sv) = σb · v

(19)

with the same boundary conditions as above

(Sn) · τττ + α1v · τττ = 0, v · n = 0

Ji · n = 0, i = 1, 2, . . . ,N

−Q · n + α2(θ −Θ0) = 0.

(20)

Above, σ = %1 + %2 + · · ·+ %N the rest is similar. We use slightly different
thermodynamic concept:



Model DDGG II
We assume that all thermodynamic quantities as the chemical potentials
{µi}Ni=1, specific internal energy e, specific entropy s and the pressure p are
derived from the Helmholtz free energy

h = σψ(~%, θ)

as follows

µi =
∂(σψ)

∂%i
, i = 1, 2, . . . ,N . . . chemical potential

σe = σψ − θ ∂
∂θ

(σψ) . . . internal energy

σs = − ∂

∂θ
(σψ) . . . entropy

p = σψ +
N∑
i=1

%i
∂

∂%i
(σψ) . . . pressure.

(21)

The partial fluxes are given as

Ji = −
N∑
j=1

Mij∇
µj

θ
−Mi∇

(1
θ

)
, (22)



Model DDGG III

where the matrix M and the vector ~M fulfil

N∑
i=1

Mij = 0, j = 1, 2, . . . ,N

n∑
i=1

Mi = 0.

(23)

Moreover, we assume that

N∑
i,j=1

Mijwiwj ≥ C |Π~w |2 ∀~w ∈ RN , (24)

where Π = I− 1
N
~1⊗~1. We also require

∑N
i=1 ri = 0. Then, summing up (19)1,

we get the continuity equation.



Model DDGG IV

Instead of the vector of partial densities ~% we consider the quantities

qi =
µi − µN

N
, i = 1, 2, . . . ,N − 1, and σ = %1 + %2 + · · ·+ %N .

Due to the properties of the fluxes we get compactness of qi ,
i = 1, 2, . . . ,N − 1 and using standard technique from the compressible fluid
mechanics we get compactness of σ. Then we may transform this back to the
compactness of %i , i = 1, 2, . . . ,N. For γ ≥ 5

3 we can get the existence of a
weak solution even for different molar masses, for lower γ’s we need again to
assume that they are equal. The details will be available soon.

M. Bulíček, A. Jüngel, M. Pokorný, N. Zamponi: work in progress.
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