
SEMINAR ON FUNDAMENTALS OF
ALGEBRAIC GEOMETRY I

HÔNG VÂN LÊ ∗ AND PETR SOMBERG ∗∗

Abstract. Algebraic geometry is one of the central subjects of
mathematics. Mathematical physicists, homotopy theorists, com-
plex analysts, symplectic geometers, representation theorists speak
the language of algebraic geometry.

In this seminar we shall discuss some basic topics of algebraic
geometry and their relation with current problems in mathematics.

Recommended textbook: J. Harris, Algebraic Geometry: A First
Course, I. R. Shafarevich: Basic Algebraic Geometry 1,2, Dol-
gachev: Introduction to Algebraic Geometry (lecture notes)
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1. Overview and proposed topics
sec:overviewsubs:overview

1.1. Overview of our plan. Algebraic geometry can be thought as
an approach to solve problems in (commutative) algebra and related
fields of computational complexity, representation theory, mathemat-
ical physics, number theory, etc. by systematical constructing neces-
sary geometric objects, e.g. we associate to the solution of a system
of polynomial equations with an algebraic variety in the corresponding
affine space. The main philosophy is to associate appropriate geomet-
ric notions (points, sets, topology, mappings, etc.) with corresponding
algebraic notions (ideals, rings, Zariski topology, morphisms, etc.) and
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conversely, appropriate algebraic notions with corresponding geomet-
ric notions. For example, a commutative algebra is considered as an
algebra of functions on some set.

Our aims: understand the importance of the following notions and
theorems concerning

(1) Algebraic sets and the Hilbert basis theorem
(2) Hilbert’s Nullstellensatz and Zariski topology,
(3) Affine variety and projective variety,
(4) Algebraic varieties and their morphisms,
(5) Dimension and tangent spaces,
(6) Smoothness, singularity and resolution of singularity,
(7) Bezout’s theorem,
(8) Riemann-Roch theorem

and able to apply them to various problems in mathematics.
These topics are fundamental in terms of concepts which arise from

motivation of corresponding problems and they are important since the
synthetic approaches to solve them are typical for algebraic geometry
way of thinking. These topics appear in many fields. It is one of
our aims to see their patterns in many other fields of mathematics,
computer sciences and physics.

The first two books we recommended are classics. They are rich
in examples, motivations and exercises with hint. There is one more
modern lecture note by Dolgachev- Introduction to Algebraic Geometry
(2013). It is modern since it quite short, simple and treats more general
objects. Another good book is Undergraduate Algebraic Geometry
(2013) by Reid based on his lecture course for 3rd year students in
Warwick. It is very elementary and all statements in the book are
explained in details. (Too much details without explaining the main
idea/big picture is also not optimal.)

Our plan for seminar is as follows:
- Discuss exercises/ problems at the beginning of each meeting.
- Petr Somberg and I shall survey a chosen topic and one of you can

explain some small part of chosen topics in detail.
We also make a very short notes of our seminars and place on website.

subsec:his
1.2. A brief history. (cf.

Dieudonne1972
[Dieudonne1972], see also

Shafarevich2013
[Shafarevich2013])

Algebraic geometry traces back to the Greek mathematics, where
conics were used to solve quadratic equations. The true birth of al-
gebraic geometry is marked by invention by Fermat and Descartes of
“analytic geometry” around 1636 in their manuscripts. A new field of
mathematics or sciences arises whenever we encounter a class of new
problems or we discover new methods to solve them. Therefore history
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of algebraic geometry is also characterized by problems, the methods to
solve them and related concepts. Since we have not adequate language
to deal with concepts in algebraic geometry, the list of problems and
methods below is very coarse.

(1) Classification, transformation and invariants (Italian schools in
19 century that leads to the modern notion of algebraic varieties
and their morphisms)

(2) Definition and classification of singularities (The Serre varieties,
Hironaka resolution of singularity)

(3) Commutative algebra and algebraic geometry (German alge-
braic school, notably Zariski topology, Hilbert’s Nullstellensatz,
Noetherian rings and the Hilbert basis theorem)

(4) Analysis and topology in algebraic geometry (The Riemann-
Roch theorem)

(5) Grothendick program absorbing all previous developments and
starting from the category of all commutative rings (French
school)

(6) Applications in various fields of mathematics

subs:topics
1.3. Tentative plan of our seminar. Lecture 1: A quick review
of the general concept (alg. var and their morphisms, Hilbert basic
theorem, Hilbert Nullstellensatz) and discussion of chosen topics. (H.
+ S. + D.)

Lecture 2: Tangent spaces: motivation.
Lecture 3: Hensel’s Lemma + Dimension.
Lecture 4: Dimension + Hilbert’s polynomial.
Lecture 5: Smoothness and singularity.
Lecture 6: 27 lines on cubic surfaces.
Lecture 7: Characterization of smoothness via local rings.
Lecture 8: Birational geometry and resolution of singularity.
Lecture 9: Degree and Bezout’s theorem (H. + D.)
Lecture 10: Application of degree (H. lecture 19)
Lecture 11-12: Riemann-Roch theorem (D.)

2. Algebraic sets and the Hilbert basic theorem
sec:algset

Motivation. We want to translate algebraic language into geometric
language. In our dictionary, a system of polynomial equations corre-
sponds to the set of solutions which will be called an algebraic set.
It is important to know that we can alway find a finite basic of the
ideal defining an algebraic set. That is the content of the Hilbert basic
theorem.
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subs:algset

2.1. Algebraic sets. We denote by C
n the complex n-dimensional

vector space. This space is also considered as a complex affine space,
i.e. a set with a faithful freely transitive C

n-action. We also denote
this space by An

C
or C

n, or An, once the ground field C is specified.
The algebraic object associated to this affine space C

n is the ring
C[z1, · · · , zn] which is also called the ring of regular functions over C

n:

C
n ⇐⇒ C[z1, · · · , zn].

A set X ⊂ C
n is called algebraic, if there exists a subset T ⊂

C[z1, · · · , zn] such that X is the zero set of T :

X = Z(T ),

i.e. for any f ∈ T and any (z1, · · · , zn) ∈ X we have f(z1, · · · , zn) = 0.
We regard T as a system of polynomial equations and X - its solution.
Denote by I(T ) the ideal generated by T in C[z1, · · · , zn]. Then we
have

Z(T ) = Z(I(T )).

In this way we associate

{I, I is an ideal in C[z1, · · · , zn]} =⇒ { algebraic sets in C
n}.

It is not clear if the correspondence is injective. Hilbert’s Nullstellen-
satz (Theorem

thm:hilbertnullthm:hilbertnull
3.1) provides the full answer to this question.

ex:algset Exercise 2.1. Show that the union of two algebraic sets is an algebraic
set and the intersection of a family of algebraic sets is an algebraic set.

sec:hbasic
2.2. The Hilbert basic theorem.

thm:hbasic Theorem 2.2. Let k be a field. Every ideal in the ring k[x1, · · · , xn]
is finitely generated. In other words k[x1, · · · , xn] is noetherian.

Proof. Using the identity

k[x1, · · · , xn] = k[x1, · · · , xn−1][xn]

it suffices to prove the following

lem:noeth Lemma 2.3. Assume that R is a Noetherian ring. Then R[x] is a
Noetherian ring.

Proof. The proof of Lemma
lem:noethlem:noeth
2.3 is very typical for arguments in com-

mutative algebra, where in investigating a polynomial

f(x) = a0x
r + ar−1

x + · · ·
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we look at its leading coefficient a0, assuming a0 6= 0. The corre-
sponding term a0x

r is called the leading term of f and denoted by
LT (f), see also Subsection

subs:Grexisubs:Grexi
5.1.

Now assume that A ⊂ R[x] is a proper ideal. We need to show that
A is finitely generated.

Denote by Ri[x] the subset of polynomials of at most degree i in
R[x].

Let A(i) denote the set of elements of R that occur ass the leading
coefficient of a polynomial in A ∩ Ri[x]. Clearly A(i) is an ideal in R
and we have

A(i) ⊂ A(i+ 1) ⊂ · · ·
since A is an ideal in R[x].

Since R is Noetherian, there exists d such that

A(d) = A(d+ 1) = · · · ....
SinceA(i) is ideal inR, it is finitely generated. say by (ai1, ai2, · · · , aini

).
By definition, aij is the leading coefficient of a polynomial fij ∈ A. We
claim that the set (fij) generates the ideal A.

Let B denote the ideal generated by (fij). Clearly B is an ideal of
A. By the construction B(i) = A(i). We shall show that any f ∈ A
also belongs to B. Because B(deg(f)) = A(deg(f)) there exists a
polynomial g ∈ B such that deg(f − g) < deg(f). Then

f = g + f1

where g ∈ B and f1 ∈ A with deg(f1) < deg(f). Continuing in this
way we have

f = g + g1 · · ·+ ∈ B.

This completes the proof of Lemma
lem:noethlem:noeth
2.3 �

This completes the proof of Theorem
thm:hbasicthm:hbasic
2.2 �

rem:hbasic Remark 2.4. The Hilbert basic theorem is a basic theorem in com-
mutative algebra and in computational algebra. One important tool
of computational algebra is Gröbner basis whose idea stems from the
proof of the Hilbert basis theorem. On the other hand, determining
the lower bound for number of generators of a given ideal is an active
area of research with application in computational complexity.

3. Hilbert’s Nullstellensatz and Zariski topology

Motivation. In the previous lecture we establish a correspondence
between algebraic sets in an affine space C

n and ideals of the polyno-
mial ring C[x1, · · · , xn]. This correspondence is not 1-1. The Hilbert
Nullstellensatz describes exactly the ideals in C[x1, · · · , xn] which are
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ideal of algebraic sets. Then we move to geometry part of algebraic
sets by introducing the notion of Zariski topology on algebraic sets,
which also provides a translation of the notion of “close” or “far away”
in the category of radical ideals.

subs:hilbernull
3.1. Hilbert’s Nullstellensatz. Let us study deeper the correspon-
dence between algebraic sets Yi in C

n and ideals ai in C[z1, · · · , zn].
The following properties are obvious

a1 ⊂ a2 =⇒ Z(a1) ⊃ Z(a2),

Y1 ⊂ Y2 =⇒ I(Y1) ⊃ I(Y2),

I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

We shall prove the following important theorem which says that
the correspondence between algebraic sets in C

n and radical ideals in
C[z1, · · · , zn] are 1-1.

thm:hilbertnull Theorem 3.1 (Hilbert’s Nullstellensatz). Let a be an ideal in C[z1, · · · , zn].
Then

I(Z(a)) =
√

a.

Proof. We produce the proof due to Rabinowitsch in his paper in 1929
for a short proof of Hilbert’s Nullstellensatz. We reformulate Rabi-
nowisch’s trick as follows. Let A be a ring, I ⊂ A an ideal and f ∈ A.
Then it is not hard to see (cf. (

eq:1.4.3eq:1.4.3
3.1) and (

eq:1.4.4eq:1.4.4
3.2))

f ∈
√
I ⇐⇒ 1 ∈ Ĩ := 〈I, 1 − z0f〉A[z0].

Another ingredient is the following Lemma.

lem:1.4.2 Lemma 3.2. Any maximal ideal m ⊂ C[z1, · · · , zn] is of the form

m = (z1 − a1, · · · , zn − an), ai ∈ C.

Consequently for any ideal a 6= C[z1, · · · , zn] we have

Z(a) 6= ∅.
Proof. Let m be a maximal ideal in C[z1, · · · , zn]. Denote by K the
residue class field C[z1, · · · , zn]/m. Clearly K contains C as its subfield,
and K has a countable C -basis, since C[z1, · · · , zn] has a countable C-
basis consisting of monomials zk1

1 · · · zkn
n .

If K 6= C then there is an element p ∈ K \C. Element p is transcen-
dental over C because C is algebraic closed 1. Hence the set

(
1

p− λ
| λ ∈ C)

1 that is why Lemma
lem:1.4.2lem:1.4.2
3.2 does not hold for the ring R
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is uncountable and their elements are linearly independent over C,
which is a contradiction, since K has a countable basis. Therefore
K = C. In particular we have

zi + m = ai + m for suitable ai ∈ C.

This proves the first statement of Lemma
lem:1.4.2lem:1.4.2
3.2.

The second assertion follows from the first one, taking into account
that a must belong to some maximal ideal. �

Continuation of the proof of Hilbert’s Nullstellensatz. Let f be a
polynomial which vanishes on the set Z(a). We shall find a finite
number m such that fm ∈ a.

We denote by R the ring C[z0, z1, · · · , zn]. Let

b := (a, 1 − z0f) ⊂ R.

Clearly Z(b) = 0. By Lemma
lem:1.4.2lem:1.4.2
3.2 we get

b = R.

In particular we can find solutions hi, h ∈ R and fi ∈ a to the following
equation

eq:1.4.3 (3.1)
∑

hifi + h(1 − z0f) = 1.

Now let us substitute 1
f

for z0 as a formal variable in (
eq:1.4.3eq:1.4.3
3.1). We get

eq:1.4.4 (3.2)
∑

i

hi(
1

f
, z1, · · · , zn)fi = 1.

Let m be the maximal degree of z0 of polynomials hi in LHS of (
eq:1.4.4eq:1.4.4
3.2).

Then multiplying the both sides of (
eq:1.4.4eq:1.4.4
3.2) with fm we get

∑

i

h̃ifi = fm,

where h̃i ∈ a. This completes the proof of Hilbert’s Nullstellensatz. �

rem:rabin Remark 3.3. In all of its variants, Hilbert’s Nullstellensatz asserts
that some polynomial g belongs or not to an ideal generated, say, by
f1, · · · , fk we have g = f r in the strong version, g = 1 in the weak form.
This means the existence or the non existence of polynomials g1, · · · , gk

such that g = f1g1 + · · ·+ fkgk. The usual proofs of the Nullstellensatz
are not constructive, non effective, in the sense that they do not give
any way to compute the gi.

It is thus a rather natural question to ask if there is an effective way
to compute the gi (and the exponent r in the strong form) or to prove
that they do not exist. To solve this problem, it suffices to provide an
upper bound on the total degree of the gi such a bound reduces the
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problem to a finite system of linear equations that may be solved by
usual linear algebra techniques. Any such upper bound is called an
—it effective Nullstellensatz.

ex:hilbertnull1 Exercise 3.4. i) Prove that a system of polynomial equations

f1(z1, · · · , zn) = 0,

· · ·

fm(z1, · · · zn) = 0

has no solution in C
n iff 1 can be expressed as a linear combination

1 =
∑

pifi

with polynomial coefficients pi.
ii)Show that any point x in an algebraic set X ⊂ C

n is a Zariski closed
set.

Hint. Use the Nullstellensatz for the first statement and use Lemma
lem:1.4.2lem:1.4.2
3.2 for the second statement.

subs:zaris

3.2. Zariski topology. In this subsection we define Zariski topology
on the set of ideals.

def:zariski Definition 3.5. The Zariski topology on C
n is defined by specifying

the closed sets in C
n to be precisely the algebraic sets. Equivalently a

set is said to be open in Zariski topology, if it is a complement of an
algebraic set.

ex:zariski Example 3.6. A closed set in A1
C

is either a finite set (the roots of a
polynomial P ∈ C[z]), or the whole affine line A1

C
(in this case P = 0).

Thus this topology is not Haussdorf. (A topology is called Haussdorf
if it satisfies the second separateness axiom which says that for any
two different points we can find their neighborhoods which have no
intersection.)

exc:zariski1 Exercise 3.7. If A and B are topological spaces, then we can define
the product topology on the space A×B by specifying the base of this
product topology to be the collection of the sets Uα × Vβ, where Uα

and Vβ are open sets in A and B respectively. Show that the usual
topology on C

n is the product topology of the usual topology on C but
the Zariski topology on C

2 is not the product of the Zariski topology
on C.
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Hint Examine all closed subsets in the product of the Zariski topology
on C × C.

Let us define the closure Ȳ of a set Y ⊂ C
n to be the smallest closed

set which contains Y .

exc:zariski2 Exercise 3.8. Show that the closure of the set S = {(m,n), |m ≥ n ≥
0,m ∈ Z, n ∈ Z} ⊂ C

2 is equal to C
2.

Hint. Let P be a polynomial on C
2 such that S are roots of P .

Examine the degree of P .

If Y is an algebraic set in C
n then we can define the induced Zariski

topology on Y by specifying the open sets in Y to be the intersection
of open sets in C

n with Y .
It is easy to see that the induced Zariski topology on C

1 = {z2 =
0} ⊂ C

2 is the usual Zariski topology on C
1.

4. Tangent space - a motivation + definition ...

In the analysis there is a well known notion of tangent space. In the
case of the unit circle in the real plane C : x2 + y2 − 1 = 0, the tangent
space TpC of C at p = (u, v) is given by the affine line

∂

∂x
(x2 + y2 − 1)(u, v)(x− u)+

∂

∂y
(x2 + y2 − 1)(u, v)(y − v)

= 2u(x− u) + 2v(y − v) = 0.(4.1)

As is customary in algebraic geometry, the tangent space is regarded
as the vector subspace

∂

∂x
(x2 + y2 − 1)(u, v)x+

∂

∂y
(x2 + y2 − 1)(u, v)y

= 2ux+ 2vy = 0(4.2)

in R
2.

In order to define the notion of tangent space in algebraic geometry,
we have to recall the basic concept of an algebraic variety as a functor
of points. Let A be a unital commutative ring. The category of A-
rings is given by objects (B, i) with B a ring and i : A → B a ring
homomorphism, and morphisms HomA−ring((B, i), (B

′, i′)) given by a
ring homomorphism f : B → B′ such that f ◦ i = i′. In what follows,
we shall simply write HomA−ring(B,B

′) for HomA−ring((B, i), (B
′, i′)).

For two vector spaces V,W over a field k, an isomorphism V
∼→ kn

(dimkV = n) producing basis vectors e1, . . . , en and a k-linear map
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f : V → W , the evaluation map and its inverse

Homk(V,W ) → W n, f 7→ (f(e1), . . . , f(en)),

W n → Homk(V,W ), (w1, . . . , wn) 7→ {(a1, . . . , an) 7→
n

∑

i=1

aiwi}

(a1, . . . , an are the coordinates in V with respect to e1, . . . , en) are mu-
tual inverses of each other. Consequently, e1, . . . , en freely generate kn,
i.e., there is no relation among them.

The non-linear variant of the previous linear algebra statement cor-
responds, in algebraic geometry, for any A-ring B, to the equivalence

HomA−ring(A[x1, . . . , xn], B)
∼→ Bn.(4.3)

based on the evaluation map as well as in the linear algebra. This
generalizes to the following situation: let A be a ring, I ⊂ A[x1, . . . , xn]
an ideal. For any A-ring B we define the B-points of an algebraic
variety given by I (more precisely i∗(I) ∈ B[x1, · · · , xn])

Z(B) := {b = (b1, . . . , bn) ∈ Bn | ∀f ∈ I : f(b) = 0}spectrumdef (4.4)

and recall the notation O(Z) = A[x1, . . . , xn]/I for the ring of regular
functions of Z(:= Z(I)) . We use the notation pr : A[x1, . . . , xn] →
A[x1, . . . , xn]/I for the projection, and the element in A[x1, . . . , xn]
when overlined denotes its image in A[x1, . . . , xn]/I via pr. For any
A-ring B the two maps

HomA−ring(O(Z), B) → Z(B), β 7→ (β(x̄1), . . . , β(x̄n)),

Z(B) → HomA−ring(O(Z), B), b = (b1, . . . , bn) 7→ ēvb

with evb = ēvb ◦ pr are mutual inverses of each other and hence a
bijection.

4.1. Tangent space and the ring of dual numbers. Let again B
be an A-ring, the B-algebra B[ǫ] := B + Bǫ = B[t]/t2 with ǫ = t̄ and
ǫ2 = 0 is called the algebra of dual numbers. For f ∈ A[x1, . . . , xn] and
b + b′ǫ = (b1 + b′1ǫ, . . . , b1 + b′1ǫ) ∈ B[ǫ]n, the Taylor expansion in the
polynomial ring implies

f(b+ b′ǫ) = f(b) + ǫ
n

∑

j=1

∂f

∂xj

(b)b′j.(4.5)

We introduce

Z(B[ǫ]) = {b+ b′ ∈ B[ǫ]n | b ∈ Z(B) , b′ ∈ (TbZ)(B)},(4.6)
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where TbZ denotes the tangent space of Z (see (
spectrumdefspectrumdef
4.4)) at b:

(TbZ)(B) := {(x1, . . . , xn) ∈ Bn |
n

∑

j=1

∂f

∂xj

(b)xj = 0 ∀ f ∈ I}.(4.7)

The last condition is sufficient to verify on the generators of I only.

Example 4.1. In the case of A[x, y] and the two algebraic varieties
Z : I = y and Z ′ : I ′ = y2, respectively, describe the tangent spaces
T(0,0)Z and T(0,0)Z

′, respectively.

4.2. Tangent space and the Hensel’s Lemma. A well known appli-
cation of the notion of the tangent space in number theoretical problems
is the Hensel’s Lemma, see Theorem

thm:6.2.1thm:6.2.1
10.4. As an example we briefly

consider the case A = Z/nZ and

C : x2 + y2 − 1 = 0 mod n.(4.8)

The question is - can we characterize C(Z/nZ)?
By the Chinese remainder theorem we can reduce n to a power of a

prime number pr, since for n = pr1
1 . . . prk

k we have

C(Z/nZ) = C(Z/pr1
1 Z) × . . .× C(Z/prk

k Z).(4.9)

From now on we assume n = pr, r ∈ N, and ask about the relationship
between C(Z/pr

Z) and C(Z/pr+1
Z). Let (u, v) ∈ Z

2 be a solution of

x2 + y2 − 1 = 0 mod pr,(4.10)

and try to lift (u mod pr, v mod pr) in C(Z/pr
Z) to a solution mod pr+1.

In other words, we ask for (a, b) ∈ (Z/pZ)2 such that

(u+ pra)2 + (v + prb)2 − 1 = 0 mod pr+1,(4.11)

which is equivalent to

(u2 + v2 − 1)/pr + (2ua+ 2vb) = 0 mod p.henselcongr (4.12)

In the case p 6= 2, at least one of the coefficients 2u, 2v is prime to p
and hence the last congruence has a solution (a0, b0) ∈ (Z/pZ)2.

We observe that the linear equation (2ux + 2vy) = 0 mod p corre-
sponds to the equation for (Z/pZ)-valued points of (1-dimensional) tan-
gent space T(ū,v̄)C at (ū, v̄) = (u mod p, v mod p) in C(Z/pZ). Hence
the set of all solutions (

henselcongrhenselcongr
4.12) is

(a0, b0) + T(ū,v̄)C(Z/pZ)(4.13)

and we get the required comparison result |C(Z/pr+1
Z)| = p|C(Z/pr

Z)|.
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Example 4.2. Does the same procedure work for p = 2? To conclude
this question, prove and consequently apply the reduction of C to the
double line,

x2 + y2 − 1 = (x+ y − 1)2 mod 2.(4.14)

4.3. Hensel’s lemma for algebraic varieties of dimension 0. The
content of classical version of Hensel’s lemma is the characterization of
zero dimensional algebraic varieties over compatible families of finite
commutative unital rings.

As an example we consider the family of rings An = Z/7n
Z for all

n ∈ N, and An-valued points of the algebraic variety

C̃ : x2 − 2 = 0 mod 7n.(4.15)

The A1-valued points of C̃, i.e., the solutions of x2 − 2 = 0 mod 7, are
given by x1 = ±3 mod 7.

Now assume we have an An-valued point of C̃, i.e., a solution of x2
n−

2 = 0 mod 7n. We try to lift xn to a An+1-valued point xn+1 = xn+7ny
of C̃ for suitably chosen y ∈ Z, i.e., to a solution x2

n+1−2 = 0 mod 7n+1.
It is sufficient to consider y as an element of A1 = Z/7Z, and we also
observe that xn+1 = xn = . . . = x1 = ±3 mod 7. The substitution for
xn+1 yields

(xn + 7ny)2 = x2
n + (2xny)7

n = 2 mod 7n+1,(4.16)

which is equivalent to

2xny =
(2 − x2

n)

7n
mod 77adicexp (4.17)

(we notice that 2 − x2
n is divisible by 7n because x2

n − 2 = 0 mod 7n.)
Due to 2xn = ±6 mod 7n 6= 0 mod 7n, there is a unique solution for
y mod 7. This implies that for all n ∈ N there is a unique solution xn

once x1 = ±3 mod 7 is chosen, which fulfills

xn+1 = xn mod 7n.(4.18)

The sequence {xn}n∈N represents a point on C̃ valued in the ring Z7 of
7-adic integers (there are just two solutions, distinguished by the value
of x1.) We remark that (

7adicexp7adicexp
4.17) can be interpreted as 7-adic Newton

method for finding the solution space of x2 − 2 = 0, because the series
contains just the linear term of f(x) = x2−2 in its Taylor expansion at
0. The previous considerations can be summarized as the formulation
of the Hensel’s lemma.

Lemma 4.3. (Hensel’s lemma in zero dimension) Let I be an ideal
of a (commutative, unital) ring A, f ∈ A[x] and a ∈ A be such that
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f(a) = 0 mod In (for some n ≥ 1) and f ′(a) mod I is invertible in
A/I. Then

(1) there exists b ∈ A, which is unique mod In+1, such that f(b) =
0 mod In+1.

(2) There exists unique ã ∈ Ã := lim
←n

(A/InA) (the I-adic comple-

tion of A) such that f(ã) = 0 and the image of ã in A/InA is
a.

5. The Hilbert basis theorem and Groebner bases
sec:Groebner

Motivation. Theory of Groebner bases can be regarded as an algo-
rithmic extension of the Hilbert basis theorem. As it is algorithmic,
it gives algorithm for practical solving problems related to the exis-
tence of optimal basis of an ideal of the ring of polynomials, e.g. the
Ideal membership problem (given an ideal I ⊂ C[x1, · · · , xn] and a
polynomial f ∈ C[x1, · · · , xn] determine if f ∈ I), solving polynomial
equation, the implicitization problem (find generators of the vanishing
ideal of a parametric algebraic variety f : C

n → C
m, where f is a poly-

nomialmapping). Theory of Groebner bases demonstrates how a new
theory arises when one digs deep in the proof of HBT.

subs:Grexi
5.1. Groebner basis and Buchberger’s algorithm. A Groebner
basis G of an ideal I in a polynomial ring R is a special generating set
of I that has been motivated by the proof of Hilbert basis theorem.

Groebner bases were introduced in 1965, together with an algorithm
to compute them (Buchberger’s algorithm), by Bruno Buchberger in
his Ph.D. thesis. He named them after his advisor Wolfgang Groeb-
ner. However, the Russian mathematician N. M. Gjunter had intro-
duced a similar notion in 1913, published in various Russian math-
ematical journals. These papers were largely ignored by the mathe-
matical community until their rediscovery in 1987 by Bodo Renschuch
et al. An analogous concept for local rings was developed indepen-
dently by Heisuke Hironaka in 1964, who named them standard bases.
(https://en.wikipedia.org/wiki/Groebner−basis).

In the proof of the Hilbert basis theorem, the existence of grading of
polynomial ring is very important. In the proof we have given above,
the polynomial ring has only one variable. If we want to skip the
induction step on the number of variables of the polynomial ring in the
proof of HBT, we need to introduce a special grading, which is called
a monomial ordering. In the given above proof of HBT this monomial
ordering is implicitly given by choosing the induction step.
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• To save notation we write x for (x1, · · · , xn) and for α := (α1, · · · , αn)
we denote by xα the monomial xα1

1 · · ·xαn
n .

def:mono Definition 5.1. A monomial ordering (or semigroup ordering) is a to-
tal ordering on the set of monomial Monn := {xα| α ∈ N

n} satisfying

xα > xβ =⇒ xγxα > xγxβ

for all α, β, γ ∈ N
n.

The proof of the Hilbert basis theorem leads to notion of a Groebner
basis and a leading ideal. First we need some notations related to
monomial ordering.

For
f = aαx

α + aβx
β + · · · ∈ K[x]

where xα > xβ > · · · we set

(1) LM(f) := xα (leading monomial),
(2) LE(f) := α (leading exponent),
(3) LC(f) := aα (leading coefficient),
(4) LT (f) := LC(f) · LM(f) (leading term)
(5) tail(f) := f − LT (f).

For a subset G ⊂ K[x] we define the leading ideal of G by

L(G) := 〈LM(g)| g ∈ G \ {0}〉K[x].

def:groeb Definition 5.2. Let I ⊂ K[x] be an ideal. A finite set G ⊂ I is called
Groebner basis (or standard basis) if L(I) = L(G).

It follows from the HBT that every ideal I ⊂ K[x] has a Groebner
basis.

To construct a Groebner basis we apply Buchberger’s algorithm.
This algorithm arises from a detailed analysis of the proof of the HBT
to understand how to recognize a basis is a Groebner basis. It fol-
lows immediately from the definition that a basis (f1, · · · , fs) is not a
Groebner basis if there is a polynomial combinations of the fi whose
leading term is not in the ideal generated by TL(fi). This leads to the
notion of a S-polynomial, which is such polynomial combination.

def:spol Definition 5.3. The S-polynomial of f and g is defined as follows

S(f, g) :=
xγ

LT (f)
· f − xγ

LT (g)
· g

where xγ is the least common multiple of LM(f) and LM(g).

We also need the notion of division of a polynomial in k[x] by a
(ordered) s-tuple F = (f1, · · · , fs) of s polynomials fi ∈ K[x].
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prop:div Proposition 5.4. (
CLO1996
[CLO1996, Theorem 3, p. 61]) Fix an monomial

order in Z
n
≥0 and let F = (f1, ·, fs) be an ordered s-tuple of polynomials

in K[x]. Then for every f ∈ K[x] we have

f =
∑

aifi + f
F

where ai ∈ K[x] and no term of f
F

is divisible by any of LT (f1), · · · , LT (fs).

The division algorithm says that the remainder f
F

does not belong
the leading ideal L(F ).

Now we are ready to state an algorithmic criterion for a Groebner
(
CLO1996
[CLO1996, (p. 98)]).

thm:gr1 Theorem 5.5. Let I be a polynomial ideal. Then a basis G = {g1, · · · , gs}
for I is a Groebner basis for I if and only if for all pairs i 6= j, the
remainder on division of S(gi, gj) by G is zero.

Buchberger’s algorithm for constructing a Groebner basis consists
of the following. Take an arbitrary basis G. If S(gi, gj) = 0 for all

gi, gj ∈ G, then we are done by Theorem
thm:gr1thm:gr1
5.5. If not we add S(gi, gj)

G

to obtain a new basis. After a finite step we obtain a Groebner basis.
subs:Grappl

5.2. Some applications of Groebner bases.

• Ideal membership problem. Let I be an ideal and G its Groebner

basis. To verify if f ∈ I we need only to check if f
G

= 0.
• Solving polynomial equation. Given f1, · · · , fs ∈ k[x1, · · · , xn] we

want to know whether the system of polynomial equations

f1(x) = · · · = fk(x) = 0

has a solution in k
n

where k is the algebraic closure of k. If there exists
a solution can we find it?

To solve the first problem, applying the Hilbert Nullstellensatz, we
reduce the existence problem to the ideal membership problem, namely,
V (I) = 0 iff 1 ∈ I, where I = 〈f1, · · · , fs〉k[x].

There is an algorithm to solve the second problem in the case that
the ideal I is zero dimensional. We refer to

GP2008
[GP2008, Section 1.8.5, p.

75].
• The implicitization problem is also called the problem of finding

the Zariski closure of the image of a polynomial mapping. We need to
find generators p1, · · · , pr of the vanishing ideal of the Zariski closure
of the image of a polynomial mapping f : C

n → C
m. The study of this

problem lead to a new notion of elimination ordering and eliminate
variables. We refer to two books

GP2008
[GP2008] and

CLO1996
[CLO1996] for more

details.
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6. Affine varieties and projective varieties
sec:affv

Motivation. The decomposition of an algebraic set into its irreducible
components leads to the notion of affine algebraic variety and quasi-
affine variety. The study of projective varieties arises when we consider
the action of the group C

∗ on C
n. Factoring out the action of the non-

compact group C
∗ we obtain the compact projective space CP n, which,

in many topological and analytical problems, is easier to study than
the analogous problems on the non-compact affine space C

n. This also
leads to useful technique of projective closure (Defintion

def:2.3.7def:2.3.7
6.12).

subs:affv
6.1. Affine algebraic varieties. An algebraic set Y is called irre-
ducible, if it cannot be represented as the union of two algebraic sets
such that each of them is a proper subset in S. For example the affine
line C

1 = {(z2 = 0)} ⊂ C
2 is an irreducible algebraic set, because any

closed set in C
1 is either a finite set or the whole line C

1.

prop:1.3.1 Proposition 6.1. An algebraic set is irreducible, if and only if, its
ideal is prime.

Proof. First we show that if a set Y is irreducible, then its ideal I(Y )
is prime. Indeed, if fg ∈ I(Y ) then Y ⊂ Z(fg) = Z(f) ∪ Z(g). Hence
we get the decomposition

Y = (Y ∩ Z(f)) ∪ (Y ∩ Z(g)),

so that Z(f) ∩ Y or Z(g) ∩ Y must be equal to Y . Consequently,
f ∈ I(Y ) or g ∈ I(Y ) which implies that I(Y ) is prime.

Conversely, let I(Y ) be prime, we shall show that Y is irreducible.
If Y = Y1 ∪ Y2, then I(Y ) = I(Y1) ∩ I(Y2). Assume that I(Y ) 6= I(Y1)
i.e. there is an element g ∈ I(Y1) \ I(Y ). Since I(Y ) is prime, and
g · I(Y2) ⊂ I(Y ) we get that I(Y2) ⊂ I(Y ). Hence I(Y2) = I(Y ), i.e. Y
is irreducible. �

def:quasiaff Definition 6.2. An affine algebraic variety (or simply affine variety) is
an irreducible closed algebraic set with the induced Zariski topology of
C

nAn open subset of an affine algebraic variety is called a quasi-affine
variety.

ex:1.3.2 Example 6.3. The twisted cubic curve C = (t, t2, t3| t ∈ C) ⊂ C
3 is

an affine algebraic variety. Clearly I(C) = ((z2
1 − z2), (z1z2 − z3)). To

prove that I(C) is prime, it suffices to show that the quotient A(C) =
C[z1, z2, z3]/I(C) is an integral domain. But it is easy to see that
A(C) = C[z] is an integral domain.

ex:1.3.3 Exercise 6.4. Prove that any closed subset Y in C
n has a decomposi-

tion of into irreducible closed subsets and this decomposition is unique.
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Hint: Any chain of decompositions of closed subsets of Y must stop
at irreducible closed subsets, since the ring C[z1, · · · , zn] is Noetherian.

subs:projs
6.2. Projective spaces. We denote by CP n the complex projective
space whose points are complex lines in the vector space C

n+1, i.e.
1-dimensional subspaces of the vector space C

n. Equivalently

CP n = (Cn+1 \ {0})/C∗

where C
∗ is the group of non-zero scalars acting on C

n+1 by multipli-
cation. This means that we consider a point of CP n as an equivalence
class of points in C

n+1 under the action of C
∗ as follows. Two points

(z0, · · · , zn) and (z′0, · · · , z′n) are equivalent, if there exists a number
λ ∈ C

∗ such that
zi = λz′i, for all 0 ≤ i ≤ n.

The equivalent class of (z0, z1, · · · , zn) will be denoted by [z0 : z1 : · · · , :
zn].

subs:homp
6.3. Homogeneous polynomials and graded rings. We also define
the dual action of C

∗ on the ring C[z0, z1, · · · , zn] by setting

(λ ◦ P )(z0, · · · , zn) := P (λz0, · · · , λzn),

for any λ ∈ C
∗. Since C

∗ is abelian, the ring C[z0, z1, · · · , zn] considered
as a vector space over C can be decomposed into eigen-spaces of the
action of λ for all λ ∈ C

eq:2.2.1 (6.1) C[z0, z1, · · · , zn] = ⊕kSk.

Here Sk is an eigen-space w.r.t. weight k ∈ Hom(C∗,C∗) : λ 7→ λk,

λ ◦ P = λk · P, if P ∈ Sk,

for all λ ∈ C
∗. The splitting (

eq:2.2.1eq:2.2.1
6.1) is also called a grading of the ring

C[z0, · · · , zn], since we have

eq:2.2.2 (6.2) Sk · Sl ⊂ Sk+l.

Elements of Sk are called homogeneous polynomials. The ring C[z0, · · · , zn]
provided with the splitting (

eq:2.2.1eq:2.2.1
6.1) which satisfies (

eq:2.2.2eq:2.2.2
6.2) is a graded ring.

An ideal a ⊂ C[z0, · · · , zn] is called a homogeneous ideal, if

a = ⊕k(a ∩ Sk).

ex:2.2.3 Example 6.5. A maximal ideal a ⊂ C[z0, z1, · · · , zn] is a homogeneous
ideal, if and only if Z(a) = {0} ∈ C

n+1.

exi:2.2.4 Exercise 6.6. Prove that an ideal is homogeneous if and only if it can
be generated by homogeneous elements. Prove that the sum, product,
intersection and radical of homogeneous ideals are homogeneous.
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subs:projv
6.4. Projective varieties and homogeneous ideals. We associate
to any homogeneous polynomial P ∈ Vk a function P̃ : CP n → {0, 1}
according to the following rule

P̃ ([z0 : z1, · · · , : zn]) = 0, if P (z0, z1, · · · , zn) = 0,

P̃ ([z0 : z1, · · · , : zn]) = 1, if P (z0, z1, · · · , zn) 6= 0.

Clearly the function P̃ is well-defined. So we can define for any set
T of homogeneous polynomials in C[z0, z1, · · · , zn] its zero set Z(T ) in
the projective space CP n by setting

Z(T ) := {p ∈ CP n| P̃ (p) = 0 for all P ∈ T}.

A subset Y ⊂ CP n is called algebraic, if there exists a set T of
homogeneous polynomials of C[z0, · · · , zn] such that Y = Z(T ).

exi:2.3.1 Exercise 6.7. Show that the union of two algebraic sets is an algebraic
set. The intersection of any family of algebraic sets is an algebraic set.

For any subset Y ⊂ CP n we denote by I(Y ) the homogeneous ideals
of Y ⊂ C[z0, · · · , zn] the ideal generated by homogeneous elements f
in C[z0, · · · , zn] such that f vanishes on Y . (This ideal is homogeneous
according to Exercise

exi:2.2.4exi:2.2.4
6.6.

The Zariski topology on CP n is defined by specifying the open sets
to be the complement of algebraic sets.

Once we have a topological space the notion of irreducible (not nec-
essary algebraic) sets will apply. We say that a set Y is irreducible, if
it cannot be represented as the union of two proper subsets which of
them is closed in Y .

def:projalg Definition 6.8. A projective (algebraic) variety is an irreducible alge-
braic set in CP n with the induced topology. A quasi projective variety
is an open subset in a projective variety.

ex:2.3.2 Example 6.9. We denote by Hi ⊂ CP n the zero set of the linear
function zi. Then Hi is called a hyper-plane. It is a projective variety,
because I(Hi) = (zi) is a prime ideal. In fact an algebraic set Y ⊂ CP n

is irreducible, if and only if its homogeneous ideal is prime. To prove
this we can repeat the proof of Proposition

prop:1.3.1prop:1.3.1
6.1 or we observe that there

is a correspondence between algebraic set Y ⊂ CP n and its cone CY
in C

n+1 which is defined by

CY := {(z0, z1, · · · , zn)| [z0, z1, · · · , zn] ∈ Y }.
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They have the same ideal. The property being reducible is also pre-
served by this correspondence. Thus our statement about the corre-
spondence between homogeneous prime ideals and projective varieties
is a consequence of the Proposition

prop:1.3.1prop:1.3.1
6.1.

The following statement shows that the projective space CP n is a
compactification of the affine space C

n.

prop:2.3.3 Proposition 6.10. The quasi-projective variety Ui = CP n \ Hi with
its induced topology is homeomorphic to the affine space C

n with its
Zariski topology.

Proof. We consider the map φi : Ui → C
n

φi([z0 : · · · : zi]) = (
z0

zi

, · · ·̂i , · · · ,
zn

zi

).

Clearly φi is a bijection. We need to show that φi is a homeomorphism,
i.e. φi and φ−1

i send closed sets into closed sets.
Let Y be a closed set in Ui. Then there is a homogeneous ideal

T ⊂ C[z0, · · · , zn] such that Y = Z(T ) ∩ Ui. We want to find an ideal
T ′ in C[z0, · · · ,̂i , ·zn] such that φi(Y ) = Z(T ′). Let T ′ be the set of
polynomials in C[z0, · · · ,̂i , · · · , zn] obtained by restricting the set T h of
homogeneous elements in T to the hyper-plane {zi = 1} in C

n+1. This
map T h → T ′ shall be denoted by ri (restriction). Then we have for
any homogeneous element t of degree d in T h

eq:2.3.4 (6.3) ri(t)(φi(z)) = z−d
i · t(z), for all z ∈ Ui.

Since φi is a bijection, it follows from (
eq:2.3.4eq:2.3.4
6.3) that φi(Y ) = Z(T ′). So φi

is a closed map.
Now let W be a closed set in C

n. Then W = Z(T ′) for some
ideal T ′ ⊂ C[z0, · · ·̂i , · · · zn]. We shall find a homogeneous ideal T ⊂
C[z0, · · · , zn] such that φ−1

i (W ) = Z(T h) = Z(T ), where as before T h

denotes the set of homogeneous elements in T .
Let t′ ∈ T ′ be a polynomial of degree d. We set, cf. (

eq:2.3.4eq:2.3.4
6.3)

eq:2.3.5 (6.4) β(t′)(z) := zd
i · t′(φi(z)) ∈ C[z0, · · · , zn].

Clearly β(t′) is a homogeneous polynomials of degree d. Let T := β(T ′).
Since φi is a bijection, (

eq:2.3.5eq:2.3.5
6.4) implies that φ−1

i (W ) = Z(T ) ∩ Ui. Hence
φ−1

i is also a closed map. �

rem:2.3.6 Remark 6.11. The map β : T ′ → T is not a ring homomorphism.
Thus if {li} generate some ideal a, the set {β(li)} may not generate
the ideal β(a), see Example

ex:2.3.7ex:2.3.7
6.13 below.
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def:2.3.7 Definition 6.12. If Y ⊂ C
n is an affine variety then we shall say

Ȳ ⊂ CP n is the projective closure of Y , if Y is the closure of φ0(Y ) in
CP n, or equivalently I(Ȳ ) = β(I(Y )).

So Ȳ is a projective closure of Y iff Ȳ = Y (β(I(Y )).

ex:2.3.7 Example 6.13. Now let us consider for example the projective closure
of the twisted cubic curve C = (t, t2, t3). The closure C̄ has an ideal
I(C̄) generated by {(z2

1 − z0z2), (z1z3 − z2
2), (z1z2 − z0z3)} but not by

{β(z2 − z2
1) = z0z2 − z2

1 , β(z1z2 − z3) = z1z2 − z0z3} (see
Haris1992
[?, Example

1.10] for a proof of the last statement).

exi:2.3.8 Exercise 6.14 (Homogeneous Nullstellensatz). If a ⊂ S is a homoge-
neous ideal, and if f is a homogeneous polynomial such that f(P ) = 0
for all P ∈ Z(a) ⊂ CP n, then f q ∈ a for some q > 0.

Hint. We use the correspondence between Z(a) and CZ(a) ⊂ C
n+1

to deduce this Proposition from the Hilbert’s Nullstellensatz.

exi:2.3.9 Exercise 6.15. We define the Serge embedding ψ : CP r × CP s →
CPN as follows. Set N = rs+ r + s and

ψ([x0, · · · , xr] × [y0, · · · , ys]) = [· · · , xiyj, ·]
Prove that ψ is injective and the image of ψ is a subvariety in CPN .

Hint. Show that ψ(CP r × CP s) = Z(ker θ) where θ : C[zij, i =
0, r, j = 0, s] → C[xi, yj, i = 0, r, j = 0, s]: θ(zij) = xiyj.

7. Coordinate ring and the dimension of an algebraic set
sec:cordim

Motivation. Functions on a topological space S are observables (or
features) of the space. The space of functions on S has a ring structure,
since R is a ring. When S is an algebraic set, it suffices to consider
a smaller class functions, called the coordinate ring of S. We shall
show in this section that the coordinate ring provides most basic topo-
logical characterization of a space: its topological (also called Krull)
dimension, which is defined strictly in topological terms, is equal to it
algebraic dimension, which is defined in terms of field extension (The-
orem

thm:aldimthm:aldim
7.9).

subs:aff
7.1. Affine coordinate ring. We have already introduced the notion
of an affine coordinate ring in Example

ex:1.3.2ex:1.3.2
6.3 for the affine twisted curve.

In general case, the affine coordinate ring of an affine algebraic set
Y ⊂ C

n is defined to be the quotient

A(Y ) := C[z1, · · · , zn]/I(Y ).
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A(Y ) is called the coordinate ring, since any element f ∈ A(Y ) is the

restriction of some polynomial f̃ ∈ C[Z1, · · · , zn] to Y , and moreover,
as we shall see in Corollary

cor:3.1.3cor:3.1.3
7.3, the values f(x) ∈ C, f ∈ A(Y ), can

distinguish different points in Y .

rem:3.1.1 Remark 7.1. (cf. Exercise
exi:3.1.4exi:3.1.4
7.4) Since C[z1, · · · , zn] is a finitely gener-

ated C-algebra, the quotient A(Y ) is a finitely generated algebra. We
have seen in Example

ex:1.3.2ex:1.3.2
6.3 that the affine coordinate ring A(Y ) is an

integral domain, if Y is irreducible. Conversely, if B is a finitely gener-
ated C-algebra which is an integral domain, then B = C[z1, · · · , zn]/a,
where a is prime. So B is the affine coordinate ring of the algebraic
set Z(a). Summarizing we have the following correspondence between
algebra and geometry

{ finitely generated C-algebras which are domains} ⇐⇒ { affine varieties }.
For y ∈ Y we set my := {f ∈ A| f(y) = 0}. Then my is a maximal

ideal in A(Y ).

prop:3.1.2 Proposition 7.2. (i) The correspondence y 7→ my is a 1-1 correspon-
dence between points y ∈ Y and the maximal ideals in A(Y ).
(ii) There is a 1-1 correspondence between closed sets in Y and perfect
(radical) ideals m in A(Y ).

Proposition
prop:3.1.2prop:3.1.2
7.2 says that Y as a topological space can be defined by

the structure of the ring A(Y ).

Proof. (i) Denote by p the projection C[z1, · · · , zn] → A(Y ). Let m

be a maximal ideal in A(Y ). Then p−1(m) is a maximal ideal in
C[z1, · · · , zn]. By Hilbert’s Nullstellensatz p−1(m) = (z1 − a1, · · · , zn −
an) = {f ∈ C[z1, · · · , zn] | f(a1, · · · , an) = 0}. Since I(Y ) ⊂ p−1(m) the
point (a1, · · · , an) belongs to Y . Hence m = {f ∈ A(Y )|f(a1, · · · , an) =
0}. Thus the correspondence y 7→ my is surjective. In fact this corre-
spondence is 1-1 because there is a 1-1 correspondence between maxi-
mal ideals in C[z1, · · · , zn] which contain I(Y ) and maximal ideals in
A(Y ).

To prove the second assertion it suffices to show that I(Z(a)) =
√

a

for any a ⊂ A. From Hilbert’s Nullstellensatz we get

p−1(I(Z(a))) =
√

p−1(a).

Hence

I(Y (a)) = p(
√

p−1(a)) =
√

p ◦ p−1(a) =
√

a.

�
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From the proof of Proposition
prop:3.1.2prop:3.1.2
7.2

cor:3.1.3 Corollary 7.3. For any y 6= y′ ∈ Y there exists f ∈ A(Y ) such that
f(y) = 0 and f(y′) = 1.

exi:3.1.4 Exercise 7.4. Show that a C-algebra A is an affine coordinate ring
A(Y ) for some algebraic set Y iff A is reduced (i.e. its only nilpotent
element is 0) and finitely generated as C-algebra.

Hint. Write A = C[z1, · · · , zn]/I and use the Hilbert Nullstellensatz.

subs:dim
7.2. Dimension of a topological space. Let X be a topological
space. Then we define the (Krull) dimension of X to be the supremum
of all integers n such that there exists a chain Z0 ⊂ Z1 ⊂ · · · ⊂ Zn of
distinct irreducible closed subsets of X. This definition depends on the
structure of all closed subsets of X but we shall see that dimension is
a local property.

prop:3.2.1 Proposition 7.5. a) If Y is any subset of a topological space X, then
dimY ≤ dimX.
b) If X is topological space which is covered by a family of open subsets
{Ui}, then dimX = sup dimUi.
c) If Y is a closed subset of an irreducible finite-dimensional topological
space X, and if dimY = dimX, then X = Y .

Proof. The first and last statements follow directly from the definition.
Let us prove the second assertion. Let Z0 ⊂ · · · ⊂ Zn be distinct

closed irreducible subsets of X and U an open set from the covering
{Uj} such that Zn∩U 6= ∅. Then {Zj∩U | j = 0, n} are closed subsets of
U . They are all irreducible, since U is open: if we have a decomposition
Z = (Z̄A ∩ U) ∪ (Z̄B ∩ U), then

Z = [(Z ∩ (X \ U)) ∪ (Z ∩ Z̄A)] ∪ (Z ∩ Z̄B)

is not irreducible. Finally they all are distinct, since if (Zj ∩ U) =
(Zj+1 ∩ U) then Zj+1 = Zj ∪ (Zj+1 ∩ (X \ U)) is irreducible. This
proves that dimX ≤ sup dimUi. Combining with the first statement
we get the second statement. �

exi:3.2.2 Exercise 7.6. (i) Prove that dim C
1 = 1.

(ii) Prove that if X is an affine variety in C
n and Y ⊂ X is a proper

closed subset then we have dimY < dimX.

Now we translate the notion of Krull dimension in the category of
rings.
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In a ring A the height of a prime ideal p is the supremum of all
integers n such that there exists a chain p0 ⊂ p1 ⊂ · · · ⊂ pn = p

of distinct prime ideals. The Krull dimension of A is defined as the
supremum of the height of all prime ideals.

prop:3.2.3 Proposition 7.7. If Y is an affine algebraic set, then the dimension
of Y is equal to the dimension of its affine coordinate ring A(Y ).

Proof. By definition the dimension of Y equals the length of the longest
chain of closed irreducible subsets in Y which correspond to the chain
of prime ideals of A(Y ). �

There is also another natural notion of dimension in the category of
modules and rings, which we shall compare with the notion of Krull
dimension in most important cases.

def:dimalg Definition 7.8. The algebraic dimension of a commutative ring A over
a field k is the maximal number of algebraically independent elements
over k in A if it is defined and ∞ otherwise. We will denote it by
alg. dimk A.

This notion of algebraic dimension is natural, since we want to have
the dimension of the algebra of functions equal to the dimension of the
underlying topological space, see also Corollary

cor:dimkncor:dimkn
7.16 below. The fol-

lowing theorem shows that the two notions agree in the case of algebras
equal to coordinate rings of affine varieties (see Remark

rem:3.1.1rem:3.1.1
7.1).

thm:aldim Theorem 7.9. (
Dolgachev2013
[Dolgachev2013, Theorem 11.8, p. 95]) Let A be a

finitely generated k-algebra without zero divisors and F (A) be the field
of fractions of A. Then

alg. dimk F (A) = alg. dimk A = dimA.

Proof. The proof of Theorem
thm:aldimthm:aldim
7.9 uses the Noether normalization the-

orem that describes the structure of finitely generated k-algebra with-
out zero divisor. Noether’s normalization theorem together with HBT
and Hilbert’s Nullstellensatz are three basic techniques in algebraic
geometry, since finitely generated k-algebra without zero divisor are
coordinate rings of affine varieties.

thm:noether Theorem 7.10 (Noether’s normalization theorem). Let A be a finitely
generated algebra over a field k. Then A is isomorphic to an integral
extension of the polynomial algebra k[Z1, · · · , Zn].

Digression: Noether’s normalization theorem. Noether’s normaliza-
tion theorem is also a basic theorem in commutative algebra, see e.g.
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Lang2005
[Lang2005, Theorem 2.1, p. 357] and a sketch of a proof at the end of
Subsection

subs:localrsubs:localr
8.2. In

Shafarevich2013
[Shafarevich2013, §5.4, p. 65] Shafarevich provided

a simple geometric proof of the Noether’s normalization theorem. For
this purpose, we introduce the notion of a finite map, extending the
correspondence between finitely generated algebras and affine varieties
in Remark

rem:3.1.1rem:3.1.1
7.1.

Definition 7.11. Let X and Y be affine varieties. A regular map
f : X → Y is called a finite map if k[X] is integral over k[Y ].

Now we translate the Noether’s normalization theorem as follows.

thm:noetheraffine Theorem 7.12. For an irreducible affine variety X there exists a finite
map ϕ : X → kn to an affine space kn. 2

Using the projective closure, we reduce Theorem
thm:noetheraffinethm:noetheraffine
7.12 to the following

projective version.

thm:noetherproj Theorem 7.13. For an irreducible projective variety X there exists a
finite map ϕ : X → P n to an affine space P n.

To prove Theorem
thm:noetherprojthm:noetherproj
7.13 we find a point x ∈ P n \X, and the map ϕ

is obtained by projecting X away from x will be regular. The image
ϕ(X) ⊂ P n−1 is projective, and the map ϕ : X → ϕ(X) is finite.
Repeating this procedure, if ϕ(X) 6= P n−1, we obtain Theorem

thm:noetherprojthm:noetherproj
7.13.

Continuation of Theorem
thm:aldimthm:aldim
7.9. By Noether’s normalization A is in-

tegral over its subalgebra isomorphic to k[Z1, · · · , ZN ]. We shall relate
the dimension of A with that of its subalgebra k[Z1, · · · , ZN ]. The later
ring is simple and we can compute it by proving Theorem

thm:aldimthm:aldim
7.9 for this

coordinate ring in Exercise
exi:dimpolexi:dimpol
7.14 below.

exi:dimpol Exercise 7.14. dim k[Z1, · · · , Zn] = alg. dimk[Z1, · · · , ZN ].

Hint. First we assume the validity of the following haft of of Theorem
thm:aldimthm:aldim
7.9.

lem:dimcomp Lemma 7.15. (
Dolgachev2013
[Dolgachev2013, Lemma 11.5, p. 95]) Let A be a k-

algebra without zero divisors and F (A) be the field of fractions of A.
Then

alg. dimk A = alg. dimk F (A) ≥ dimA.

2Geometric Noether normalization theorem (Theorem
thm:noetheraffinethm:noetheraffine
7.12) is a generalization

of Riemann’s theorem which say that every algebraic curve is a covering of the
sphere CP

1. Geometric Noerther normalization theorem is slightly weaker than
the algebraic Noerther normalization theorem, which does not require the zero
divisor condition, but it suffices for the proof of Theorem

thm:aldimthm:aldim
7.9.
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(The proof of Lemma
lem:dimcomplem:dimcomp
7.15 will be outlined later.)

We derive Exercise
exi:dimpolexi:dimpol
7.14 from the following corollary of Lemma

lem:dimcomplem:dimcomp
7.15

cor:dimkn Corollary 7.16.

alg.dimkk[Z1, · · · , Zn] = alg.dimkk(Z1, · · · , Zn) = n

≥ dim k[Z1, · · · , Zn] ≥ n.

(The last inequality in Corollary
cor:dimkncor:dimkn
7.16 is obtained by considering the

following sequence of proper prime ideals:

(0) ⊂ (Z1) ⊂ (Z1, Z2) ⊂ · · · ⊂ (Z1, · · · , Zn).)

Now we relate the Krull dimension of A with the Krull dimension of
its polynomial subalgebra.

lem:dimintegr Lemma 7.17. (
Dolgachev2013
[Dolgachev2013, Lemma 11.7])

dimA = dim k[Z1, · · · , ZN ].

(We note that the algebraic dimension does not change with an alge-
braic extension so Lemma

lem:dimintegrlem:dimintegr
7.17 says that the Krull dimension behaves

in the same way.)

Proof. First we prove

eq:compare1 (7.1) dimA ≤ dim k[Z1, · · · , ZN ]

Let 0 ⊂ P1 ⊂ · · · ... be a chain of proper prime ideals in the bigger
ring A. Then 0 ⊂ P1 ∩ A ⊂ · · · ... be a proper prime ideals in the
smaller ring F . This proves (

eq:compare1eq:compare1
7.1). To complete the proof of Lemma

lem:dimintegrlem:dimintegr
7.17 it suffices to prove the following

eq:compare2 (7.2) dimA ≥ dim k[Z1, · · · , ZN ]

Fact F. (
Dolgachev2013
[Dolgachev2013, Lemma 10.3. (vi), p. 85]) For every prime

ideal P in the smaller ring F := k[Z1, · · · , ZN ] there exists a prime ideal
P ′ in the bigger ring A such that P ′ ∩ F = P .

Fact F implies immediately (
eq:compare2eq:compare2
7.2), since any chain of proper prime

ideals in F implies the existence of a chain of prime ideals in A. More
precisely, let 0 ⊂ P1 ⊂ P2 ⊂ · · · be a chain proper prime ideals in
the smaller ring F . The fact F implies the existence of a prime ideal
Q0 ⊂ A such that Q ∩ F = P0. Set

F̄ := F/P0 and Ā := A/Q0.
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Then Ā is an integral extension of F̄ via the canonical injective homo-
morphism F̄ → Ā. Applying the fact F again, we find a prime ideal
Q̄1 in Ā such that Q̄1 ∩ F = P̄1. Lifting Q̄1 to Q1 ⊂ A we have

Q1 ∩ F = P1.

In this way we find a chain of proper prime ideals in the bigger ring
A of the same length. This proves (

eq:compare2eq:compare2
7.2) and completes the proof of

Lemma
lem:dimintegrlem:dimintegr
7.17. �

Summarizing, we have

alg. dimk A
Lemma

lem:dimcomplem:dimcomp
7.15

≥ dimA
Lemma

lem:dimintegrlem:dimintegr
7.17

= dim k[Z1, · · · , Zn]

Corollary
cor:dimkncor:dimkn
7.16

= alg.dimkk(Z1, · · · , Zn)
Noether Theorem

thm:noetherthm:noether
7.10

= alg. dimk F (A)

Lemma
lem:dimcomplem:dimcomp
7.15

= alg. dimk A.

This completes the proof of Theorem
thm:aldimthm:aldim
7.9 modulo the proofs of Lemma

lem:dimcomplem:dimcomp
7.15 and Lemma

lem:dimintegrlem:dimintegr
7.17.

Completion of the proof of Theorem
thm:aldimthm:aldim
7.9 It remains to give a

Proof of Lemma
lem:dimcomplem:dimcomp
7.15. It suffices to prove the following three inequali-

ties

alg. dimF (A) ≥ alg. dimA,eq:fgea (7.3)

alg. dimA ≥ alg. dimF (A),eq:agef (7.4)

alg. dimk A ≥ dimA.eq:algtop (7.5)

Since A ⊂ F (A), the inequality (
eq:fgeaeq:fgea
7.3) is obvious.

Let us prove (
eq:agefeq:agef
7.4). It suffices to show that for any r algebraically

independent elements x1, · · · , xr in F (A) we find also r algebraically
independent elements y1, · · · , yr in A. Write xi = ai/r, where ai, r ∈
A. Let Q0 be the subfield of F (A) generated by a1, · · · , ar, s. Since
Q0 ∋ x1, · · · xr, s we have

alg. dimk Q0 ≥ r.

If a1, · · · ar are algebraically dependent, then Q0 is an algebraic exten-
sion of the subfield Q1 generated by s and a1, · · · , ar with some ai, say
ar, omitted. Since alg. dimk Q0 = alg. dimk Q1, we find r algebraically
independent elements a1, · · · , ar−1, s ∈ A. This proves (

eq:agefeq:agef
7.4).

It remains to prove (
eq:algtopeq:algtop
7.5). Let 0 ⊂ P1 ⊂ · · ·Pn be a chain of proper

prime ideals in A. We need to find n algebraically independent ele-
ments in A. It suffices to prove alg. dimk A > alg. dimk A/P0. Let
x̄1, · · · , x̄n ∈ A/P0 be algebraic independent. Take their representative
xi in A. We claim that for any x ∈ P , (n+ 1)-elements (x1, · · · , xn, x)
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are algebraically independent. Suppose the opposite. Then there is a
polynomial in x with coefficient in the polynomial ring of (x1, · · · , xn)
which vanishes. We can assume that the zero order coefficient of this
polynomial is not zero. Passing to the factor ring A/P , since x ∈ P ,
the vanishing of F implies the zero order coefficient of F is zero, or
equivalently (x̄1, · · · , x̄n) are algebraically dependent. This contradicts
to our assumption and hence completes the proof of (

eq:algtopeq:algtop
7.5). �

rem:aldim Remark 7.18. In the proof of Theorem
thm:aldimthm:aldim
7.9 we requires A to be an

integral domain in order to have the field of fractions F (A). In general,
the equality alg. dim k[Z1, · · · , Zn] = alg. dimk A is valid without the
condition that A is an integral domain.

exi:dimn1 Exercise 7.19. ( cf.
Shafarevich2013
[Shafarevich2013, Theorem 1.21, p.69] ) A variety

Y ⊂ C
n has dimension n − 1 if and only if its ideal I(Y ) is generated

by a single non-constant irreducible polynomial f in C[z1, · · · , zn].

Hint. To prove that dimZ(f) = n−1 we use the identity dimZ(f) =
alg. dimC Z(f). (alg. dimC Z(f) ≤ n − 1, since x1, · · · , xn are alge-
braically dependent. Next, alg. dimZ(f) ≥ n − 1, since I(Z(f)) =
√

(f).) For the statement that dimY = n − 1 implies Y = Z(f) use
Hilbert’s Nullstellensatz.

Exercise
exi:dimn1exi:dimn1
7.19 is a particular case of the Geometric Krull’s Hauptide-

alsatz, which says that the co-dimension of the (irreducible component
of ) the zero set of a non-invertible and non-zero regular functions on an
affine variety is one (see

Dolgachev2013
[Dolgachev2013, Theorem 11.10] for a proof.)

subs:homc
7.3. Homogeneous coordinate ring and dimension. Let Y be an
algebraic set in CP n and I(Y ) its homogeneous ideal. Then we define
the homogeneous coordinate ring of Y to be S(Y ) = C[z0, · · · , zn]/I(Y ).
For any y ∈ Y denote by my the set {f ∈ S(Y )| f(y) = 0}. It is easy
to see that my is a homogeneous maximal ideal of S(Y ).

Unlike the affine case (see Proposition
prop:3.1.2prop:3.1.2
7.2(i)), not every homogeneous

maximal ideal a in S(Y ) is of the form my for some y ∈ Y , as the
following example shows. Let us consider the homogeneous ideal S+ =
⊕d>0Sd. Then I(Y ) ⊂ S+. The ideal S+/I(Y ) is a homogeneous
maximal ideal in S(Y ) but it does not correspond to any point y ∈
Y . In fact by using the correspondence Y 7→ CY we conclude that
S+/I(Y ) is the only homogeneous maximal ideal in S(Y ) which does
not have the form my.

prop:3.3.1 Proposition 7.20. (i) There is a 1-1 correspondence between points y
in an algebraic set Y ⊂ CP n and homogeneous maximal ideals my in
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S(Y ).
(ii) dimS(Y ) = dimY + 1.

Proof. (i) This statement follows from Proposition
prop:3.1.2prop:3.1.2
7.2.(i) and our ob-

servation about my above.
(ii) Using the correspondence between an algebraic set Y in CP n and

its cone CY ⊂ C
n+1 (see Example

ex:2.3.2ex:2.3.2
6.9) we conclude that dimS(Y ) =

dimA(CY ) = dimCY . Clearly dimY = dim(CY ∩ {zi 6= 0}) for
some i by Proposition

prop:3.2.1prop:3.2.1
7.5.b. Hence dimY = dim[A(CY )/zi = 1] ≥

dimCY − 1. Now to prove that dimCY > dimY we use Exercise
exi:3.2.2exi:3.2.2
7.6.(ii) and Proposition

prop:3.2.1prop:3.2.1
7.5.b which says that dimY = dimY ∩ Ui.

Alternatively use the hint for exercise
exi:dimn1exi:dimn1
7.19. �

exi: 3.3.3 Exercise 7.21. i) Prove that a projective variety Y ⊂ CP n has di-
mension (n − 1), if and only if it is the zero set of a single irreducible
homogeneous polynomial f of a positive degree.
ii) Prove that if a projective variety Y ⊂ CP n is not a hypersurface Hi

then dim(Y ∩Hi) = dimY − 1.

8. Regular functions and morphisms
sec:morphism

Motivations. Continuing our translation between algebra and geom-
etry, in this section we define the notion of morphisms between alge-
braic varieties in terms of morphism between their coordinate rings,
or more general, the ring of regular functions on an algebraic variety
(Proposition

prop:4.3.1prop:4.3.1
8.11). The later one is defined locally, but it is related to

the concept of regular functions (coordinate functions) on affine vari-
eties, which is defined globally (Theorem

thm:4.2.4thm:4.2.4
8.7, Remark

rem:4.2.6rem:4.2.6
8.8). In contrast,

since any polynomial function on a projective variety is constant (see
e.g. Theorem

thm:4.2.7thm:4.2.7
8.9 (i), Exercise

exi:constantexi:constant
8.15), the concept of a regular function

that is defined only in an open set is a logical necessity in the cate-
gory of projective varieties. We also study topological and algebraical
properties of regular functions (Lemma

lem:4.1.3lem:4.1.3
8.3, Theorems

thm:4.2.4thm:4.2.4
8.7,

thm:4.2.7thm:4.2.7
8.9).

subs:reg
8.1. Regularity of a function at a point.

def:4.1 Definition 8.1. Let Y be a quasi-affine variety in C
n. A function

f : Y → C is regular at a point P ∈ Y , if there is an open neighborhood
U with P ∈ U ⊂ Y and polynomials g, h ∈ C[z1, · · · , zn] such that h is
nowhere zero on U , and f = g/h on U . We say that f is regular on Y
if it is regular at every point of Y .
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This definition includes the set of rational functions (g/h) as regu-
lar functions, since we want to include the notion of a (local) inverse
function for a polynomial function.

def:4.1.2 Definition 8.2. Let Y be a quasi-projective variety in CP n. A func-
tion f : Y → C is regular at a point P ∈ Y , if there is an open
neighborhood U with P ∈ U ⊂ Y and a homogeneous polynomials
g, h ∈ C[z1, · · · , zn] of the same degree, such that h is nowhere zero on
U and f = g/h on U . We say that f is regular on Y if it is regular at
every point of Y .

The condition of “the same degree” ensures that g/h is well-defined
as a function on U .

lem:4.1.3 Lemma 8.3. A regular function is continuous with respect to the Zariski
topology.

Proof. It suffices to prove that for each closed subset Z ⊂ C the pre-
image f−1(Z) is a closed set in Y . Any closed subset Z of C is a
finite set of points. Thus it suffices to prove that the pre-image of any
point z ∈ C is a closed subset of Y . Let us consider the intersection
f−1(z) ∩ U . For f = g/h this set consists of all y ∈ U such that
g(y) − z · h(y) = 0, so it is a closed subset of U . Hence f−1(z) is a
closed subset in Y . �

subs:localr

8.2. Local rings and rational functions.

def:4.2.1 Definition 8.4. Let Y be a variety (i.e. any affine, quasi-affine, pro-
jective or quasi-projective variety). We denote by O(Y ) the ring of all
regular functions on Y . For any point P ∈ Y we define the local ring
of P on Y , OP,Y (or simply OP ) to be the ring of germs of regular
functions on Y near P :

OP = lim
U→p

{(U, f), f is a regular function on U}.

exi:4.2.2 Exercise 8.5. Prove that OP is a local ring.

Hint. Show that the only maximal ideal in OP is the set of germs
of regular functions vanishing at P , because any other ideal contains
invertible elements f, 1/f for a somewhere non-vanishing f .

To any variety X we have associated a coordinate ring A(X). Now
we shall associate to X a field K(X) which is called the function field
of X as follows.

Any element of K(X) is an equivalence class of pairs 〈U, f〉 where
U is a nonempty open subset of Y and f is a regular function on U .
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Two pairs 〈U, f〉 and 〈V, g〉 are equivalent, if f = g on the intersection
U ∩ V . The elements of K(X) is called rational functions on Y .

rem:4.2.3 Remark 8.6. i) There exists a natural addition and multiplication on
K(X), so K(X) is a ring. For any element 〈U, f〉 ∈ K(X) with f 6= 0,
the element 〈U \ U ∩ Z(f), 1/f〉 is an inverse for 〈U, f〉. Hence K(X)
is a field.

ii) There exists natural maps O(X)
ip→ OP

jp→ K(X), whre ip is
the restriction and jp is the projection (i.e. jp associates (U, f) to the
equivalence class of (U, f) in K(X). Clearly jp is injective. It is also
not hard to see that ip is injective, since any polynomial that vanishes
on an open subset vanishes on the whole domain of its definition. So
we consider O(X) and OP as sub-rings of K(X).

thm:4.2.4 Theorem 8.7. Let Y ⊂ C
n be an affine variety with affine coordinate

ring A(Y ). Then
i) O(Y ) ∼= A(Y ).
ii) for each P the local field OP is isomorphic to the localization A(Y )mP

,
where mP is the maximal ideal of functions vanishing at P (see Propo-
sition

prop:3.1.2prop:3.1.2
7.2), moreover dimOP = dimY .

iii) K(Y ) is isomorphic to the field of fractions F (A(Y )) of A(Y ) and
hence the dimension of K(Y ) is equal to the dimension of A(Y ).

Proof. ii) Let us first prove the second statement. Let α be the natural
inclusion A(Y ) → O(Y ). This map i descends to a map

ᾱ : A(Y )mP
→ OP , (f, s) 7→ (f/s).

Then ᾱ is injective since α is injective. Clearly ᾱ is surjective by
definition of OP . So OP

∼= A(Y )mP
. Hence

dimOP = dimA(Y )m

lem:dimcomplem:dimcomp
7.15
= dimA(Y )

Prop.
prop:3.2.3prop:3.2.3
7.7

= dimY.

This proves the second assertion of Theorem
thm:4.2.4thm:4.2.4
8.7.

iii) Using Remark
rem:4.2.3rem:4.2.3
8.6 ii) we conclude that the field of fractions F (OP )

of OP is a subfield of K(Y ), so by the second assertion of Theorem
thm:4.2.4thm:4.2.4
8.7,

which is just proved, F (A(Y )) ⊂ K(Y ). But any rational function is in
some OP , so K(Y ) ⊂ ∪P∈Y F (OP ) = F (A(Y )). This proves the third
assertion of Theorem

thm:4.2.4thm:4.2.4
8.7.

i) Clearly

O(Y ) ⊂ ∩P∈Y OP
Theorem

thm:4.2.4thm:4.2.4
8.7.ii

= ∩mP
A(Y )mP

⊂ F (A(Y )),

where mP are maximal ideals. We shall show that

eq:4.2.5 (8.1) ∩mP
A(Y )mP

= A(Y ).
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It suffices to show that if (a, x) ∈ A(Y )m for all maximal ideal m, then
(a, x) = (ā, 1) for some ā ∈ A(Y ). Let

x ∈ ∩P∈Y (A(Y ) \ mP ).

Then x(P ) 6= 0 for all P ∈ Y . Hence x must be c + I(Y ) for some
constant c 6= 0. Hence (a, x) = (a/c, 1), what is required to prove.

�

rem:4.2.6 Remark 8.8. We cannot mimic the definition of a regular function of
an affine variety for the case of a quasi-affine variety, since a quasi-
affine variety cannot defined via vanishing ideal. The later one always
defines a closed subset.

Before stating a structure theorem for projective varieties let us in-
troduce a new notation. For a homogeneous prime ideal p in a graded
ring S we denote by S(p) the subring of elements of degree 0 in the
localization of S w.r.t. the multiplicative subset T consisting of the
homogeneous elements of S not in p. Here the degree of an element
(f/g) in T−1S is given by deg f−deg g. Clearly S(p) is a local ring with
maximal ideal (p · T−1S) ∩ S(p), since any y ∈ S(p) \ {p · T−1S) ∩ S(p)}
is invertible. In particular the localization S((0)) is a field, if S is a
domain.

thm:4.2.7 Theorem 8.9. Let Y be a projective variety. Then:
i) O(Y ) = C,
ii) OP = S(Y )(mP ), where mP ⊂ S(Y ) is ideal generated by homoge-
neous elements f vanishing at P ,
iii) K(Y ) ∼= S(Y )((0)).

Except statement (i), which is an analog of the Louiville theorem,
the other statements (ii) and (iii) of Theorem

thm:4.2.7thm:4.2.7
8.9 are similar to that

ones in Theorem
thm:4.2.4thm:4.2.4
8.7.

Proof of Theorem
thm:4.2.7thm:4.2.7
8.9. ii) As in the proof of Theorem

thm:4.2.4thm:4.2.4
8.7 we begin with

the second statement. This is a local statement, so we shall apply
Theorem

thm:4.2.4thm:4.2.4
8.7.ii to this situation. We cover CP n by open sets Ui = CP n\

Hi (see Proposition
prop:2.3.3prop:2.3.3
6.10) and let φ : Ui → C

n be the homeomorphism
defined in Proposition

prop:2.3.3prop:2.3.3
6.10. Now we define φ∗ : O(Cn) → O(U0) by

eq:4.2.7.1 (8.2) φ∗(f)(z) = f(φ(z)).

We shall show that this definition is correct, i.e. if locally f = g/h,

where g, h ∈ C[z1, · · · zn], then φ∗(f) = g̃/h̃ where f̃ , g̃ are homoge-
neous polynomials of the same degree in C[z0, · · · , zn]. Using (

eq:2.3.5eq:2.3.5
6.4) and



FUNDAMENTALS OF ALGERBRAIC GEOMETRY 33

substituting t′ in (
eq:2.3.5eq:2.3.5
6.4) by g and h resp. we have

g(φ(z))

h(φ(z))
=
z
−deg(g)
0 β(g)(z)

z
−deg(h)
0 β(h)(z)

,

where β(g) (resp. β(h)) is a homogeneous polynomial of degree deg(g)

(resp. deg(h)). Hence homogeneous polynomials g̃ = β(g)z
deg(h)
0 and

f̃ = z
deg(g)
0 β(f) satisfy the required conditions.

lem:4.2.8 Lemma 8.10. The map φ∗ : O(Cn) → O(Ui) is a ring isomorphism.

Proof. Clearly φ∗ is a ring homomorphism and φ is injective, since
f ∈ kerφ∗ iff f = 0. To see that φ is surjective, we observe that
if f = (g̃/h̃) ∈ O(U0), where g̃ and h̃ are homogeneous of the same
degree then

f(z) =
r(g̃)(φ(z))

r(h̃)(φ(z))
,

where r is defined in (
eq:2.3.4eq:2.3.4
6.3) and we replace t in (

eq:2.3.4eq:2.3.4
6.3) by g̃ (resp. h̃). So

f = φ∗(
r(g̃)

r(h̃)
).

�

Now let us continue the proof of Theorem
thm:4.2.7thm:4.2.7
8.9.ii. Let Yi = Y ∩ Ui.

We can consider Yi as an affine variety in Ui = C
n. Using Lemma

lem:4.2.8lem:4.2.8
8.10 and Theorem

thm:4.2.4thm:4.2.4
8.7.ii we get OP

∼= A(Yi)m′

P
where Yi ∋ P and m′P

is the maximal ideal of A(Yi) corresponding to P . Since zi 6∈ mP and
β−1(mP ) ⊂ m′P we can construct a map φ∗ : A(Yi)m′

p
→ S(Y )(mP ) as

follows

eq:4.2.8.1 (8.3) (g, h)
φ∗

7→ (z
deg(h)
i β(g), z

deg(g)
i β(h))

(cf. (
eq:4.2.7.1eq:4.2.7.1
8.2)). Clearly φ∗ is a ring homomorphism whose kernel is empty

because β−1(mP ) ⊂ m′P . It is easy to check that φ∗ is surjective, so φ∗

is an isomorphism which proves (ii).
iii) First we note that K(Y ) = K(Yi) since any pair (U, f) represent-

ing an element in K(Y ) is equivalent to an element (U ∩ Yi, f|(U∩Yi)).
By Theorem

thm:4.2.4thm:4.2.4
8.7.iii we get that K(Y ) = K(Yi) is the quotient field

K(A(Yi)) of A(Yi). Using the natural isomorphism φ∗ in (
eq:4.2.8.1eq:4.2.8.1
8.3) which

extends to an isomorphism between the quotient field K(A(Yi)) and
S(Y )((0)) we prove the statement (iii).

i) Let f ∈ O(Y ) be a global function. Then f is regular on Yi and
therefore, by Theorem

thm:4.2.4thm:4.2.4
8.7.i we have f ∈ A(Yi). Using the isomorphism

φ∗ : A(Yi) = S(Y )(zi) (see the proof of (ii) above, here we consider A(Yi)
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as a subring of A(Yi)m′

P
) we conclude that φ∗(f) has the form gi/x

Ni

i

where gi ∈ S(Y ) is a homogeneous polynomial of degree Ni. Recall
that S(Y )N denotes the subspace of S(Y ) with grading N . Choose a
number N ≥ ∑

Ni and note that S(Y )N · (φ∗(f)) ⊂ S(Y )N . Hence we
get S(Y )N ·φ∗(f)q ⊂ S(Y )N . In particular xN

0 ·φ∗(f)q ∈ S(Y )N ⊂ S(Y )
for all q.

Thus the subring S(Y )[φ∗(f)] ⊂ K(S(Y )) is contained in x−N
0 S(Y ).

Since S(Y ) is a noetherian ring, S(Y )[φ∗(f)] is finitely generated S(Y )-
module. By Noether normalization theorem (Theorem

thm:noetherthm:noether
7.10), φ∗(f) is

integral over S(Y ), or equivalently there are a1, · · · , am ∈ S(Y ) such
that

eq:4.2.9 (8.4) φ∗(f)m + a1φ
∗(f)m−1 + · · · + am = 0.

(φ∗(f) is a root of the characteristic polynomial).

Now we observe that deg φ∗(f) = 0, so (
eq:4.2.9eq:4.2.9
8.4) still valid if we replace ai

by their homogeneous component of degree 0, i.e. we can assume that
ai ∈ C. Thus φ∗(f) is algebraic over C, so φ∗(f) ∈ C, hence f ∈ C. �

Digression. Outline of the proof of Noether’s normalization theorem.
For the sake of convenience of the reader we shall reproduce another
proof of Theorem

thm:noetherthm:noether
7.10 from

AM1969
[AM1969].

Let x1, · · · , xk be a system of generators of S(Y )[f ]. Denote by Mf

the endomorphism of S(Y )[f ] defined by the multiplication with f .
Then

Mf (xi) =
∑

aijxij, ∀i

eq:4.2.10 (8.5) ⇐⇒
∑

j

(δijMf − aij)xj = 0, ∀i.

Multiplying the LHS of (
eq:4.2.10eq:4.2.10
8.5) with the adjoint matrix of (δijMf − aij),

we note that det(δijMf −aij) annihilates all xi, so det(δijMf −aij) = 0.
Decompose this polynomial and substituting f by φ∗(f) we conclude
that φ∗(f) is integral over S(Y ).

subs:morp
8.3. Morphisms between varieties. We have met and used the no-
tion of isomorphism between two particular varieties in Lemma

lem:4.2.8lem:4.2.8
8.10.

In general, a morphism φ : X → Y is a continuous map such that for
every open set V ⊂ Y we have φ∗(O(V )) ⊂ O(φ−1(V )), i.e. φ preserves
the structure sheaf. We denote by Mor(X,Y ) the set of all morphisms
from X to Y .
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prop:4.3.1 Proposition 8.11. Let X be a variety and let Y be an affine variety.
Then there is a natural bijective map of sets

α : Mor(X,Y ) → Hom(A(Y ),O(X)).

Proof. A morphism φ ∈ Mor(X,Y ) defines a homomorphism φ∗ :
O(Y ) → O(X). Since Y is affine, by Theorem

thm:4.2.4thm:4.2.4
8.7.i this natural trans-

formation defines a map α. We first show that map α is injective, i.e.
if φ1 and φ2 are two different morphisms, then φ∗1 and φ∗2 are different
homomorphisms.

Any map φ : X → Y ⊂ C
n can be written in the following form

eq:4.3.2 (8.6) φ(P ) = (ξ1(P ), · · · , ξn(P )) ∈ Y ⊂ C
n.

Clearly O(X) ∋ ξi = φ∗(z̄i) where z̄i the image of zi in A(Y ) =
C[z1, · · · , zn]/I(Y ).

From (
eq:4.3.2eq:4.3.2
8.6) we see immediately that α is injective.

Now we shall show that α is surjective. Let φ̄ be a homomorphism
from A(Y ) to O(X). Let ξi = φ̄(z̄i) ∈ O(X). We shall define a
continuous map φ : X → C

n by (
eq:4.3.2eq:4.3.2
8.6). To complete the proof it suffices

to show that φ(P ) ∈ Y and φ∗ = φ̄. First we shall show that for any
f ∈ I(Y ) we have f(φ(P )) = 0 which shall imply that φ(P ) ∈ Y . Since
φ̄ is a homomorphism of C-algebras we have

f(φ(P )) = f(ξ1(P ), · · · , ξn(P )) = f(φ̄(z̄1(P )), · · · , φ̄(z̄n(P )))

= φ̄(f(z̄1, · · · z̄n))(P ) = 0.

The second statement φ∗ = φ̄ follows by checking

φ∗(z̄i)(P )
def
= z̄i(φ(P )) = z̄i(ξ1(P ), · · · , ξn(P )) = φ̄(z̄i)(P ).

�

Now we shall say that a morphism (φ, φ∗) : X → Y is an isomor-
phism, if φ and φ∗ admit inverse. In the category of differentiable
manifolds with structure sheaf consisting of differentiable functions we
can replace the global condition of invertibility of φ∗ by the local invert-
ibility of the tangent map Dφ. Analogously in the category of (complex
algebraic) varieties we can replace the condition of global invertibility of
φ∗ by invertibility of the induced homomorphism φ∗P : Oφ(P ),Y → OP,X

for all P ∈ X.

ex:4.3.3 Example 8.12. Let Hd ⊂ CP n be a hyper-surface defined by a ho-
mogeneous polynomial P d of degree d. We shall show that CP n \ Hd

is isomorphic to an affine variety. First we shall find an embedding
φd : CP n → CPN such that φd(Hd) lies in some hyper-plane {zj = 0}
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in CPN . Then we shall show that φ∗d induces an isomorphism of lo-
cal rings Oφ(P ),φ(CP n) and OP,CP n for all P ∈ CP d. This shall imply
that φd(CP

n \ Hd) is isomorphic to an affine variety φd(CP
n \ Hd) ⊂

C
N = CPN \ {zj = 0} with the induced ring of regular functions. In

particular Oφ(P ),φ(CP n) = j∗OP,CP N , where j is the restriction map.
The map φd can be chosen as a Veronese map of degree d

φd : CP n → CPN

[z0, · · · zN ] 7→ [· · ·XI · · · ]
where zI ranges over all monomials of degree d in z0, · · · , zn. Clearly
φd is an embedding. Since P d can be written as a linear combination
of zI , this proves the first statement. To show that φ∗d induces a local
isomorphism for all P it suffices to do it for any P ∈ U0 ⊂ CP n.
In this case OP,CP n = C[z1, · · · , zn]mP

and it is easy to check that
φ∗d(Oφ(P ),CP N ) = OP,CP n , so φ∗d : Oφ(P ),φ(CP n) → OP,CP n is surjective.
The kernel of φ∗d at P consists of regular functions g/h ∈ OP,CP N such
that (g/h)(φ(UP )) = 0 for some neighborhood P ∈ UP ⊂ CP n, hence
g ∈ I(φ(UP )), so φ∗d is injective.

exi:4.3.4 Exercise 8.13. (i) Let X ⊂ C
n be an affine variety and f ∈ O(X).

Define the open set Xf ⊂ X by

Xf := X \ Z(f) = {x ∈ X| f(x) 6= 0}.
Prove that O(Xf ) = O(X)|Xf

[1/f ]. Using this show that (Xf ,O(Xf ))
is an affine variety.

(ii) Prove that on any variety Y there is a base for the topology
consisting of open affine subsets.

Hint. (i) Let X̃ := Z(I(X), f · zn+1 − 1) ⊂ C
n+1. Show that the

projection from C
n+1 → C

n maps X̃ bijectively onto Xf . Show that
the inverse of this projection pull zn+1 to f−1.

(ii) If Y is an affine variety or quasi-affine variety, then reduce (ii)
to (i). If Y is projective or quasi-projective, use the fact that Y can be
covered by quasi-affine varieties (see Proposition

prop:2.3.3prop:2.3.3
6.10 and consider the

intersection (Ui ∩ Y )).

exi:4.3.5 Exercise 8.14. Let f : X → Y be a morphism between affine vari-
eties. Prove that the image φ(X) is also an affine variety.

Hint. Extend φ to a morphism e ◦ φ : X → C
n where e : Y → C

n

is the canonical embedding. Show that I(e ◦ φ(X)) = ker(e ◦ φ)∗ :
C[z1, · · · , zn] → A(X).

exi:constant Exercise 8.15. Let X be a projective variety. Show that any regular
function f on X is constant.
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Hint. We extend f to a function, also denoted by f from X to
CP 1. The graph Γf : {(x, f(x)) ∈ X × CP 1} of f is a closed subset
in X × CP 1. Show that the image π1(Γf ) of the projection of Γf

to CP 1 is a closed subset and hence consists of finite point. Clearly
X = f−1(π1(Γf )). Since X is irreducible, the image π1(Γf ) consists of
one point, i.e. f is constant.

9. Smoothness and tangent spaces
sec:smoothsubs:tangent

9.1. Zariski tangent spaces. We shall start with the affine case.
Suppose that X ⊂ C

n is an affine variety. A tangent vector δx0 at
a point x0 ∈ X is a “rule” to differentiate regular functions in x0, i.e.
it is a C-linear map δ : O(X) → C satisfying the Leibniz rule

δx0(f · g) = f(x0)δx0(g) + g(x0)δx0(f),

for all f, g ∈ O(X). Such a map is called derivation of O(X) in x0.
It follows that δx0(f

n) = nfn−1(x0)δx0(f) and so, for any polynomial
F = F (y1, · · · , ym) we get

δx0(F (f1, · · · , fm)) =
m

∑

j=1

∂F

∂yj

(f1(x0), · · · , fm(x0))δ(fj).

This implies that a derivation at x0 is completely determined by its val-
ues on a generating set of the algebra O(X). As a consequence the set of
all derivations in x0 is a finite dimensional subspace of Hom(O(X),C).

def:5.1.1 Definition 9.1. The Zariski tangent space Tx0 of a variety X at a
point x0 is defined to be the set of all tangent vectors at x0: Tx0X :=
Derx0(O(X)).

Note that Tx0X is a finite dimensional linear subspace ofHom(O(X),C).

exi:5.1.2 Exercise 9.2. Let δ be a tangent vector in x. Prove that
(i) δ(c) = 0 for every constant c ∈ O(X).
(ii) If f ∈ O(X) is invertible, then δ(f−1) = − δf

f(x)2
.

Since O(X) = C⊕mx for all x ∈ X we see that any element δ ∈ TxX
is determined by its restriction to mx. The Leibniz formula shows
that the restriction to m2

x vanishes. Hence δ induces a linear map
δ̄ : mx/m

2
x → C.

lem:5.1.3 Lemma 9.3. Given an affine variety X and a point x ∈ X there is a
canonical isomorphism

TxX → Hom(mx/m
2
x,C),

given by δ 7→ δ̄ := δ|mx
.
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Proof. We have seen that δ 7→ δ̄ is injective. Let λ ∈ Hom(mx/m
2
x,C).

Let C be a complement of m2
x in mx, so λ : C → C is a linear map.

Now we extend λ to a linear map δ : O(X) = C ⊕ C ⊕ m2
x → C by

putting δ|C⊕m2
x

= 0. �

lem:5.1.4 Lemma 9.4. For all z ∈ C
n we have TzC

n = { ∂
∂zi |z

}, i = 1, n.

Proof. Let z = (a1, · · · , an). The maximal ideal in C[z1, · · · , zn] corre-
sponding to z is mz = (z1 − a1, · · · zn − an). We define the derivation
map

D : mz/(mz)
2 → C

n : f 7→ (
∂f

∂zi |z

, i = 1, n).

Clearly {D(zi−ai), i = 1, n} form a basis of C
n, hence D is an isomor-

phism . Now Lemma
lem:5.1.4lem:5.1.4
9.4 follows immediately from Lemma

lem:5.1.3lem:5.1.3
9.3. �

exi:5.1.5 Exercise 9.5. If Y ⊂ X are affine varieties in C
n and x ∈ Y then

dimTxY ≤ dimTxX.

Hint. The surjective map A(X) = O(X) → O(Y ) = A(Y ) induces
a surjective map mx,X/m

2
x,X → mx,Y /m

2
x,Y .

The space (mx/m
2
x) is called the cotangent space of X at x.

def:5.1.6 Definition 9.6. Let A be a noetherian local ring with maximal ideal
m and residue field k = A/m. We say that A is a regular local ring, if
dimk m/m2 = dimA.

9.2. Smoothness in algebraic geometry. To motivate the notion
of smoothness in algebraic geometry, we first remind it in the real
and complex analytic category. Let f1, . . . , fk ∈ C∞(U) be smooth
functions (or f1, . . . , fk ∈ O(U) holomorphic functions in the complex
case), U ⊂ R

n (or U ⊂ C
n) and k ∈ N. We assume b = (b1, . . . , bn) ∈ U

is a point such that f1(b) = · · · = fk(b) = 0 and

det
( ∂fi

∂xj

)

1≤i,j≤k
(b) 6= 0.detcondsmooth (9.1)

Then there exists an open U ′ ⊂ U , b ∈ U ′, such that the projection

pr : Z = {x ∈ U | f1(x) = · · · = fk(x) = 0} → R
n−k (or C

n−k)

(x1, . . . , xn) 7→ (xr+1, . . . , xn)analift (9.2)

is a diffeomorphism (or a biholomorphic map) between Z ∩U ′ and the
open neighborhood pr(Z ∩ U ′) of (br+1, . . . , bn) ∈ R

n−k (or C
n−k). In

other words, the implicit function theorem based on (
detcondsmoothdetcondsmooth
9.1) implies that

b is a smooth point of a manifold Z given by the zero locus of f1, . . . , fk

and (xr+1 − br+1, . . . , xn − bn) gives the local chart on Z around b.
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We now turn to an analogous construction in the category algebraic
varieties. To that aim, we consider the free algebra K[x1, . . . , xn] over
a field K, the ring of regular functions O(Z) := K[x1, . . . , xn]/I of
an algebraic variety Z given by an ideal I generated by polynomials
f1, . . . , fk and Q a maximal ideal K[x1, . . . , xn] resp. P the maximal
ideal in O(Z) of the form P = Q/I (I ⊂ Q), see Definition

def:4.1.2def:4.1.2
8.2 and

Theorem
thm:4.2.4thm:4.2.4
8.7. We denote K[x1, . . . , xn]Q the localization along Q and

O(Z)P the localization along P , we have

O(Z)P = K[x1, . . . , xn]Q/IK[x1, . . . , xn]Q(9.3)

because localization commutes with quotients. To be specific, for a
K-rational point b = (b1, . . . , bn) ∈ Z(K) ⊂ Kn we have Q = (x1 −
b1, . . . , xn − bn), P = (x̄1 − b1, . . . , x̄n − bn) and

O(Z)P = K[x1, . . . , xn](x1−b1,...,xn−bn)/〈f1, . . . , fk〉.(9.4)

We shall examine the concept of smoothness on the simplest motivat-
ing example of an affine algebraic curve (smoothness is a local notion
and so it suffices to restrict to the affine case.) We assume n = 2,
k = 1, I : f ∈ K[x, y] \K, Z : f(x, y) = 0, O(Z) = K[x, y]/〈f〉 with
Z(K) →֒ A

2
K . For b = (b1, b2) ∈ Z(K),

P = Ker(evb) = Q/〈f〉 = Ker(evb)/〈f〉(9.5)

for the evaluation homomorphisms ev and ev on O(Z) and K[x, y],
respectively. A working definition of smoothness for affine algebraic
curves is

eq:smooth2 (9.6) Z is smooth at P ⇐⇒ ∂f

∂x
(b) 6= 0 or

∂f

∂y
(b) 6= 0.

By applying an automorphism of A
2
K , we can and in what follows we

shall assume b = (0, 0) so that Q = (x, y), P = (x, y)/〈f〉. If Z is
smooth at P defined by b, we can assume (perhaps after permuting x
for y) ∂f

∂x
(0, 0) 6= 0, which is equivalent to the property that T(0,0)Z is

not horizontal. Perhaps after multiplying by a non-zero element of K,
the polynomial f is of the form

f(x, y) = x+ cy +
∑

i+j≥2

ci,jx
iyj, c, ci,j ∈ K.(9.7)

Polynomials can be inverted in the ring of formal power series and in
fact, there is an elementary division algorithm for formal power series:
for any g ∈ K[[x, y]] there exists a unique h ∈ K[[x, y]] such that
g − fh ∈ K[[y]]. This means that the composition

K[[y]] →֒ K[[x, y]] → K[[x, y]]/〈f〉(9.8)
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is an isomorphism of K-algebras. This statement is a formal power
series analogue of (

analiftanalift
9.2).

In the next Lemma we retain the notation of the previous paragraphs.

Lemma 9.7. (1) Assume ∂f

∂x
(0, 0) 6= 0. Then

AP = A(x,y) = K[x, y](x,y)/〈f〉(9.9)

is domain and its maximal ideal (x, y)A(x,y) is equal to ȳA(x,y).
We recall

K[x, y](x,y) = {g
h
| g, h ∈ K[x, y], h(0, 0) 6= 0} ⊂ K(x, y).(9.10)

(2) Assume AP is domain (in particular, a local ring). If its max-
imal ideal PAP = tAP is principal for some t ∈ AP , then Z is
smooth algebraic variety at P .

subs:nonsing
9.3. Nonsingular varieties. The smoothness definition in (

eq:smooth2eq:smooth2
9.6) is for-

malized in the general case as follows.

def:5.2.1 Definition 9.8. Let Y ⊂ C
n be an affine variety and let f1, · · · , fl ∈

C[z1, · · · , zn] be a set of generators for the ideal of Y . We say that Y is
nonsingular at a point P ∈ Y if the rank of the matrix [(∂fi/∂xj)]P at P
is n−r where r is the dimension of Y . We say that Y is nonsingular, if it
is nonsingular at every point. The following theorem explains that the
notion of nonsingularity does not depend on the choice of (f1, · · · , fn),
i.e. on the choice of embedding Y → C

n.

thm:5.2.2 Theorem 9.9. Let Y ⊂ C
n be an affine variety. Let P ∈ Y be a

point. Then Y is nonsingular at P , if and only if the local ring OP,Y

is a regular local ring.

Proof. Let I(Y ) ⊂ C[z1, · · · , zn] be the ideal of Y and let f1, · · · fl

be a set of generators of I(Y ). Denote by I(Y )P the image of I(Y )
in the local ring mP,Cn . Then the rank of the Jacobian matrix JP =
||(∂fi/∂xj)||P is the dimension of the space D(I(Y )P ) ⊂ C

n, where
D : mP,Cn → C

n is defined in Lemma
lem:5.1.4lem:5.1.4
9.4. Since D is an isomorphism

we have

eq:5.2.3.a (9.11) rank J = dimD(I(Y )P ) = dim((I(Y )P + m2
P,Cn)/m2

P,Cn).

Denote by j the surjection C
n[z1, · · · , zn] → O(Y ) = A(Y ) and by jP

the induced surjective map from mP,Cn → mP,Y (see also Exercise
exi:5.1.5exi:5.1.5
9.5).

The kernel of j is I(Y ) and the kernel of jP is I(Y )P . Thus

eq:5.2.3.b (9.12)
mP,Y

m2
P,Y

=
mP,Cn/(ker jP )

(mP,Cn/ ker jP )2
=

mP,Cn

I(Y )P + m2
P,Cn

.
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Now since dim(mP,Cn/m2
P,Cn) = n, taking into account (

eq:5.2.3.aeq:5.2.3.a
9.11) and (

eq:5.2.3.beq:5.2.3.b
9.12)

we get

eq:5.2.4 (9.13) dim(mP,Y /m
2
P,Y ) + rank J = n.

Let dimY = r. Then according to Theorem
thm:4.2.4thm:4.2.4
8.7(ii) OP is a local ring

of dimension r. By definition Op is regular if dim m/m2 = r. From
(
eq:5.2.4eq:5.2.4
9.13) we get that this relation is equivalent to the relation rank J =
n− r. �

exi:5.2.5 Exercise 9.10. Let X ⊂ C
n be an affine subvariety. Prove that

Tx0X = {δ ∈ Tx0C
n| δ(f) = 0 for all f ∈ I(X)} ⊂ Tx0C

n = C
n.

Hint Compare with Exercise
exi:5.1.5exi:5.1.5
9.5.

Theorem
thm:5.2.2thm:5.2.2
9.9 motivates us to give the following definition of (non)singularity

of a variety. Let Y be a variety (not necessary affine). Then a point
P ∈ Y is nonsingular if the local ring OP,Y is a regular local ring. Y
is nonsingular if it is nonsingular at every point. Y is singular, if it is
not nonsingular.

ex:5.2.6 Example 9.11. Let H := Z(f) ⊂ C
n be a hypersurface where f ∈

C[z1, · · · , zn] is an irreducible polynomial, hence I(H) = (f). Then
the tangent space in a point x0 ∈ H is given by (see Exercise

exi:5.2.5exi:5.2.5
9.10)

eq:5.2.6.1 (9.14) Tx0 := {a = (a1, · · · , an)|
∑

ai

∂f

∂xi

(x0) = 0}.

Let Y be a singular point of H. Then by definition the ring OP,H is not
regular, i.e. dim(mY,H/(mY,H)2) 6= dimOP,H . But OP,H = A(H)mP,H

and then using Theorem
thm:aldimthm:aldim
7.9 we get

dimOP,H = dimA(H) = n− 1.

Thus Y is singular, iff dimTx0H 6= n− 1. Using (
eq:5.2.6.1eq:5.2.6.1
9.14) we see that the

set Hsing of singular points of H is given by

Hsing = Z(f,
∂f

∂z1

, · · · , ∂f
∂zn

) ⊂ H.

prop:5.2.7 Proposition 9.12. Let X be an irreducible affine variety. Then the
set Xsing of singular points is a proper closed subset of X whose com-
plement is dense.

Proof. We can assume that X is an irreducible closed subvariety in
C

n of dimension d. Let f1, · · · , fl be a set of generators of I(X). By
Theorem

thm:5.2.2thm:5.2.2
9.9

Xsing = {x ∈ X| rk[∂fj

∂zi

(x)] < n− d}
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is a closed subset defined by vanishing of all (n− d) × (n− d) minors
of the Jacobian matrix J .

To show that Xsing is a proper subset of X we apply Exercise
exi:4.4.5exi:4.4.5
13.7

to get X birational to a hypersurface H ⊂ CP n. Since birational maps
preserve the dimension of variety and they map singular points/nonsingular
points to singular points/nonsingular points, applying Example

ex:5.2.6ex:5.2.6
9.11 we

get Proposition
prop:5.2.7prop:5.2.7
9.12. �

subs:projtangent
9.4. Projective tangent spaces. Consider now a projective variety
X ⊂ CP n. We may also associate to it a projective tangent space at
each point p ∈ X, denoted TpX which is a projective subspace of CP n.
One way to do this is to choose an affine open subset U ∼= C

n ⊂ CP n

containing p and define the projective tangent space to X to be the
closure in CP n of the tangent space at p of the affine variety X ∩ U ⊂
U = C

n.
There is another way to describe the projective tangent space to a

variety X ⊂ CP n at a point p ∈ X. Let X̃ ⊂ C
n+1 be the cone over X

and p̃ ∈ X̃ be a point lying over p. Then the projective tangent space
TpX is the subspace of CP n corresponding to the Zariski tangent space

Tp̃X̃ ⊂ Tp̃C
n+1 = C

n+1.

subs:conessing
9.5. Tangent cones and singular points. In definition of the Zariski
tangent space TxY at a point x of an affine variety Y ⊂ C

n we take
into account only the first order expansion mx/m

2
x of the local ring

Ox,Y , or equivalently the zero set of the first order of the image of
I(Y ) in the local ring Ox,Cn (Lemma

lem:5.1.3lem:5.1.3
9.3, Exercise

exi:5.2.5exi:5.2.5
9.10). If we take

into account higher order expansion of mx ⊂ Ox,Cn , we shall get a finer
invariant, namely the tangent cone TCpX at a point x of Y . There
are a geometric method and an algebraic method to define the tangent
cone TCxY at x ∈ Y (Definition

def:tangentconedef:tangentcone
9.13, Lemma

lem:tangentconelem:tangentcone
9.14).

A geometric method to define the tangent cone TCxY at x ∈ Y . By
affine transformation, we assume that x ∈ Y ⊂ C

n with x = (0, ..., 0).
We now look at all the lines that are limiting position of secants

Ỹ := {(a, t) ∈ C
n| a ∈ C

n and t ∈ C}.

Clearly Ỹ is an algebraic set. Furthermore, Ỹ has two irreducible
components Ỹ1 and Ỹ2. Denote by pr1 : Ỹ → C and by prn : Ỹ → C

n

the natural projections. Then

Ỹ2 = {(a, 0)|a ∈ C
n} and Ỹ1 = pr−1

1 (C \ 0),

where X denotes the Zariski closure of X.
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def:tangentcone Definition 9.13. The set TC0Y := prn(pr−1
1 (0) ∩ Ỹ1) is called the

tangent cone of Y at 0 ∈ C
n.

lem:tangentcone Lemma 9.14. The tangent cone TC0Y is the zero set of the leading
ideal L(m0,Y ). So it is the cone in the tangent space TxY whose ideal
is generated by the leading monomials of degree at least 2 in m0,Y .

Proof. Note that

I(Ỹ ) = {f̃ |f̃(a, t) = f(at) for f ∈ m0,Y }.
Expanding

f̃(at) =
l

∑

i=k

tif̃i(a),

it is not hard to see that Ỹ1 = Z(LM(f)| f ∈ L(m0,Y ). This proves the
first assertion. The second assertion follows from the first one, noting
that the leading monomials of degree 1 in m)0, Y defines the tangent
spce T0Y . �

10. Completion
sec:completionsubs:completion

10.1. What is the completion of a ring? Let R be an abelian group
and let R = m0 ⊃ m1 · · · be a sequence of subgroups (a descending

filtration). We define the completion R̂ of R w.r.t. the mi to be the
inverse limit of the factor groups R/mi which is by definition a subgroup
of the direct product

R̂ := lim
←
R/mi

:= {g = (g1, g2, · · · ) ∈
∏

i

R/mi|gj
∼= gi( mod mi) for all j > i}.

If R is a ring and all mi are ideals then each of R/mi is a ring. Hence

R̂ is also a ring.
If moreover mi = mi for some ideal m ⊂ R then

m̂i := {g = (g1, g2, · · · ) ∈ R̂| gj = 0 for all j ≤ i},
is called the m-adic filtration of R. The corresponding completion R̂
is denoted by R̂m. We write m̂ = m1.

exi:6.1.1 Exercise 10.1. If m is a maximal ideal, then R̂m is a local ring with
maximal ideal m̂.

Hint. Show that R̂/R̂m = R/m which is a field.
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ex:6.1.2 Example 10.2. If R = C[z1, ..., zn] and m = (z1, ..., zn), then the

completion with respect to m is the formal power series ring R̂m =
C[[z1, ..., zn]]. Indeed, from the map C[[z1, ..., zn]] → R/mi sending f

to f + mi we get a map C[[z1, ..., zn]] → R̂m sending

f 7→ (f + m, f + m2, · · · ) ∈ R̂m ⊂
∏

R/mi.

The inverse map is given as follows

eq:6.1.3 (10.1) R̂m ∋ (f1 +m, f2 +m2, · · · ) 7→ (f1 + (f2 − f1) + (f3 − f2) + · · · .
Here the condition fj

∼= fi( mod mi) for j > i implies that deg (fi+1 −
fi) ≥ i + 1. Thus the RHS of (6.1.3) is a well-defined formal power
series.

def:6.1.3 Definition 10.3. If the natural map R → R̂m is an isomorphism we
call R complete w.r.t. m. When m is a maximal ideal, we say that R
is a complete local ring.

subs:why
10.2. Why to use the completion of a ring? In the algebraic geom-
etry we don’t have a version of the implicit function theorem, since the
inverse of a polynomial map is not a polynomial map. But the inverse
can be represented by a formal power series which is a case of complete
rings. The analog of the implicit function theorem for complete rings
is the following Hensel’s Lemma.

thm:6.2.1 Theorem 10.4 (Hensel’s Theorem). Let R be a ring that is complete
w.r.t. the ideal m, and let f(x) ∈ R[x] be a polynomial. If a is an
approximate root of f in the sense that

f(a) ∼= 0( mod f ′(a)2m)

then there is a root b of f near a in the sense that

f(b) = 0 and b ∼= a( mod f ′(a)m).

If f ′(a) is a nonzero-divisor in R, then b is unique.

11. 27 lines on cubic surfaces
sec:ex

A cubic surface V ⊂ CP 3 is the zero set of a homogeneous cubic
polynomial

F ([T0 : T1 : T2 : T3]) =
∑

i0,··· ,i3

ai0,···i3T
i0
0 · · ·T i3

3 where
3

∑

j=0

ij = 3.

We also write V (F ) instead of V . In 1849 Cayley and Salmon proved
the following
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thm:27 Theorem 11.1. On each smooth cubic surface there is exactly 27 lines.

That event has been called the beginning of modern algebraic geom-
etry. We shall give a proof of an weaker version of this theorem, replac-
ing “each” by “almost every”, following

Dolgachev2013
[Dolgachev2013, Lecture 12, p.

105]. The argument of this proof is very typical in algebraic geometry.

Proof of Theorem
thm:27thm:27
11.1. Instead to consider an isolated cubic surface

and investigate lines on it we consider all smooth cubic surfaces and
lines on each of them. This requires a parametrization of cubic surfaces,
a parametrization of lines in the projective space CP 3. We shall single
out a “generic condition” for a cubic surface to contain exactly 27
lines. (With some more work, this generic condition can be shown to
be equivalent to the smoothness of the surface in consideration).
• Parametrization of cubic surfaces. Note that two homogeneous

cubic polynomials F and F ′ define the same zero set, if and and only
if F = λ · F ′ for some λ ∈ C

∗. Hence the set of cubic surfaces is
in a 1-1 correspondence with the set of coefficients of a homogeneous
polynomial F of degree 3 in 4 variables modulo the action of C

∗. This

set is exactly parametrized by projective space CP (3+3
3 )−1 = CP 19.

• Parametrization of lines in CP 3. Every line in CP 3 corresponds
to a plane in C

4, and this correspondence is 1-1. The set of all planes
in C

4 is called the Grassmannian Gr2(C
4). The Grassmanian Gr2(C

4)

is an algebraic subset of the projective space CP (4
2)−1 = CP 5 of all

2-vectors in C
4 modulo C

∗-action. Once we fix a basis (e1, e2, e3, e4) for
C

4 and a basis (f1, f2) of a plane E2 ⊂ C
4 we can express E2 via the

Plücker coordinates of Gr2(C
4), that is the (projective) coordinates of

f1 ∧ f2 in basis of {ei ∧ ej| i < j}.

lem:gr Lemma 11.2. The Grassmannian Gr2(C
4) is an irreducible projective

set of dimension 4.

Proof. We note that the algebraic group Gl(4,C) acts transitively on
Gr2(C

4) with stabilizer of codimension 4. The group GL(4,C) is an
irreducible algebraic set in the affine space gl(5,C) = C

25 via the em-
bedding e : GL(4,C) → SL(5,C), g 7→ T0 ⊕ g with T0 = det(g)−1. It
has dimension 16. It is not hard to see that the projection GL(4,C) →
Gr2(C

4) is a regular map whose fibers are of the same dimension 12 and
irreducible. By Proposition

prop:fiberprop:fiber
11.3 below the dimension of Gr2(C

4) = 4
and Gr2(4,C) is irreducible.

prop:fiber Proposition 11.3. (
Dolgachev2013
[Dolgachev2013, Lemma 12.7]) Let f : X → Y be

a surjective regular map of projective algebraic sets. Assume that Y is
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irreducible and all the fiber are irreducible and of the same dimension.
Then X is irreducible and dimX = dimY +dim f−1(y) for any y ∈ Y .

�

Continuation of the proof of Theorem
thm:27thm:27
11.1. Set

I := {(V, l) ∈ CP 19 ×Gr2(C
4)|l ⊂ V }.

lem:dimi Lemma 11.4. The set I is an irreducible algebraic set of dimension
19. The projection q : I → CP 19 is surjective.

Proof. We consider the projection p : I → Gr2(C
4). For each E ⊂

Gr2(C
4) the fiber p−1(E) consists of all hypersurface V (F ) that con-

tains E. Wlog we assume that E is given by the equation T1 = T2 = 0.
Thus the fiber p−1(E) consists of homogeneous cubic form F whose co-
efficients at monomials containing any variables T1, T2 vanishes. Hence
dim p−1(E) =

(

6
3

)

−
(

4
1

)

−1 = 15. Taking into account dimGr2(C
4) = 4,

we obtain the first assertion of Lemma
lem:dimilem:dimi
11.4.

Now let us prove the second assertion of Lemma
lem:dimilem:dimi
11.4. Suppose that

the image q(I) is a proper closed subset of CP 19. Then dim q(I) < 19
and hence dim q−1(y) ≥ 1. Then every cubic surface containing a line
contains infinitely many of them. The argument at the end of the proof
of Theorem

thm:27thm:27
11.1 given below shows that is not the case. In fact we show

that there are at most 27 lines at stated in the theorem to be proved.
This completes the proof of Lemma

lem:dimilem:dimi
11.4.

�

Completion of the proof of the weak version of Theorem
thm:27thm:27
11.1 It fol-

lows from Lemma
lem:dimilem:dimi
11.4 that every cubic surface V (F ) hat at least one

line. Let us pick such a line l ⊂ V (F ). Change coordinates if necessary,
we assume that l is defined by the equation T2 = T3 = 0. Then F is
written as

eq:F0 (11.1) F = T2(Q0(T0, T1, T2, T3) + T3Q2(T0, T1, T2, T2),

where Q0 and Q1 are quadratic polynomials.
To find more lines on V (F ) we look at the intersection of a plan

π ⊂ CP 3 with V (F ). Wlog, we assume that π contains the given l.
Such a plan π = π(λ, µ) = CP 2 ⊂ CP 3 is given by the equation

λT2 − µT3 = 0 for λ, µ ∈ C.

Choosing coordinates [t0 : t1 : t2] on π such that

T0 = t0, T1 = t1, T2 = µt2, T3 = λt2.



FUNDAMENTALS OF ALGERBRAIC GEOMETRY 47

Then, using (
eq:F0eq:F0
11.1), we rewrite the equation F = 0 as follows

eq:F1 (11.2) µt2Q0(t0, t1, µt2, λt2) + λt2Q1(t0, t1, µt2, λt2) = 0.

It follows that π ∩ V (F ) contains a line l with equation t2 = 0 and a
conic

C(λ, µ) := {µQ0(t0, t1, µt2, λt2) + λQ1(t0, t1, µt2, λt2) = 0}.

Let

Q0 =
∑

aijTiTj and Q1 =
∑

bijTiTj.

Then

C(λ, µ) = {(µa00+λb00)t
2
0+(µa11+λb11)t

2
1+(µ2(µa22+λb22)+λ

2(µa33+λb33))t
2
2

+(µa01 + λb01)t0t1 + (µ(µa02 + λb02) + λ(µa03 + λb03))t0t2

+(µ2a12 + λµb12 + µλa13 + λ2b13)t1t2 = 0}.
Not that π ∩ l has more lines iff Q(λ, µ) is reducible, that is equivalent
to the vanishing of the discriminant of Q(λ, µ). The later has degree 5
in λ, µ. Thus there exists an open set U ⊂ CP 19 such that if V ∈ U
then the discriminant of C(λ, µ) that depends on V has 5 distinct roots
(λi, µi). Each such a solution defines a plane πi which cut out V (F )
at line l and the union of two lines or a double line. Choosing the
genericity, we assume that the later does not occur. Then we have all
together 11 lines. Now we want to know if we count all line on V (F ).

Pick some πi, say i = 1. Repeating the procedure but for the new
lines l′ and l′′ from the reducible conic C(µ, λ), we get 4 other planes
through l′ and 4 other planes through l′′ which of them contain a new
pair of lines. Altogether we have 11 + 4 · 2 + 4 × 2 = 27 lines.

It remains to show that there is no more line on V (F ). Assume
that L ⊂ V (F ). Let π be a plan through L that contain L,L′, L′′ on
V (F ). This plane π intersects the lines l, l′, l′′ at some points p, p′, p′′

respectively. We can assume that U is generic, so all points p, p′, p′′ are
distint. Since neither L nor L′ can pass through two of these points, it
follows that one of these points lies in L. Hence L is coplanar with one
of l, l′, l′′. It implies that L has been accounted for. This completes the
proof of Theorem

thm:27thm:27
11.1. �

exi:gr24 Exercise 11.5. Prove that a 2-vector e ∈ Λ2(C4) is decomposable
(i.e. e corresponds to a 2-plane) iff e ∧ e = 0. Derive from here that
dimFr2(C

4) = 4. Give an alternative proof of Lemma
lem:grlem:gr
11.2.
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12. Chracterization of smoothness via local rings

Let C be an affine algebraic curve in A
2 over a field K of charac-

teristic zero given by zero locus of polynomial equation F (x, y) = 0,
F ∈ K[x, y]. Let P ∈ C be a point and mP ⊂ O(C) its maximal ideal
in the ring of regular functions O(C). An important local characteri-
zation of smoothness of P ∈ C is the following one:

Lemma 12.1. Denoting Frac(O(C)) the fraction field of O(C), let us
consider the localization of O(C) along the maximal ideal mP ⊂ O(C):

O(C)mP
= {f ∈ Frac(O(C)) | f =

a

b
for b /∈ mP}.(12.1)

Then P = (p1, p2) is a smooth (non-singular) point (i.e., either ∂F
∂x

(p1, p2) 6=
0 or ∂F

∂y
(p1, p2) 6= 0) if and only if O(C)mP

is a discrete valuation ring.

Proof: We note b /∈ mP is equivalent to b(P ) 6= 0, and apply a well
known assertion in commutative algebra that localization commutes
with quotients:

(

K[x, y]/〈F 〉
)

(x−p1,y−p2)
≃

(

K[x, y](x−p1,y−p2)

)

/〈F 〉.locquot (12.2)

By composing with an automorphism of A
2,

x→ x− p1, y → y − p2,(12.3)

we may assume P = (0, 0). Without lost of generality we may suppose
∂F
∂y

(0, 0) 6= 0, and setR =
(

K[x, y](x,y)

)

/〈F 〉. By (
locquotlocquot
12.2), R is a local ring

and hence has a unique maximal ideal. We claim that it is generated
by x̄, the residue class of x modulo 〈F 〉 (this implies that the ideal is
principal and as it follows from our proof, all other ideals are powers
of this maximal ideal, hence R is a discrete valuation ring.)

All we have to prove is y ∈ 〈x〉, i.e., y ∈ 〈x, F 〉K[x, y](x,y). We write
F (x, y) = yF0(x, y) + xF1(x, y) for some (not unique) F0, F1 ∈ K[x, y].
Since ∂F

∂y
(0, 0) 6= 0, we get

0 6= ∂F

∂y
(0, 0) = F0(0, 0) + (y

∂F0

∂y
)(0, 0) + (x

∂F1

∂y
)(0, 0) = F0(0, 0).

(12.4)

Consequently, F0(x, y) is invertible in the local ring O(C)m(0,0)
and

hence F (x, y) = yF0(x, y) + xF1(x, y) implies

〈x, F 〉K[x, y](x,y) = 〈x, y〉K[x, y](x,y).(12.5)

The proof is complete.
�
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In the case of singular point P ∈ C, a useful way in algebraic geom-
etry which allows to analyze the local structure of singularity is the
notion of local analytic neighborhood of P .

Let us fix the base field K = C and P ∈ C to be P = (0, 0). The
notion of analytic neighborhood of P is based on the ring of formal
power series C[[x, y]]. The following properties hold for C[[x, y]] (they
are true in any finite number of variables, not only x, y):

(1) C[x, y] is a C-subalgebra of C[[x, y]].
(2) Any formal power series with non-zero constant term admits

multiplicative inverse and has N -th root for all N ∈ N: g ∈
C[[x, y]] such that g00 6= 0, g(x, y) =

∑

i,j∈N0

gijx
iyj, then 1

g
and

g
1
N are in C[[x, y]].

(3) C[[x, y]] is a unique factorization domain (similarly to C[x, y] or
the ring of analytic functions).

(4) A C-linear homomorphism

ϕ : C[[x, y]] → C[[x′, y′]](12.6)

is an isomorphism if and only if

(dϕ)(0, 0) =

( ∂
∂x
ϕx′

∂
∂y
ϕx′

∂
∂x
ϕy′

∂
∂y
ϕy′

)

(12.7)

is invertible.

We shall demonstrate all basic considerations in the case of two affine
algebraic curves

C : F (x, y) = y2 − x2 − x3, C̃ : F̃ (x̃, ỹ) = ỹ2 − x̃2.(12.8)

We observe F̃ is reducible in C[x, y], while F is irreducible in C[x, y].
However, F is reducible in C[[x, y]]:

F (x, y) = (y − x
√
x+ 1)(y + x

√
x+ 1)(12.9)

with

√
x+ 1 = 1 +

∞
∑

n=1

(−1) . . . (1 − 2n)

2n
xn ∈ C[[x, y]].(12.10)

Moreover, we have an isomorphism of local rings

O(C)(0,0) → O(C̃)(0,0),(12.11)

(¯̃y, ¯̃x) 7→ (ȳ, x̄+
∞

∑

n=1

(−1) . . . (1 − 2n)

2n
x̄n+1)
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over C[[x, y]]. This means that the type of singular points of C, C̃ at
(0, 0) is the same - the node singularity of the elliptic curve C locally
analytically looks like the transversal intersection of two lines.

Definition 12.2. The two formal power series g, h ∈ C[[x, y]] are
formally equivalent if there exists an automorphism ϕ : C[[x, y]] →
C[[x, y]] such that g 7→ h = ϕ(g). We say that h ∈ C[[x, y]] with
h(0, 0) = 0 is singular if

g1,0 =
∂g

∂x
(0, 0) = 0 = g0,1 =

∂g

∂y
(0, 0).(12.12)

Exercise 12.3. Prove that each non-singular formal power series is
formally equivalent to x ∈ C[[x, y]].

Exercise 12.4. Prove that the two formal power series

C : F (x, y) = y4 − x4, C ′ : F ′(x, y) = (y2 − x2)(y2 − 2x2)(12.13)

are not formally equivalent in C[[x, y]].

One of the basic invariants of equivalence classes of formal power
series is the Milnor invariant, encoding the geometry/topology of fibers
in the deformation family g(x, y) = t, t ∈ C.

13. Birational geometry and resolution of singularities
sec:bires

Motivation. We have seen in Lecture
sec:exsec:ex
11 that to study a particular

object it is useful to to consider it as an element in a family. To study a
family, or more general, a class of objects, it is an important problem of
mathematics to classify objects up to an equivalence/isomorphism that
characterize most important properties of objects we are interested in.
In mathematics, birational geometry is a field of algebraic geometry
the goal of which is to determine when two algebraic varieties are iso-
morphic outside lower dimensional subsets. This amounts to studying
mappings that are given by rational functions rather than polynomials
the map may fail to be defined where the rational functions have poles.
The classification up to birational equivalence is very satisfactory in
view of Hironaka’s theorem, which states that over a field of character-
istic 0 (such as the complex numbers), every variety is birational to a
smooth projective variety. In other words we can resolute a singularity
with help of a dominant rational map. Other consequence of Hiron-
aka’s theorem is the reduction of birational classification of algebraic
varieties to the subset of smooth projective varieties. We shall consider
important examples of resolution of singularity: a blow-up of a point
and of a submanifold which can be extended to category of symplectic
geometry.
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subs:rational
13.1. Rational maps. The notion of a rational map is an extension of
the notion of a rational function. A rational map is a morphism which
is only defined on some open subset of a variety.

def:4.4.1 Definition 13.1. Let X,Y be varieties. A rational map φ : X → Y
is an equivalence class of pairs 〈U, φU〉 where U is a nonempty open
subset of X, φU is a morphism of U to Y , and 〈U, φU〉 is said to be
equivalent to 〈V, φV 〉 if φU and φV agree on U ∩ V .

The rational map φ is dominant, if for some pair 〈U, φU〉 the image
of φU is dense in Y .

ex:4.4.1.a. Example 13.2. Let Y = {(z1, z2) ∈ C
2| z1z2 = 1}. Define a map

φ : Y → C by setting : φ(z1, z2) = z1. Then φ is a dominant rational
map.

exi:domi Exercise 13.3. Let X be an irreducible affine variety and 〈U,ΦU〉 a
rational dominant map such that the image of φU is dense in Y . Show
that the image of ΦV : V → Y is dense, if 〈U,ΦU〉 is equivalent to
〈V,ΦV 〉.

Hint. Use that fact that U ∩ V is dense in X and hence Y =

f(U ∩ V U∪V
).

A birational map φ : X → Y is a rational map which admits an
inverse, i.e. there is a rational map ψ : Y → X such that ψ ◦ φ = IdX

and φ◦ψ = IdY . If there is a birational map from X to Y , we say that
X and Y are birational equivalent, or simply birational.

The equivalence notion of rational maps is very strong, since any
open set is dense in Zariski topology.

lem:4.4.2 Lemma 13.4. Let X and Y be varieties and let φ and ψ be two mor-
phisms from X to Y such that there is a nonempty open subset U ⊂ X
with φ|U = ψ|U . Then φ = ψ.

Proof. Morphisms φ and ψ can be composed further with any morphism
χ from Y to another variety Z leaving U unchanged. Therefore we can
assume that Z = CP n = Y . We consider the map

(φ× ψ) : X → CP n × CP n.

Using the Serge embedding (Exercise
exi:2.3.9exi:2.3.9
6.15) we can provide CP n×CP n

with a structure of a projective variety. Denote by △ the diagonal in
CP n ×CP n. Then △ is a closed subset of CP n ×CP n. By assumption
we have (φ × ψ)(U) ⊂ △. But any open set U is dense, hence (φ ×
ψ)(X) ⊂ △. �
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Theorem
thm:4.4.3thm:4.4.3
13.5 is an extension of Proposition

prop:4.3.1prop:4.3.1
8.11. If X,Y are affine,

then Mor(X,Y ) = Hom(A(Y ), A(X)) ⊃ Hom(K(Y ), K(X)).

Denote by Mord(X,Y ) the subset of dominant rational maps from
X to Y .

thm:4.4.3 Theorem 13.5. For any variety X and Y there is a bijection B be-
tween sets

Mord(X,Y ) ∼= Hom(K(Y ), K(X)),

where K(X), K(Y ) are regarded as C-algebra.

Proof. Let φ ∈Mord(X,Y ) be a dominant rational map represented by
〈U, φU〉. Let f ∈ K(Y ) be a rational function, represented by 〈V, f〉,
where V is an open set in Y and f is a regular function on V . We
define B by

B(φ)〈V, f〉 := 〈φ−1(V ), φ∗(f)〉.
Clearly B(φ) is a homomorphism from K(Y ) to K(X).

Now we shall construct an inverse B−1. Let θ : K(Y ) → K(X) be a
homomorphism of C-algebras. We shall reduce the construction B−1θ
in Mord(X,Y ) to the case that Y is an affine variety and then use
Proposition

prop:4.3.1prop:4.3.1
8.11 where such case has been treated.

To define an element φ in Mord(X,Y ) it suffices to define a dominant
rational map φ from X to an open set UY of Y . By Exercise

exi:4.3.4exi:4.3.4
8.13 (ii)

Y can be covered by affine varieties, so we shall choose UY being one
of them. We have A(UY ) ⊂ K(Y ) so we shall use the restriction of
θ to A(UY ) to construct B−1(θ) ∈ Mord(XY ) and prove that it is a
dominant rational map.

Let y1, · · · , yk be generators of A(UY ). Then θ(yi) are rational func-
tions on X. Let UX be an open set in X where all θ(yi) are regular
functions on UX . This implies that θ defines a homomorphism from
A(UY ) to O(UX) whose kernel is empty since θ is a homomorphism of
the quotient field. Since UY is an affine variety, Proposition

prop:4.3.1prop:4.3.1
8.11 yields

that θ gives rise to an element B̃(θ) ∈ Mor(UX , UY ). Since θ is injec-
tive on A(UY ) the image B̃(UX) cannot be contained in an algebraic
set in UY , hence B̃(θ) is a dominant rational map from X to Y . The
proof of Proposition

prop:4.3.1prop:4.3.1
8.11 yields that B̃ is inverse of B restricted to

A(UY ), and hence B̃ = B−1. �

cor:4.4.4 Corollary 13.6. Two varieties X and Y are birationally equivalent,
if and only if K(X) is isomorphic to K(Y ) as C-algebras.

Proof. Suppose that X and Y are birational equivalent, i.e. there are
rational map φ : X ⊃ U → Y and ψ : Y ⊃ V → X which are inverse to
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each other. We shall find two open dense sets U1 ⊂ X and V1 ⊂ Y such
that U1 isomorphic to U1. Then ψ ◦φ is represented by 〈φ−1(V ), ψ ◦φ〉.
By assumption the composition φ◦ψ is the identity on ψ−1(U). Now let
U1 = φ−1(ψ−1(U)) and V1 = ψ−1(φ−1((V )). It is easy to see that U1 and
V1 isomorphic via φ and ψ. Hence K(X) = K(U1) = K(V1) = K(Y ).

The second statement follows from Theorem
thm:4.4.3thm:4.4.3
13.5 directly. �

exi:4.4.5 Exercise 13.7. Prove that the quadratic surface Q : xy = zw in CP 3

is birational to CP 2 but not isomorphic to CP 2.

Hint. Show that Q is isomorphic to the Serge embedding of CP 1 ×
CP 1, so it is birational equivalent to CP 2.

rem:4.4.6 Remark 13.8. We should mention here a well known fact that every
irreducible variety X is birational to a hypersurface in CP n (see e.g.
Hartshore1997
[?, Proposition 4.9, p. 27]). There are two ways to see this. The first
one relies on the statement that if X is a projective variety in CP n,
a general projection πp : X → CP n−1 gives a birational isomorphism
from X to its image X̄. Iterating this projection we arrive in the end
at a birational isomorphism of X to a hypersurface (see the proof of
the geometric Noether theorem

thm:noetherprojthm:noetherproj
7.13, or

Harris1992
[Harris1992, §7.15, §11.23] for

more details).
Alternatively we can simply use the primitive element theorem which

implies that if x1, · · · , xk is a transcendence base for the function field
of K(X) X, then K(X) is generated over k(x1, · · · , xk) by a single
element xk+1 satisfying an irreducible polynomial relation

F (xk+1) = ad(x1, · · ·xk) · xd
k+1 + · · · + a0(x1, · · · , xk)

with coefficients ai ∈ K(x1, · · · , xk). Clearing denominators we may
take F to be an irreducible polynomial in (k + 1) variables. So by
Corollary

cor:4.4.4cor:4.4.4
13.6 X is birational to the hypersurface in C

n+1 given by
this polynomial. See

Hartshorne1997
[Hartshorne1997, §4.9] for more details.

subs:blow
13.2. Blow up of a point. In this subsection we study a particular
example of a dominant rational map - a blow up of a point of C

n at the
origin 0, which is the main tool in the resolution of singularities of an
algebraic variety. Let xi, i = 1, n be coordinates on C

n. The blow-up
of C

n at 0, denoted by X, is an algebraic set X ⊂ C
n × CP n−1 that is

defined by the following equation

xiyj = xjyi for all i, j = 1, n

where yi are homogeneous coordinates of CP n−1.
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Now we consider the following commutative diagram

X //

ϕ

&&L

L

L

L

L

L

L

L

L

L

L

L

C
n × CP n−1

��

C
n

where ϕ is obtained by restricting the projection C
n ×CP n−1 → C

n to
X.
• For P 6= 0 ∈ C

n we have #(ϕ−1(P )) = 1 . To see this we assume
that x1(P ) 6= 0. Let P̃ ∈ ϕ−1(P ). Then yj(P̃ ) = y1(P̃ ) · (xj/x1), which
defines p̃ uniquely.
• It is easy to see that ϕ−1(0) = CP n−1.
• We claim that X is irreducible. We consider the projection q :

X → CP n−1. The preimage q−1([t1 : · · · tn]) is a linear subspace in C
n

defined by
xitj = xjti for all i, j = 1, n.

By Proposition
prop:fiberprop:fiber
11.3 X is irreducible.

def:blow Definition 13.9. Assume that Y is a closed subvariety of C
n passing

through 0. We define the blowing-up of Y at the point 0 to be the
closure Ỹ of ϕ−1(Y \ {0}).

ex:blow Example 13.10. Let Y be the plane cubic curve y2 = x2(x+ 1). Let
t, u be coordinates of CP 1. Then

X = {xu = ty} ⊂ C
2 × CP 1.

The set E := ϕ−1(0) = CP 1 is called the exceptional curve. The
equation of Ỹ in coordinates with t 6= 0 (and hence t = 1) is

y2 = x2(x+ 1),

y = xu.

Substituting we get x2u2−x2(x+1) = 0. Thus we have two irreducible
components. The one consists of E = {x = 0 = y, u ∈ C}. The second
one is Ỹ = {u2 = x+ 1, y = xu}. Note that Ỹ meets E at u = ±1.

We also blow-up a variety at a subvariety in the same way, see
Harris1992
[Harris1992, Example 7.18, p. 82].
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