
GENERALIZED n-LAPLACIAN: QUASILINEAR NONHOMOGENOUS
PROBLEM WITH THE CRITICAL GROWTH

ROBERT ČERNÝ

Abstract. Applying the generalized Moser-Trudinger inequality, the Mountain Pass Theorem

and the Ekeland variational principle we study the existence of non-trivial weak solutions to the
problem

u ∈W 1LΦ(Rn) and − div
(

Φ′(|∇u|)
∇u
|∇u|

)
+ V (x)Φ′(|u|)

u

|u|
= f(x, u) + µh(x) in Rn ,

where Φ is a Young function such that the space W 1LΦ(Rn) is embedded into exponential or
multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth,

V (x) is a continuous potential, h ∈ (LΦ(Rn))∗ is a nontrivial continuous function and µ > 0 is

a small parameter.

1. Introduction

It is an often studied problem to find solutions to the Laplace equation

(1.1) u ∈W 1,2
0 (Ω) and −∆u = f(x, u) in Ω ⊂ R2 .

For n ≥ 3 and f satisfying limt→∞
f(x,t)
tq = 0 uniformly on Ω with q < n+2

n−2 , there are many
results using the compactness of the embedding of the space W 1,2

0 (Ω) into Lr(Ω) with r ∈ [1, 2n
n−2 )

(see a review article by Lions [21] and the references given there). Problem (1.1) under condition
limt→∞

f(x,t)

t
n+2
n−2

= 0 becomes much more difficult thanks to the fact that the embedding of W 1,2
0 (Ω)

into L
2n
n−2 (Ω) is no longer compact. This difficulty has been overcame by Brezis and Nirenberg [6].

Their method uses the Mountain Pass Theorem by Ambrosetti and Rabinowitz [3].
When n = 2, we do not only have the Sobolev embedding into Lr(Ω) for any r ∈ [0,∞) but there

is also the Trudinger embedding [30] into the Orlicz space expL
n
n−1 (Ω). In particular, there is so

called Moser-Trudinger inequality by Moser [23]

sup
||u||

W
1,n
0 (Ω)

≤1

∫
Ω

exp(K|u|
n
n−1 ) ≤ C(n,Ln(Ω)) if and only if K ≤ nωn−1

n−1 .

Therefore, in the literature, there is often used the variational approach by Brezis and Nirenberg [6]
together with the Moser-Trudinger inequality to study the n-Laplace equation

(1.2) u ∈W 1,n
0 (Ω) and −∆nu = f(x, u) in Ω ,

where ∆nu := div(|∇u|n−2∇u) and f(x, t) ≈ exp(b|t|
n
n−1 ) for some b > 0. See for example

Adimurthi [1], de Figueiredo, Miyagaki, Ruf [18] and do Ó [26].
In recent paper [11], above techniques are modified for a differential equation corresponding to

the embedding of the Orlicz-Sobolev space W0L
n logα L(Ω), n ≥ 2, α < n − 1, into the Orlicz

space expL
n

n−1−α (Ω) (this embedding is due to Fusco, Lions, Sbordone [19] and Edmunds, Gurka,
Opic [14]). The result is the existence of a non-trivial weak solution to the equation

(1.3) u ∈W0L
Φ(Ω) and − div

(
Φ′(|∇u|) ∇u

|∇u|

)
= f(x, u) in Ω,
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with Φ being a Young function that behaves like tn logα(t), α < n − 1, for large t and with the
nonlinearity f having so called critical growth (corresponding to the choice of the Young function Φ).

The results from paper [11] were further generalized in papers [9] and [8] in several ways (general-
ized n-Laplace equation corresponding to the embedding into multiple exponential spaces, singular
nonlinearity and the case of WLΦ(Rn)) motivated by some recent results concerning the n-Laplace
equation, see for example [2] and [24].

In this paper, similarly as in papers [29] and [25], for a version of (1.3) we employ the Eke-
land variational principle to show that besides the Mountain Pass-type weak solution there is also
a distinct minimum-type weak solution. When showing that the two solutions are distinct we use
a new estimate concerning the Concentration-Compactness alternative for generalized Trudinger
inequalities.

On embedding into exponential and multiple exponential spaces. If ` ∈ N, n ≥ 2 and
α < n− 1, we set

(1.4)

γ =
n

n− 1− α
> 0 , B = 1− α

n− 1
=

n

(n− 1)γ
> 0

and K`,n,α =

{
B

1
B nω

γ
n
n−1 for ` = 1

B
1
B ω

γ
n
n−1 for ` ≥ 2 .

The space W0L
n logα L(Ω) of the Sobolev type, modeled on the Zygmund space Ln logα L(Ω), is

continuously embedded into the Orlicz space with the Young function that behaves like exp(tγ) for
large t (see [19] and [14]). Moreover it is shown in [14] (see also [15]) that in the limiting case α = n−1
we have the embedding into a double exponential space, i.e. the space W0L

n logn−1 L logα logL(Ω),
α < n − 1, is continuously embedded into the Orlicz space with the Young function that behaves
like exp(exp(tγ)) for large t. Further in the limiting case α = n − 1 we have the embedding into
triple exponential space and so on. The borderline case is always α = n − 1 and for α > n − 1 we
have embedding into L∞(Ω). It is well-known that the Zygmund space Ln logα L(Ω) coincides with
the Orlicz space LΦ(Ω), where the Young function Φ satisfies

lim
t→∞

Φ(t)
tn logα(t)

= 1 ,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)
tn logn−1(t) logα(log(t))

= 1 ,

and so on. For other results concerning these spaces we refer the reader to [14], [15] and [16].
The following notation enables us to work with the multiple exponential spaces comfortably. For

k ∈ N, let us write

log[k](t) = log(log[k−1](t)), where log[1](t) = log(t)

and

exp[k](t) = exp(exp[k−1](t)), where exp[1](t) = exp(t) .

Let ` ∈ N, n ≥ 2 and α < n− 1. Then we have above mentioned embedding results for any Young
function Φ satisfying

(1.5) lim
t→∞

Φ(t)

tn
(∏`−1

j=1 logn−1
[j] (t)

)
logα[`](t)

= 1

(for ` = 1 we read (1.5) as limt→∞
Φ(t)

tn logα[1](t)
= 1). As Ω is bounded, all Young functions satisfying

(1.5) give the same Orlicz-Sobolev space.
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Assumptions on Φ, V and f . In this paper, we are interested in C1-Young functions Φ : [0,∞) 7→
[0,∞) satisfying (1.5) and in addition we suppose that there is C > 0 such that

(1.6)
1
C
tn ≤ Φ(t) ≤ Ctn for t ∈

[
0,

1
C

)
.

Let us also give two conditions that are often used when discussing the critical case concerning the
generalized Moser-Trudinger inequality (Theorem 3.1 bellow)

(1.7) Φ(t) ≥ tn
(`−1∏
j=1

logn−1
[j] (t)

)
logα[`](t)

(
1 + log−β[`] (t)

)
for t ∈ [tΦ,∞)

for some β ∈ (0,min{1, 1
γ }) and tΦ ≥ 1,

(1.8) Φ(t) ≤ tn
(`−1∏
j=1

logn−1
[j] (t)

)
logα[`](t)

(
1− log−β[`] (t)

)
for t ∈ [tΦ,∞)

for some β ∈ (0,min{1, B}) and tΦ ≥ 1 . Notice that assumptions (1.5) and (1.6) together with the
fact that Φ is a C1-Young function imply the existence of cΦ > 0 such that

(1.9) cΦ Φ′(t) t ≤ Φ(t) , t > 0 .

We are dealing with the differential equation
(1.10)

u ∈WLΦ(Rn) and − div
(

Φ′(|∇u|) ∇u
|∇u|

)
+ V (x)Φ′(|u|) u

|u|
= f(x, u) + µh(x) in Rn .

Here µ > 0 is a small parameter, h ∈ (LΦ(Rn))∗ is continuous, the potential V : Rn 7→ R satisfies

(1.11) V is continuous and V (x) ≥ V0 > 0 for all x ∈ Rn ,

(1.12) V (x)→∞ as |x| → ∞ .

Next, let

exp[`](t) =
∞∑
j=0

ajt
j

be the Taylor expansion of the the function exp[`]. We set

S`,n,α(t) =
∑

0≤j<n
γ

ajt
j .

The function f : Rn × R 7→ R is supposed to satisfy the following conditions.
There are M > 0, tM > 0, A ∈ (0,min(cΦ, 1

n )), C̃b > 0, Cb > 0 and b > 0 satisfying

(1.13)
f is uniformly continuous on Rn × [−t0, t0] for every t0 > 0 ,

f(x, 0) = 0 and tf(x, t) > 0 for all x ∈ Rn and t 6= 0 ,

(1.14) 0 < F (x, t) :=
∫ t

0

f(x, s) ds ≤M |t|1− 1
M |f(x, t)| provided |t| > tM and x ∈ Rn ,

(1.15) 0 < F (x, t) ≤ Af(x, t) t provided t 6= 0 and x ∈ Rn ,

(1.16) |f(x, t)| ≤ C̃b|t|n−1 + Cb

(
exp[`](b|t|γ)− S`,n,α(b|t|γ)

)
for every t ∈ R and x ∈ Rn ,

(1.17) lim sup
t→0

F (x, t)
CSΦ(|t|)

< 1 uniformly on Rn ,

where CS ≥ V0 is the constant from the Sobolev-type inequality

(1.18) CS

∫
Rn

Φ(|u|) ≤
∫

Rn
Φ(|∇u|) + V (x)Φ(|u|) , u ∈WLΦ(Rn) ,
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and finally

(1.19) lim inf
t→∞

tf(x, t)
exp[`](b|t|γ)

> 0 uniformly on Rn .

Variational formulation. Let us define the space

X(Rn) =
{
u ∈WLΦ(Rn) :

∫
Rn
V (x)Φ(|u|) dx <∞

}
endowed with the norm

||u||X(Rn) = ||∇u||LΦ(Rn) + ||u||LΦ(Rn,V (x)dx) .

Hence X(Rn) is a Banach space satisfying

X(Rn) ⊂WLΦ(Rn) , X(Rn) ⊂ Lr(Rn) , r ∈ [n,∞) and X(Rn) ⊂ LΦ(Rn) ,

where the first embedding is obviously continuous and the last two embeddings are compact by Propo-
sition 2.9 bellow. Moreover C∞0 (Rn)-functions are dense in X(Rn) by [8, Proposition 2.9].

We define

(1.20) Jµ(u) =
∫

Rn
Φ
(
|∇u|

)
+ V (x)Φ(|u|)− F (x, u)− µh(x)u dx , u ∈ X(Rn) .

By Proposition 5.1 bellow, this is a C1-functional on X(Rn) and its Fréchet derivative is
(1.21)

〈J ′µ(u), v〉 =
∫

Rn
Φ′
(
|∇u|

) ∇u
|∇u|

· ∇v + V (x)Φ′
(
|u|
) u
|u|
v − f(x, u)v − µh(x)v dx , u, v ∈ X(Rn) ,

where the symbol 〈J ′µ(u), v〉 denotes the value of the linear functional J ′µ(u) of v.
We say that u ∈ X(Rn) is a weak solution to problem (1.10) if

(1.22) 〈J ′µ(u), v〉 = 0 for every v ∈ X(Rn) .

Now, we can state our main result.

Theorem 1.1. Let ` ∈ N, n ≥ 2 and α < n−1. Suppose that the Young function Φ : [0,∞) 7→ [0,∞)
satisfies (1.5), (1.6) and (1.8) with β ∈ (0, 1

γ − B). Let V : Rn 7→ R satisfy (1.11) and (1.12) and
let f : Rn × R 7→ R be a function satisfying (1.13), (1.14), (1.15), (1.16), (1.17) and (1.19). Let
h ∈ (LΦ(Rn))∗ be a nontrivial continuous function. Then then there is µ0 > 0 such that problem
(1.10) has at least two non-trivial weak solutions in X(Rn) for every µ ∈ (0, µ0).

The paper is organized as follows. After Preliminaries we recall the generalized Moser-Trudinger
inequality and its version for unbounded domains. In the fourth section, we give an estimate related
to the Concentration-Compactness Alternative. This estimate becomes an important tool in the
eighth section. The fifth section is devoted to the proof that Jµ is a C1-functional. In the sixth
section, we show that the functional Jµ satisfies the assumptions of the Mountain Pass Theorem.
The properties of Palais-Smale sequences are given in the seventh section. Finally, in the eighth we
apply the Mountain Pass Theorem and the Ekeland variational principle to obtain two convergent
Palais-Smale sequences. Then we show that the limit functions are distinct.

2. Preliminaries

Throughout the paper ωn−1 denotes the surface of the unit sphere. The n-dimensional Lebesgue
measure is denoted by Ln. By χA we mean the characteristic function of A ⊂ Rn. By B(x0, R) we
denote an open Euclidean ball in Rn centered at x0 with the radius R > 0. If x0 = 0 we simply
write B(R).

For two functions g, h : [0,∞) 7→ [0,∞) we write g . h, if there is C > 0 such that g(t) ≤ Ch(t)
for every t ∈ [0,∞). If u is a measurable function on A, then by u = 0 (or u 6= 0) we mean that u
is equal (or not equal) to the zero function a.e. on A.

By C we denote a generic positive constant which may depend on `, n, α and Φ. This constant
may vary from expression to expression as usual.

ByM(A) we denote the set of all Radon measures on a compact set A. We write that νk
∗
⇀ ν in

M(A) if
∫
A
ψ dνk →

∫
A
ψ dν for every ψ ∈ C(A).
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Properties of exp[`]. For given ` ∈ N, n ∈ N, α < n− 1 and p ≥ 1, one can easily prove that there
is C ≥ 1 such that

(2.1)
(

exp[`](t)− S`,n,α(t)
)p
≤ C

(
exp[`](pt)− S`,n,α(pt)

)
for all t ≥ 0 .

Young functions and Orlicz spaces. A function Φ : [0,∞)→ [0,∞) is a Young function if Φ is
increasing, convex, Φ(0) = 0 and limt→∞

Φ(t)
t =∞.

Denote by LΦ(A, dν) the Orlicz space corresponding to a Young function Φ on a set A with
a measure ν. If ν = Ln we simply write LΦ(A). The space LΦ(A, dν) is equipped with the Luxemburg
norm

(2.2) ||u||LΦ(A,dν) = inf
{
λ > 0 :

∫
A

Φ
( |u(x)|

λ

)
dν(x) ≤ 1

}
.

Given a differentiable Young function Φ we can define the generalized inverse function to φ(y) =
Φ′(y) by

ψ(s) = inf{y : φ(y) > s} for s > 0

and further we define the associated Young function Ψ by

Ψ(t) =
∫ t

0

ψ(s) ds for t ≥ 0 .

The dual space to LΦ(A, dν) can be identified as the Orlicz space LΨ(A, dν). We further have the
generalized Hölder’s inequality

(2.3)
∫
A

|u(y)v(y)| dν(y) ≤ 2||u||LΦ(A,dν)||v||LΨ(A,dν) .

∆2-condition. We say that a function Φ satisfies the ∆2-condition, if there is C∆ > 1 such that

Φ(2t) ≤ C∆Φ(t) whenever t ≥ 0 .

It is not difficult to check the ∆2-condition for our Young functions satisfying (1.5) and (1.6).
Therefore one easily proves

(2.4)
∫

Ω

Φ
( |u|
||u||LΦ(A,dν)

)
dν(x) = 1 whenever ||u||LΦ(A,dν) > 0

and

(2.5) ||uk||LΦ(A,dν)
k→∞→ 0 ⇐⇒

∫
A

Φ(|uk|) dν(x) k→∞→ 0 .

We also need the following lemma.

Lemma 2.1. If Φ is a C1-Young function satisfying the ∆2-condition, then also Φ′ satisfies the
∆2-condition. Further, we have

Φ(t2)− Φ(t1) ≤ C
(

Φ′(t2)t2 − Φ′(t1)t1
)

whenever 0 ≤ t1 ≤ t2 .

Proof. Let us prove the first assertion. Set P = C2
∆. If the function Φ′ does not satisfy the ∆2-

condition, then we can find T > 0 such that

PΦ′(T ) ≤ Φ′(2T ) .

Hence using the convexity of Φ, Φ(0) = 0 and the ∆2-condition for Φ we obtain

C2
∆Φ(T ) ≥ Φ(4T ) > Φ(4T )− Φ(2T ) ≥ 2T min

τ∈[2T,4T ]
Φ′(τ) = 2TΦ′(2T ) ≥ 2PTΦ′(T )

= 2PT max
τ∈[0,T ]

Φ′(τ) ≥ 2P (Φ(T )− Φ(0)) = 2PΦ(T ) = 2C2
∆Φ(T )

and we have a contradiction. Thus, the first assertion follows.
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Let us prove the second assertion. First, let t ≥ 0 and s ∈ (1, 2]. Using the convexity of Φ,
∆2-condition for Φ′ and the Mean Value Theorem we obtain

(2.6)
Φ(st)− Φ(t) ≤ Φ′(st)(s− 1)t ≤ Φ′(2t)(s− 1)t ≤ CΦ′(t)(s− 1)t = C

(
Φ′(t)st− Φ′(t)t

)
≤ C

(
Φ′(st)st− Φ′(t)t

)
.

This gives the assertion in the case t2 ≤ 2t1. If t2 > 2t1, then we find k ∈ N and τ1 < τ2 < · · · < τk
so that τ1 = t1, τk = t2 and τi+1 ≤ 2τi for each i = 1, . . . , k − 1. Next we apply (2.6) to each pair
(τi, τi+1), i = 1, . . . , k − 1 and we sum the estimates up. �

We often use the following estimate from [9, Lemma 2.2] together with generalized Hölder’s
inequality.

Lemma 2.2. If a Young function Φ satisfies (1.5) and (1.6), then Ψ(Φ′) . Φ.

Further, we need the Brezis-Lieb lemma from [5, Theorem 2 and Examples(b)].

Lemma 2.3. Let {fk} be a sequence of ν-measurable functions on Ω ⊂ Rn such that fk → f a.e.
in Ω. Let Φ be a Young function. Suppose that f ∈ LΦ(Ω, dν) and ||fk||LΦ(Ω,dν) ≤ C. Then∫

Ω

∣∣∣Φ(|fk|)− Φ(|fk − f |)− Φ(|f |)
∣∣∣ dν k→∞→ 0 .

Next, we need to be able to estimate the norm by the modular and vice versa. We use the
following lemma from [9, Lemma 2.4] (the original statement in [9] and [11] concerns ν = Ln only,
but the proof is also valid for a general measure ν).

Lemma 2.4. Let Φ be a Young function satisfying (1.5) and (1.6). Then for every ε > 0 there is
δ > 0 such that

||u||n+ε
LΦ(Ω,dν)

≤
∫

Ω

Φ(|u|) dν ≤ ||u||n−ε
LΦ(Ω,dν)

provided ||u||LΦ(Ω,dν) < δ .

Orlicz-Sobolev spaces. Let A be an nonempty open set in Rn and let Φ be a Young function
satisfying (1.5). In this subsection we consider Orlicz spaces only with the Lebesgue measure. We
define the Orlicz-Sobolev space WLΦ(A) as the set

WLΦ(A) := {u : u, |∇u| ∈ LΦ(A)}

equipped with the norm
‖u‖WLΦ(A) := ‖u‖LΦ(A) + ‖∇u‖LΦ(A) ,

where ∇u is the gradient of u and we use its Euclidean norm in Rn.
We put W0L

Φ(A) for the closure of C∞0 (A) in WLΦ(A).

Non-increasing rearrangement. The non-increasing rearrangement u∗ of a measurable function
u on Ω is

u∗(t) = inf
{
s > 0 : Ln({x ∈ Ω : |u(x)| > s}) ≤ t

}
, t > 0 .

We also define the non-increasing radially symmetric rearrangement u# by

u#(x) = u∗
(ωn−1

n
|x|n

)
for x ∈ B(R) , Ln(B(R)) = Ln(Ω) .

For an introduction to these rearrangements see e.g. [28]. We need the following result concerning u#

(see [28, Theorem 1.C]).

Theorem 2.5. Let Φ be a Young function and let u be a Lipschitz continuous function decaying at
infinity (Ln({x ∈ Rn : |u(x)| > t}) <∞ for all t > 0). Then∫

Rn
Φ(|∇u(x)|) dx ≥

∫
Rn

Φ(|∇u#(x)|) dx .



GENERALIZED n-LAPLACIAN 7

Tools from the Measure Theory. We make use of the following result from [8, Lemma 2.7].

Lemma 2.6. Let Ω ⊂ Rn be a bounded set, θ ∈ [0, 1) and let {uk} be a sequence of functions from
L1(Ω) converging to u ∈ L1(Ω) a.e. in Ω. Let f : Ω × R 7→ R be a continuous function bounded
on Ω× [−t0, t0] for every t0 > 0. Suppose that f(x, uk)|uk|θ and f(x, u)|u|θ belong to L1(Ω) and∫

Ω

|f(x, uk)uk| ≤ C .

Then f(x, uk)|uk|θ → f(x, u)|u|θ in L1(Ω).

Next, we need a suitable estimate of a radially symmetric function u ∈ LΦ(Rn) on large spheres
given by [8, Lemma 2.10].

Lemma 2.7. Let Φ be a Young function satisfying (1.5) and (1.6). Let u ∈ LΦ(Rn) satisfy
||u||LΦ(Rn) ≤ P , for some P > 0. Suppose that u is non-negative, radially symmetric and non-
increasing with respect to |x|. Then there are Rs > 0 and Cs > 0 independent of u such that

u(x) ≤ CsP
1
|x|

for |x| > Rs .

We also need the Generalized Lebesgue Dominated Convergence Theorem (see [27, Exercise
5.4.13]).

Proposition 2.8. Let {uk}, {vk} be sequences of measurable functions on Ω ⊂ Rn such that |uk| ≤
vk for all k ∈ N. Let u and v be measurable functions on Ω such that uk → u a.e. in Ω and vk → v
a.e. in Ω. Then

lim
k→∞

∫
Ω

vk =
∫

Ω

v =⇒ lim
k→∞

∫
Ω

uk =
∫

Ω

u .

Finally, we recall [8, Proposition 2.11].

Proposition 2.9. Suppose that the Young function Φ satisfies (1.5) and (1.6). Let V : Rn 7→ R
satisfy (1.11) and (1.12). Let {uk} ⊂ X(Rn) be a bounded sequence. Then, passing to a subsequence
we can guarantee that there is u ∈ X(Rn) such that

uk ⇀ u in WLΦ(Rn)

uk → u in LΦ(Rn)

uk → u in Lr(Rn) for every r ∈ [n,∞)

uk → u a.e. in Rn .

Tools from the Calculus of Variations. Our key instrument is the following version of the
Mountain Pass Theorem by Ambrosetti and Rabinowitz [3].

Theorem 2.10. Let X be a real Banach space and J ∈ C1(X,R). Suppose that there exist a neigh-
borhood U of 0 in X and ξ ∈ R satisfying the following conditions:
(i) J(0) < ξ,
(ii) J(u) ≥ ξ on the boundary of U ,
(iii) there is w /∈ U such that J(w) < ξ.
Set

c = inf
γ∈Γ

max
u∈γ

J(u) ≥ ξ ,

where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = w}. Then there is a sequence {uk} ⊂ X such that

(2.7) J(uk)→ c and J ′(uk)→ 0 in X∗ .

The sequence satisfying (2.7) is called the Palais-Smale sequence and the constant c is a Palais-
Smale level. Notice that that this version slightly differs from often used version of the Mountain Pass
Theorem which requires the Palais-Smale condition (the Palais-Smale sequence has a subsequence
convergent in the norm) and asserts that there is a critical point x0 ∈ X satisfying J(x0) = c. We
use this version of the Mountain Pass Theorem, because we need a bit less from the Palais-Smale
sequence than the convergence in the norm. Our approach is taken from [6]. See [6, page 459] for
the discussion concerning the proof of Theorem 2.10.
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The second weak solution to (1.10) is obtained by the following version of the Ekeland variational
principle [17].

Theorem 2.11. Let Y be a complete metric space and let Λ : Y 7→ R be a C1-functional which is
bounded from bellow. Then for every δ > 0 there is uδ ∈ Y such that

Λ(uδ) ≤ inf
u∈Y

Λ(u) + δ and ||Λ′(uδ)||C(Y,R) ≤ δ .

3. On generalized Moser-Trudinger inequality for unbounded domains

First, let us recall the generalized Moser-Trudinger inequality for embedding into exponential and
multiple exponential spaces in the case of a bounded domain Ω ⊂ Rn.

Theorem 3.1. Let K ≥ 0, ` ∈ N, n ≥ 2 and α < n− 1. Let Φ be a Young function satisfying (1.5).
(i) If u ∈W0L

Φ(Ω), then ∫
Ω

exp[`]

(
K|u(x)|γ

)
dx <∞ .

(ii) If K < K`,n,α and u ∈W0L
Φ(Ω) with ||∇u||LΦ(Ω) ≤ 1, then∫

Ω

exp[`]

(
K|u(x)|γ

)
dx ≤ C(`, n, α,Φ,Ln(Ω),K) .

(iii) If K > K`,n,α, then

sup
u∈W0LΦ(Ω),||∇u||LΦ(Ω)≤1

∫
Ω

exp[`]

(
K|u(x)|γ

)
dx =∞ .

(iv) If K = K`,n,α and Φ satisfies (1.7) and u ∈W0L
Φ(Ω) with ||∇u||LΦ(Ω) ≤ 1, then∫

Ω

exp[`]

(
K|u(x)|γ

)
dx ≤ C(`, n, α,Φ,Ln(Ω)) .

(v) If K = K`,n,α and Φ satisfies (1.6) and (1.8), then

sup
u∈W0LΦ(Ω),||∇u||LΦ(Ω)≤1

∫
Ω

exp[`]

(
K|u(x)|γ

)
dx =∞ .

The first assertion follows from [14, Remarks 3.11(iv)]. In the case k ≥ 2, all four remaining
assertions of Theorem 3.1 can be found in [12, Theorem 1.1, Theorem 1.2, Theorem 4.2 and Theorem
4.1]. In case k = 1, assertions (ii), (iii), (iv) follow from [20, Theorem 1.1, Theorem 1.2 and Theorem
4.2] while assertion (v) is given in [7, Example 5.1].

Remarks 3.2. (i) Theorem 3.1(iv) and (v) tells us that when K = K`,n,α, we generally do not
know whether the supremum is finite. It depends on the choice of the Young function Φ (compare
with the fact that all Young functions satisfying (1.5) give the same Orlicz-Sobolev space).

(ii) There is a large gap between conditions (1.7) and (1.8). In paper [13] it was possible to
remove this gap in the case ` = 1 and α = 0 showing that the borderline Young function behaves
like tn log−1(t).

(iii) From the proofs of [20, Theorem 1.1], [20, Theorem 4.2], [12, Theorem 1.1] and [12, Theorem
4.2] one can easily see that for any fixed C̃ ≥ 0, we have versions of Theorem 3.1(ii) and (iv) with∫

Ω

exp[`](K(C̃ + |u|)γ |) ≤ C(C̃, `, n, α,Ln(Ω),K) .

Moreover, from these proofs we also see that the assumption ||∇u||LΦ(Ω) ≤ 1 in Theorem 3.1(ii)
and (iv) can be replaced by

||∇u||LΦ(Ω̃) ≤ 1 , where Ω̃ = {x ∈ Ω : |∇u| > G} ,

with G > 0 being fixed arbitrarily large number.

A version of Theorem 3.1 for unbounded domains is given in [8].
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Theorem 3.3. Let ` ∈ N, n ≥ 2, α < n− 1 and let Ω ⊂ Rn be a domain. Suppose that the Young
function Φ : [0,∞) 7→ [0,∞) satisfies (1.5) and (1.6). Let u ∈W0L

Φ(Ω).
(i) If K ≥ 0 then ∫

Ω

exp[`](K|u|γ)− S`,n,α(K|u|γ) <∞ .

(ii) If 0 ≤ K < K`,n,α, ||∇u||LΦ(Ω) ≤ 1 and ||u||LΦ(Ω) ≤ P for some P ≥ 0, then∫
Ω

exp[`](K|u|γ)− S`,n,α(K|u|γ) ≤ C(`, n, α,Φ, P,K) .

(iii) If K > K`,n,α, then there is a sequence {uk} ⊂ W0L
Φ(Ω) such that ||∇uk||LΦ(Ω) ≤ 1,

||uk||LΦ(Ω) → 0 and ∫
Ω

exp[`](K|uk|γ)− S`,n,α(K|uk|γ) k→∞→ ∞ .

(iv) If K = K`,n,α, Φ satisfies (1.7), ||∇u||LΦ(Ω) ≤ 1 and ||u||LΦ(Ω) ≤ P for some P ≥ 0, then∫
Ω

exp[`](K|u|γ)− S`,n,α(K|u|γ) ≤ C(`, n, α,Φ, P ) .

(v) If K = K`,n,α and Φ satisfies (1.8), then there is a sequence {uk} ⊂ W0L
Φ(Ω) such that

||∇uk||LΦ(Ω) ≤ 1, ||uk||LΦ(Ω) → 0 and∫
Ω

exp[`](K|uk|γ)− S`,n,α(K|uk|γ) k→∞→ ∞ .

4. An estimate concerning the Concentration-Compactness Principle for
generalized Moser-Trudinger inequality

Let Ω ⊂ Rn be a bounded domain. The Concentration-Compactness Alternative (for the orig-
inal version concerning W 1,n

0 (Ω) see [22], for the Orlicz-Sobolev case see [10] and [7]) states that
each bounded sequence in W0L

Φ(Ω) can be decomposed into subsequences which either concentrate
around a point x0 ∈ Ω̄ or Theorem 3.1(ii) holds for such a subsequence with the constant K slightly
larger than K`,n,α. The following proposition gives us the estimate of the number K in the second
case under the additional assumption that there is u ∈W0L

Φ(Ω) such that ∇uk → ∇u a.e. in Ω.

Proposition 4.1. Let ` ∈ N, n ≥ 2, α < n − 1 and let Ω ⊂ Rn be a bounded domain. Let Φ be
a Young function satisfying (1.5) and (1.6). Let {uk} ⊂W0L

Φ(Ω) be a sequence satisfying

there is finite lim
k→∞

∫
Rn

Φ(|∇uk|) and ∇uk → ∇u a.e. in Ω

for some u ∈W0L
Φ(Ω). Then for every

p < P :=
( 1

limk→∞
∫

Rn Φ(|∇uk|)−
∫

Ω
Φ(|∇u|)

) γ
n

(where we define P =∞ if the denominator is zero) we have∫
Ω

exp[`](K`,n,αp|uk|γ) ≤ C where C is independent of k .

Let us note that an estimate corresponding to the one from Proposition 4.1 is also obtained in [22]
(after some transformation, it was obtained that it can be supposed that ∇uk → ∇u a.e. in Ω). This
estimate is not contained in [10] and [7]. Since the gradients of Palais-Smale sequences converge a.e.
after passing to a subsequence (see Lemma 7.3 bellow), we do not mind the additional assumption
concerning the a.e. convergence of the gradients in Proposition 4.1.

Before we prove Proposition 4.1 we need to do some preliminary work.
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Lemma 4.2. Let δ > 0, 0 < C1 < C2 and let Ω̃ ⊂ Rn be a bounded domain. Then there is
G = G(C1, C2, δ) > 0 with the following property:
If v ∈ LΦ(Ω̃) satisfies C1 < ||v||LΦ(Ω̃) < C2 and |v| ≥ G on Ω̃, then

||v||n
LΦ(Ω̃)

≤ (1 + δ)3

∫
Ω̃

Φ(|v|) .

Proof. Let us write λ = ||v||LΦ(Ω̃) to simplify our notation. If G is large enough, from (1.5) and (2.4)
we obtain

1 =
∫

Ω

Φ
( |v|
λ

)
≤ (1 + δ)

∫
Ω

( |v|
λ

)n(`−1∏
j=1

logn−1
[j]

( |v|
λ

))
logα[`]

( |v|
λ

)
.

Multiplying both sides by λn and using (1.5) again (for G large enough) we arrive to

λn ≤ (1 + δ)
∫

Ω

|v|n
(`−1∏
j=1

logn−1
[j]

( |v|
λ

))
logα[`]

( |v|
λ

)

≤ (1 + δ)2

∫
Ω

|v|n
(`−1∏
j=1

logn−1
[j] (|v|)

)
logα[`](|v|) ≤ (1 + δ)3

∫
Ω

Φ(|v|) .

Thus, we are done. �

Proof of Proposition 4.1. Fix p < P . Let us find δ ∈ (0, 1) such that

(4.1) (1 + δ)γ+ 4γ
n p < (1− δ)P .

Next, let us define the set M = {x ∈ Ω : δ|uk − u| ≥ |u|}. Then we can write

|uk|γ ≤ (|uk − u|+ |u|)γ ≤ (1 + δ)γ |uk − u|γχM +
(

1 +
1
δ

)γ
|u|γχΩ\M .

Therefore we have∫
Ω

exp[`](K`,n,αp|uk|γ) ≤
∫

Ω

exp[`](K`,n,αp (1 + δ)γ |uk − u|γ) +
∫

Ω

exp[`]

(
K`,n,αp

(
1 +

1
δ

)γ
|u|γ

)
= Ik + J .

By Theorem 3.1(i) we have J ≤ C. In the rest of the proof, our aim is to obtain an uniform estimate
of Ik. The assumptions of the proposition enable us to use the Brezis-Lieb lemma 2.3 and we obtain

(4.2)
∫

Ω

|Φ(|∇(uk − u)|)− Φ(|∇uk|) + Φ(|∇u|)| k→∞→ 0 .

Now, we distinguish two cases. First, suppose that limk→∞
∫

Ω
Φ(|∇uk|) =

∫
Ω

Φ(|∇u|). In this case,
using (2.5) and (4.2) we arrive to

||∇(uk − u)||LΦ(Ω) → 0 .

Now the uniform estimate of Ik easily follows. Indeed, for k large enough so that

p (1 + δ)γ ||∇(uk − u)||γ
LΦ(Ω)

< 1− δ

we can apply Theorem 3.1(ii) to obtain the uniform estimate of Ik, while for k small (finite number
of indexes) we use Theorem 3.1(i) to show that the integral Ik is finite. Thus, all the integrals can
be estimated by the same constant.

In the second case we have
∫

Ω
Φ(|∇u|) < limk→∞

∫
Ω

Φ(|∇uk|) (notice that by Fatou’s lemma
there is no third case). Since the boundedness of modulars implies the boundedness of norms, we
see that there is C2 > 0 such that

(4.3) ||∇(uk − u)||LΦ(Ω) ≤ ||∇uk||LΦ(Ω) + ||∇u||LΦ(Ω) ≤ C2 for every k ∈ N .

We find the number C1 ∈ (0, C2) such that

(4.4) p (1 + δ)γCγ1 ≤ 1− δ .
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For these C1, C2 and δ, there is G > 0 so that the assertion of Lemma 4.2 is satisfied. Therefore we
define for each k ∈ N

λG,k = ||∇(uk − u)||LΦ({x∈Ω:|∇(uk−u)|≥G})

and we decompose our indexes k ∈ N into two sets

Λ1 = {k ∈ N : λG,k ≤ C1} and Λ2 = {k ∈ N : λG,k > C1} .

Let us find the uniform bound of Ik for k ∈ Λ1. We set K = (1 − δ)K`,n,α. Hence by (4.4) for all
k ∈ Λ1 we have

K`,n,αp (1 + δ)γλγG,k ≤ K < K`,n,α

and thus we can use the version of Theorem 3.1(ii) given by Remark 3.2(iii) to obtain an uniform
estimate of Ik for all k ∈ Λ1.

Now, we would like to deal with the set Λ2. By (4.2) for k ∈ Λ2 large enough (in view of
Theorem 3.1(i) it is enough to care about large k only) we have

(4.5)
∫

Ω

Φ(|∇(uk − u)|) ≤ (1 + δ)
(

lim
k→∞

∫
Ω

Φ(|∇uk|)−
∫

Ω

Φ(|∇u|)
)
.

Finally, using (4.1), (4.5) and Lemma 4.2 we arrive to

p(1 + δ)γλγG,k ≤ p(1 + δ)γ+ 3γ
n

(∫
|∇(uk−u)|≥G}

Φ(|∇(uk − u)|)
) γ
n

≤ p(1 + δ)γ+ 3γ
n

(∫
Ω

Φ(|∇(uk − u)|)
) γ
n

≤ p(1 + δ)γ+ 4γ
n

(
lim
k→∞

∫
Ω

Φ(|∇uk|)−
∫

Ω

Φ(|∇u|)
) γ
n

= p(1 + δ)γ+ 4γ
n

1
P
≤ 1− δ .

Therefore we can use the version of Theorem 3.1(ii) given by Remark 3.2(iii) also for k ∈ Λ2 large
enough to conclude the proof. �

If Ω is not bounded, then there is no Concentration-Compactness Alternative (there can also
occur ”Concentration up to shifts”). However, there is still a version of Proposition 4.1.

Proposition 4.3. Let ` ∈ N, n ≥ 2, α < n−1 and L > 0. Let Φ be a Young function satisfying (1.5)
and (1.6). Let {uk} ⊂WLΦ(Rn) be a sequence satisfying

there is finite lim
k→∞

∫
Rn

Φ(|∇uk|) , ||uk||LΦ(Rn) ≤ L and ∇uk → ∇u a.e. in Rn

for some u ∈WLΦ(Rn). Then for every

p < P :=
( 1

limk→∞
∫

Rn Φ(|∇uk|)−
∫

Ω
Φ(|∇u|)

) γ
n

(where we define P =∞ if the denominator is zero) we have∫
Rn

exp[`](K`,n,αp|uk|γ)− S`,n,α(K`,n,αp|uk|γ) ≤ C where C is independent of k .

Sketch of proof. The same way as in the proof of Proposition 4.1 we define δ > 0 by (4.1) and then
we obtain the estimate∫

Rn
exp[`](K`,n,αp|uk|γ)− S`,n,α(K`,n,αp|uk|γ)

≤
∫

Rn
exp[`](K`,n,αp (1 + δ)γ |uk − u|γ)− S`,n,α(K`,n,αp (1 + δ)γ |uk − u|γ)

+
∫

Rn
exp[`]

(
K`,n,αp

(
1 +

1
δ

)γ
|u|γ

)
− S`,n,α

(
K`,n,αp

(
1 +

1
δ

)γ
|u|γ

)
= Ik + J .
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The integral J is finite by Theorem 3.3(i). It remains to deal with Ik, k ∈ N. In view of Theorem 2.5
and the density of the C∞0 (Rn)-functions in WLΦ(Rn), we can apply the Schwarz symmetrization
to the functions vk = uk−u, k ∈ N, without disturbing the estimates of the modulars following from
the Brezis-Lieb lemma. Hence we can suppose that vk, k ∈ N, are radially symmetric, non-negative
and non-increasing with respect to |x|.

Next we apply some ideas from the proof of Theorem 3.3(ii) ([8, Proof of Theorem 1.3(ii)]) using
Lemma 2.7. We find the radius R > Rs (Rs comes from Lemma 2.7) so large that∫

Rn\B(R)

exp[`](K`,n,αp (1 + δ)γ |w|γ)− S`,n,α(K`,n,αp (1 + δ)γ |w|γ) <∞ ,

where w(x) := C
|x| ≥ vk, k ∈ N (for more details see [8, Proof of Theorem 1.3(ii)]).

On B(R) we write vk = (vk − Vk) + Vk, where the constant Vk is the value of vk on S(R) (which
is estimated by C

R ). We deal with the functions vk − Vk ∈ W0L
Φ(B(R)) the same way as in the

proof of Proposition 4.1, while Vk estimated by the same number are harmless additive constants
(see Remarks 3.2(iii)). �

5. Functional Jµ is C1

Proposition 5.1. For the functional Jµ defined by (1.20) we have Jµ ∈ C1(X(Rn),R) and its
Fréchet derivative is (1.21).

Sketch of proof. We use the approach by [4, Proof of Theorem A.V]. In particular, we show that the
functional Jµ has the Gateaux derivative everywhere in X(Rn) and then we show that u 7→ J ′µ(u)
is continuous. First, it is convenient for us to split J into four functionals

J1(u) =
∫

Rn
Φ(|∇u|) , J2(u) =

∫
Rn
V (x)Φ(|u|) , J3(u) =

∫
Rn
F (x, u) , J4(u) = µ

∫
Rn
h(x)u .

The functionals J1, J2 and J3 are handled in [8, Proof of Proposition 4.1]. It remains to deal with
the functional J4. We need to show that

〈J ′4(u), ϕ〉 = µ

∫
Rn
h(x)ϕ , u, ϕ ∈ X(Rn)

and u 7→ J ′4(u) is continuous. But this is trivial. �

6. The geometry of the functional Jµ

In this section we mainly check that our functional Jµ has the Mountain Pass Geometry (i.e.
assumptions (i), (ii) and (iii) from Theorem 2.10 are satisfied).

First, we observe that it follows from (1.13) and (1.15) that

(6.1) F (x, t) ≥ C|t| 1A , t ∈ R .

Now, we can start to check the assertions of the Mountain Pass Theorem.

Lemma 6.1. If u ∈ X(Rn) has a compact support, u ≥ 0 and u 6= 0, then

Jµ(tu) t→∞→ −∞ .

Moreover, this convergence is uniform with respect to µ taken from a bounded set.

Proof. Since u 6= 0 and u ≥ 0, there is τ > 0 such that

Ln({u ≥ τ}) ≥ τ .
Fix q ∈ (n, 1

A ). Using (1.5), (6.1), the compactness of suppu and the continuity of V (x) we obtain

J(tu) =
∫

suppu

Φ(t|∇u|) + V (x)Φ(t|u|)− F (x, tu)− µth(x)u dx

≤ C + tq
∫

Rn
|∇u|q + C|u|q dx+ µt

∫
Rn
|h(x)u| dx−

∫
{u≥τ}

C(tτ)
1
A ) dx

≤ C + Ctq + Cµt− Ct 1
A
k→∞→ −∞ .
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�

Lemma 6.2. There is µ0 > 0 such that for every µ ∈ (0, µ0) there are %µ > 0 and ξµ > 0 with the
following property: If u ∈ X(Rn) with ||u||X(Rn) = %µ, then Jµ(u) ≥ ξµ.
Moreover, %µ > 0 can be chosen so that %µ → 0+ as µ→ 0+ and

c0 = c0(µ) := inf
||u||X(Rn)<%µ

Jµ(u) ≥ C(µ, %µ) , where C(µ, %µ)
µ→0+→ 0− .

Proof. Fix q > n. By assumptions (1.14), (1.16) and (1.17) we can find η > 0 so that

F (x, t) ≤ (1− 2η)CSΦ(|t|) + C
(

exp[`](b|t|γ)− S`,n,α(b|t|γ)
)
|t|q = F1(t) + F2(t) .

By (1.18) we obtain

(6.2)
∫

Rn
F1(u) = (1− 2η)CS

∫
Rn

Φ(|u|) ≤ (1− 2η)
∫

Rn
Φ(|∇u|) + V (x)Φ(|u|) .

Next, fix p > 1. If % is so small that bp%γ < K`,n,α, then from Hölder’s inequality, Theorem 3.3(ii)
(with P = %), (2.1) and from the fact that X(Rn) is continuously embedded into Lr(Rn), for every
r ∈ [n,∞), we obtain∫

Rn
F2(u) = C

∫
Rn

(
exp[`](b|u|γ)− S`,n,α(b|u|γ)

)
|u|q

≤ C
(∫

Rn
exp`

(
bp%γ

( |u|
||u||X(Rn)

)γ)
− S`,n,α

(
bp%γ

( |u|
||u||X(Rn)

)γ)) 1
p
(∫

Rn
|u|qp

′
) 1
p′

≤ C||u||q
Lqp′

(Rn) ≤ C||u||qX(Rn) ≤ C||∇u||
q
LΦ(Rn)

+ C||u||q
LΦ(Rn,V (x)dx)

.

Hence for % > 0 small enough Lemma 2.4 with ε ∈ (0, q − n) gives

(6.3)

∫
Rn
F2(u) ≤ C||∇u||q−n−ε

LΦ(Rn)
||∇u||n+ε

LΦ(Rn)
+ C||u||q−n−ε

LΦ(Rn,V (x)dx)
||u||n+ε

LΦ(Rn,V (x)dx)

≤ η
∫

Rn
Φ(|∇u|) + V (x)Φ(|u|) .

Thus, we obtain from (6.2) and (6.3) and generalized Hölder’s inequality

Jµ(u) =
∫

Rn
Φ(|∇u|) + V (x)Φ(|u|)− F (x, u)− µh(x)u

≥ η
∫

Rn
Φ(|∇u|) + V (x)Φ(|u|)− 2µ||h||LΨ(Rn)||u||LΦ(Rn) .

Next ||u||X(Rn) = % implies that ||∇u||LΦ(Rn) ≥ %
2 or ||∇u||LΦ(Rn,V (x)dx) ≥ %

2 . Hence Lemma 2.4
with ε = 1 and ||u||LΦ(Rn) ≤ C||u||X(Rn) imply for all % > 0 small enough

Jµ(u) ≥ η
(%

2

)n+1

−Cµ%

and the results follow. �

Lemma 6.3. There is v ∈ X(Rn) with ||v||X(Rn) = 1 such that for every µ > 0 there is tµ > 0 with
the following property: For every t ∈ (0, tµ) we have Jµ(tv) < 0.

In particular
inf

||u||X(Rn)≤tµ
Jµ(u) < 0 and thus c0 < 0 .

Proof. Since h is continuous and nontrivial, we obtain an open set G ⊂ Rn such that h is bounded
away from zero on G. We can easily construct a non-trivial X(Rn)-function ṽ supported on G with
the same sign as h has on G. Further we can suppose that ṽ and ∇ṽ are bounded. Normalizing
suitably, we obtain v ∈ X(Rn) such that ||v||X(Rn) = 1 and∫

Rn
hv =

∫
G

hv = C1 > 0 .
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Finally, as F is non-negative, using above construction and (1.6) we obtain for t > 0 small enough

Jµ(tv) =
∫

Rn
Φ
(
t|∇v|

)
+ V (x)Φ(t|v|)− F (x, tv)− µth(x)v dx

≤ Ctn
∫

Rn
|∇v|n + V (x)|v|n dx− µC1t = Ctn − C1µt

and we conclude the proof easily. �

Finally, we need a suitable estimate of the Palais-Smale level.

Lemma 6.4. If µ0 > 0 is small enough, then there is w ∈ X(Rn) such that

Jµ(θw) < c0 +
(K`,n,α

b

)n
γ

for every θ ∈ [0,∞) and µ ∈ (0, µ0) .

Proof. By [8, Lemma 5.3], there is ε > 0 and a compactly supported non-negative function w ∈
X(Rn) such that ∫

Rn
Φ
(
|∇tw|

)
+ V (x)Φ(|tw|)− F (x, θw) ≤

(K`,n,α

b

)n
γ − 2ε .

Hence, since
∫

Rn |hw| ≤ C, using Lemma 6.1 and (1.20) we obtain for µ > 0 small enough

max
θ≥0

Jµ(θ) ≤
(K`,n,α

b

)n
γ − ε .

Moreover, by Lemma 6.2 we can guarantee that c0 > −ε providing µ > 0 is small enough, and the
result follows. �

7. Properties of the Palais-Smale sequence

In this section we study the properties of a Palais-Smale sequence corresponding to the func-
tional Jµ. Our main aim is to show that it contains a subsequence with the gradients converging
a.e. in Rn (see Lemma 7.3) and that the limit (in the sense of (7.9)) is a weak solution to the
problem (1.10) (see Lemma 7.4).

Let {uk} be a Palais-Smale sequence from X(Rn), that is by (2.7),

(7.1) J(uk) =
∫

Rn
Φ
(
|∇uk|

)
+ V (x)Φ

(
|uk|

)
− F (x, uk)− µh(x)uk

k→∞→ c ,

and by (1.21) there are εk → 0 such that for every v ∈ X(Rn) we have
(7.2)

|〈J ′(uk), v〉| =
∣∣∣∫

Rn
Φ′
(
|∇uk|

) ∇uk
|∇uk|

· ∇v + V (x)Φ′
(
|uk|

) uk
|uk|

v − f(x, uk)v − µh(x)v
∣∣∣ ≤ εk‖v‖X(Rn) .

Lemma 7.1. There is a constant C > 0 independent of k ∈ N such that

(7.3) ‖∇uk‖LΦ(Rn) ≤ C ,

∫
Rn

Φ
(
|∇uk|

)
≤ C ,

(7.4) ‖uk‖LΦ(Rn,V (x)dx) ≤ C ,

∫
Rn
V (x)Φ

(
|uk|

)
≤ C ,

and

(7.5) 0 ≤
∫

Rn
f(x, uk)uk ≤ C .

Proof. Using (1.5) and (1.6) it can be easily shown that there is λ0 > 0 large enough so that

(7.6) Φ(λt) ≥ λn− 1
2 Φ(t) for every t ≥ 0, λ ≥ λ0 .
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We obtain from (1.15), (7.1), (7.2) with v = uk and (1.9)
(7.7)∫

Rn
Φ(|∇uk|) + V (x)Φ(|uk|)

≤ C +
∫

Rn
F (x, uk) +

∫
Rn
µh(x)uk ≤ C +A

∫
Rn
f(x, uk)uk +

∫
Rn
µh(x)uk

≤ C +A
(∫

Rn
Φ′(|∇uk|)|∇uk|+ V (x)Φ′(|uk|)|uk| − µh(x)uk + εk||uk||X(Rn)

)
+
∫

Rn
µh(x)uk

≤ C +AcΦ

∫
Rn

Φ(|∇uk|) + V (x)Φ(|uk|) +Aεk||uk||X(Rn) + (1−A)
∫

Rn
µh(x)uk .

Next, as h ∈ LΨ(Rn) and ||uk||LΦ(Rn) ≤ C||uk||X(Rn), the generalized Hölder’s inequality gives∫
Rn
h(x)uk ≤ 2||h||LΨ(Rn)||uk||LΦ(Rn) ≤ C||uk||X(Rn) .

Thus, AcΦ < 1 and (7.7) imply

(7.8)
∫

Rn
Φ(|∇uk|) + V (x)Φ(|uk|) ≤ C + C||uk||X(Rn) .

Now, from the definition of the norm on X(Rn) and (2.4) together with (7.6) we can easily see that
all terms in (7.8) have to be bounded. This is (7.3) and (7.4).

The upper estimate in (7.5) now follows from (7.2) (with v = uk, see also (1.9)). The integral
in (7.5) is non-negative by (1.13). �

By (7.3), (7.4) and Proposition 2.9 there is a function u ∈ X(Rn) (passing to a suitable subse-
quence of {uk} if necessary) such that

(7.9)

uk ⇀ u in WLΦ(Rn) ,

uk → u in LΦ(Rn) ,

uk → u in Lr(Rn) for every r ∈ [n,∞) ,

uk → u a.e. in Rn .

The function u has the following property by [8, Proposition 6.4].

Lemma 7.2. The function u ∈ X(Rn) given by (7.9) satisfies

lim
k→∞

∫
Rn
F (x, uk) =

∫
Rn
F (x, u) .

Lemma 7.3. Passing to a subsequence we have

(7.10) ∇uk → ∇u a.e. on Rn .

Sketch of proof. The proof is almost the same as the proof of [8, Lemma 6.2]. The only difference
(corresponding to the fact that paper [8] deals with the case h ≡ 0) is the following. When proving
that ∫

Rn

(
Φ′(|∇uk|)

∇uk
|∇uk|

− Φ′(|∇u|) ∇u
|∇u|

)
· (∇uk −∇u)ψε

k→∞→ 0 ,

there occurs the additional term

I7 = µ

∫
Rn
ψεh(x)(uk − u).

We need to show that I7 → 0. But, this plainly follows from h ∈ LΨ(Rn) and (7.9). �

Lemma 7.4. The function u ∈ X(Rn) given by (7.9) is a weak solution to problem (1.10), i.e. we
have (1.22).
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Sketch of proof. We can use the proof of [8, Lemma 6.2] with a minor modification. Indeed, the only
difference is that in the second step we need to show in addition that for ψk → v in X(Rn) we have

µ

∫
ern

h(x)(v − ψk) k→∞→ 0 .

But, this plainly follows from h ∈ LΨ(Rn) and the continuous embedding of X(Rn) into LΦ(Rn). �

Lemma 7.5. If the Palais-Smale sequence {uk} ⊂ X(Rn) satisfies

(7.11) lim inf
k→∞

||uk||X(Rn) <
1
2

(K`,n,α

b

) 1
γ

,

then passing to a subsequence we obtain uk → u in X(Rn) (the strong convergence).

Proof. We can write uk = u+ wk. Further we can suppose that

lim inf
k→∞

||uk||X(Rn) = lim
k→∞

||uk||X(Rn) .

Our aim is to show that wk → 0 in X(Rn) after passing to a suitable subsequence.
STEP 1.

First, let us prove that

(7.12)
∫

Rn
f(x, uk)u k→∞→

∫
Rn
f(x, u)u .

Fix ε > 0. By the density of C∞0 (Rn)-functions in X(Rn) we can find ψ ∈ C∞0 (Rn) such that
||u− ψ||X(Rn) < ε. We have∣∣∣∫

Rn
(f(x, uk)− f(x, u))u

∣∣∣
≤
∣∣∣∫

Rn
f(x, uk)(u− ψ)

∣∣∣+
∣∣∣∫

Rn
f(x, u)(u− ψ)

∣∣∣+
∣∣∣∫

Rn
(f(x, uk)− f(x, u))ψ

∣∣∣
= I1 + I2 + I3 .

Using (7.2) with v = u− ψ we obtain

|I1| ≤
∫

Rn

∣∣∣Φ′(∇uk)
∇uk
|∇uk|

· (∇u−∇ψ)
∣∣∣+
∫

Rn

∣∣∣V (x)Φ′(uk)
uk
|uk|

(u− ψ)
∣∣∣

+ µ

∫
Rn
|h(x)(u− ψ)|+ εk||u− ψ||X(Rn)

= J1 + J2 + J3 + J4 .

By Lemma 2.2 and (7.3) we know that ||Φ′(∇uk) ∇uk|∇uk| ||LΨ(Rn) ≤ C and the definition of the norm
on X(Rn) gives ||∇u − ∇ψ||LΦ(Rn) < ε. Thus the generalized Hölder’s inequality yields |J1| ≤
Cε. Similar way we obtain |J2| ≤ Cε (notice that all the norms are with respect to the measure
V (x)dx). Using h ∈ LΨ(Rn) and ||uk − ψ||LΦ(Rn) < Cε for k ∈ N large (it follows from (7.9) and
||u − ψ||X(Rn) < ε) we obtain |J3| < Cε for k ∈ N large. The estimate |J4| < ε for k ∈ N large
follows from the fact that εk → 0. Hence we have |I1| < Cε for k large.

The same way we obtain that |I2| < Cε.
Let us estimate I3. Since ψ ∈ C∞0 (Rn), it is enough to show∫

suppψ

f(x, uk)− f(x, u) k→∞→ 0 .

But this easily follows from Lemma 2.6, (1.13), (7.5), convergence a.e. (see (7.9)) and the bounded-
ness of suppψ. Thus, we have proved (7.12).

STEP 2.
Fix ε > 0. By the Brezis-Lieb Lemma (Lemma 2.3), Lemma 2.1, (7.2) (with v = u and v = uk,
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respectively), (7.3), (7.4), (7.9) and (7.12) we have for k ∈ N large enough
(7.13)∫

Rn
Φ(|∇wk|) + V (x)Φ(|wk|)

≤ ε+
∫

Rn
Φ(|∇uk|)− Φ(|∇u|) + V (x)

(
Φ(|uk|)− Φ(|u|)

)
≤ ε+ C

∫
Rn

Φ′(|∇uk|)|∇uk| − Φ′(|∇u|)|∇u|+ V (x)
(

Φ′(|uk|)|uk| − Φ′(|u|)|u|
)

≤ ε+ C

∫
Rn
f(x, uk)uk − f(x, u)u+ µh(x)(uk − u) + Cεk||uk||X(Rn) + Cεk||u||X(Rn)

≤ ε+ C

∫
Rn
f(x, uk)wk +

∫
Rn
f(x, uk)u− f(x, u)u+ 2Cµ||h||LΨ(Rn)||uk − u||LΦ(Rn) + 2ε

≤ Cε+ C

∫
Rn
f(x, uk)wk .

Notice that the Brezis-Lieb Lemma also gives that

(7.14) ||∇wk||LΦ(Rn) ≤ ||∇uk||LΦ(Rn) + o(1) .

In view of (2.5) it is enough to show that the last integral in (7.13) tends to zero. From (1.16) and
the fact that t 7→ exp[`](t)− S`,n,α(t) is increasing we have

I :=
∣∣∣∫

Rn
f(x, uk)wk

∣∣∣ ≤ C̃b ∫
Rn
|uk|n−1|wk|+ Cb

∫
Rn

(
exp[`](b|u+ wk|γ)− S`,n,α(b|u+ wk|γ)

)
|wk|

≤ C̃b
∫

Rn
|uk|n−1|wk|+ Cb

∫
Rn

(
exp[`](b2

γ |u|γ)− S`,n,α(b2γ |u|γ)
)
|wk|

+ Cb

∫
Rn

(
exp[`](b2

γ |wk|γ)− S`,n,α(b2γ |wk|γ)
)
|wk|

= I1 + I2 + I3 .

Now, as uk are bounded in Ln(Rn) and wk → 0 in Ln(Rn) (see (7.9)), we can use Hölder’s inequality
to show that I1 → 0. Next, choosing arbitrary q > 1, from Theorem 3.3(i) with K = qb2γ and (2.1)
we see that(

exp[`](b2
γ |u|γ)− S`,n,α(b2γ |u|γ)

)q
≤ exp[`](qb2

γ |u|γ)− S`,n,α(qb2γ |u|γ) ∈ L1(Rn) .

Therefore (7.9) and Hölder’s inequality with powers q and q
q−1 give I2 → 0. Finally, we use a

similar method to estimate I3. This time we use Theorem 3.3(ii). The assumption concerning the
LΦ(Rn)-norm of the gradients turns to

qb2γ ||∇wk||γLΦ(Rn)
< K`,n,α .

However, this is satisfied for q > 1 sufficiently close to 1 and k ∈ N large enough, thanks to (7.11)
and (7.14). Hence we have I → 0 and thus ||uk − u||X(Rn) → 0. �

8. Existence results

In this section we show that the Ekeland Variational Principle (Theorem 2.11) and Mountain
Pass Theorem (Theorem 2.10) give us two different nontrivial weak solutions to (1.10).

Proposition 8.1. There is µ0 > 0 such that if µ ∈ (0, µ0), then (1.10) has a nontrivial minimum-
type solution u0 ∈ X(Rn) with Jµ(u0) = c0 < 0, where c0 is given in Lemma 6.2. Moreover, there
is a corresponding Palais-Smale sequence {uk} ⊂ X(Rn) converging to u0 in the sense of (7.9) and
strongly in X(Rn).

Proof. Let %µ > 0 be the same as in Lemma 6.2. We can suppose that µ0 is so small that

%µ <
1
2

(K`,n,α

b

) 1
γ

for all µ ∈ (0, µ0) .
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Since Y (Rn) := {v ∈ X(Rn) : ||v||X(Rn) ≤ %µ} is a complete metric space, the functional Jµ is a C1-
functional and bounded from bellow (see Lemma 6.2), we can use Ekeland Variational Principle
(Theorem 2.11) to obtain a sequence {uk} ⊂ Y (Rn) such that

Jµ(uk) k→∞→ c0 and ||J ′µ(uk)||C(Y (Rn),R)
k→∞→ 0 .

These are conditions (7.1) and (7.2) (up to the fact that we have (7.2) with the test-functions from
Y (Rn) only, but using the linearity of (7.2) in v we obtain (7.2) also for the test-functions from
X(Rn)). Therefore we can use all the results from Section 7 for the sequence {uk}. By Lemma 7.4,
Lemma 7.5 and continuity of Jµ we obtain that u0 is a weak solution to (1.10) satisfying Jµ(u0) = c0.
Since µ and h are nontrivial, u0 has to be nontrivial (see (1.22)). �

Proposition 8.2. There is µ0 > 0 such that if µ ∈ (0, µ0), then (1.10) has a Mountain Pass-type
solution uM ∈ X(Rn). Moreover, there is a corresponding Palais-Smale sequence {vk} ⊂ X(Rn)
converging to uM in the sense of (7.9).

Proof. Since we have J(0) = 0, Lemmata 6.1, 6.2 and Proposition 5.1, we can apply the Mountain
Pass Theorem (Theorem 2.10) which together with Lemma 6.4 gives us a Palais-Smale sequence
{uk} ⊂ X(Rn). Passing to a subsequence we can further suppose that we have (7.9). Finally, if we
set uM = u, where u ∈ X(Rn) is given by (7.9), then uM is a weak solution to (1.10) by Lemma 7.4.
Since µ and h are nontrivial, uM has to be nontrivial (see (1.22)). �

Proposition 8.3. If µ0 > 0 is small enough, then the functions u0 and uM given by Proposition 8.1
and Proposition 8.2 are distinct.

Proof. By Proposition 8.1 and Proposition 8.2 we have {uk}, {vk} ⊂ X(Rn) such that

(8.1)

uk → u0 in X(Rn) and vk ⇀ uM in WLΦ(Rn), vk → uM in LΦ(Rn) ,

Jµ(uk)→ c0 and Jµ(vk)→ cM ,

〈J ′µ(uk), uk〉 → 0 and 〈J ′µ(vk), vk〉 → 0 .

Moreover, by Lemmata 6.2, 6.3 and 6.4 we have

(8.2) c0 < 0 < cM and cM − c0 <
(K`,n,α

b

)n
γ

For the sake of contradiction suppose that u0 = uM . As both sequences converge to u0 = uM
in LΦ(Rn), h ∈ LΨ(Rn) and we have Lemma 7.2, we see that

Jµ(uk) =
∫

Rn
Φ
(
|∇uk|

)
+ V (x)Φ(|uk|)− F (x, u0)− µh(x)u0 + o(1) k→∞→ c0

Jµ(vk) =
∫

Rn
Φ
(
|∇vk|

)
+ V (x)Φ(|vk|)− F (x, u0)− µh(x)u0 + o(1) k→∞→ cM

and subtracting one from another we obtain

(8.3)
∫

Rn
Φ
(
|∇uk|

)
+ V (x)Φ(|uk|)−

∫
Rn

Φ
(
|∇vk|

)
+ V (x)Φ(|vk|)

k→∞→ c0 − cM < 0 .

Next, 〈J ′µ(uk), uk〉 → 0 and 〈J ′µ(vk), vk〉 → 0 read by (1.21)∫
Rn

Φ′
(
|∇uk|

)
|∇uk|+ V (x)Φ′

(
|uk|

)
|uk| − f(x, uk)uk − µh(x)uk

k→∞→ 0∫
Rn

Φ′
(
|∇vk|

)
|∇vk|+ V (x)Φ′

(
|vk|
)
|vk| − f(x, vk)vk − µh(x)vk

k→∞→ 0

and thus

(8.4)

(∫
Rn

Φ′
(
|∇uk|

)
|∇uk|+ V (x)Φ′

(
|uk|

)
|uk| −

∫
Rn

Φ′
(
|∇vk|

)
|∇vk|+ V (x)Φ′

(
|vk|
)
|vk|
)

−
∫

Ω

f(x, uk)uk − f(x, vk)vk − µ
∫

Ω

h(x)(uk − vk) k→∞→ 0 .

As both sequences converge to u0 in LΦ(Rn) and h ∈ LΨ(Rn), the last integral tends to zero.
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Further, since uk → u0 in X(Rn) by (8.1), which implies the convergence in WLΦ(Rn), passing
to a subsequence we can construct a common majorant g ∈WLΦ(Rn).

Next, from (1.16) we infer

|f(x, uk)uk| ≤ C̃b|uk|n + Cb

(
exp[`](b|uk|γ)− S`,n,α(b|uk|γ)

)
|uk|

≤ C̃b|g|n + Cb

(
exp[`](b|g|γ)− S`,n,α(b|g|γ)

)
|g| .

Since the right hand side is an L1(Rn)-function (the first term is plainly an L1(Rn)-function, while
for the second term we can use Hölder’s inequality with powers n′ and n together with Theorem 3.3(i)
and (2.1)), we can use the Lebesgue Dominated Convergence Theorem to obtain

(8.5)
∫

Rn
f(x, uk)uk

k→∞→
∫

Rn
f(x, u0)u0 .

Further, thanks to Lemma 2.1, we see that if we also prove that

(8.6)
∫

Ω

f(x, vk)vk − f(x, u0)u0
k→∞→ 0 ,

then (8.4) would give us a contradiction with (8.3). Hence, it remains to show (8.6).
Since

∫
Rn Φ(|∇vk|) are bounded by Lemma 7.1, passing to a subsequence we can suppose that

these modulars converge. Notice that by Fatou’s lemma the limit is larger or equal to
∫

Rn Φ(|∇u0|).
In the rest of the proof we distinguish two cases.

Case 1.:
∫

Rn Φ(|∇vk|)→
∫

Rn Φ(|∇u0|).
In this case we have

∇vk
k→∞→ ∇u0 in LΦ(Rn)

(indeed, we can use the Brezis-Lieb lemma to show that the modular of ∇(vk−u0) tends to zero and
so does the norm by (2.5)). Since we also have vk → u0 in LΦ(Rn), we obtain vk → u0 in WLΦ(Rn).
Hence, we can prove (8.6) the same way as we proved (8.5). Thus, we are done in the first case.

Case 2.: limk→∞
∫

Rn Φ(|∇vk|)−
∫

Rn Φ(|∇u0|) > 0.
In this case, our first step is to prove that there is q ∈ (1, n′) such that

(8.7)
∫

Rn

(
exp[`](b|vk|γ)− S`,n,α(b|vk|γ)

)q
≤ C .

By the Brezis-Lieb lemma, uk → u0 in X(Rn) and (8.3) we see that

lim
k→∞

∫
Rn

Φ(|∇vk|) + lim
k→∞

∫
Rn
V (x)Φ(|vk|)−

∫
Rn

Φ(|∇u0|)−
∫

Rn
V (x)Φ(|u0|) = cM − c0 .

Further, from Fatou’s lemma and vk → u0 a.e. on Rn we obtain

lim
k→∞

∫
Rn
V (x)Φ(|vk|) ≥

∫
Rn
V (x)Φ(|u0|) .

Thus, (8.2) yields

lim
k→∞

∫
Rn

Φ(|∇vk|)−
∫

Rn
Φ(|∇u0|) ≤ cM − c0 <

(K`,n,α

b

)n
γ

.

Therefore there is q ∈ (1, n′) such that

lim
k→∞

∫
Rn

Φ(|∇vk|)−
∫

Rn
Φ(|∇u0|) <

(K`,n,α

bq2

)n
γ

.

This is

(8.8) bq ≤ K`,n,α

q

( 1
limk→∞

∫
Rn Φ(|∇vk|)−

∫
Rn Φ(|∇u0|)

) γ
n

.

Next, by (2.1) we have∫
Rn

(
exp[`](b|vk|γ)− S`,n,α(b|vk|γ)

)q
≤
∫

Rn
exp[`](bq|vk|γ)− S`,n,α(bq|vk|γ) .
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Now, the integral on the right hand side is uniformly bounded by Proposition 4.3 and thus we
have (8.7).

Next, we can use (1.16), (8.7) and the continuous embedding of X(Rn) into Lnq(Rn) together
with Lemma 7.1 to obtain

(8.9)
∫

Rn
|f(x, vk)|q ≤

∫
Rn
C|vn|nq + C

(
exp[`](b|vk|γ)− S`,n,α(b|vk|γ)

)q
≤ C .

Similarly we obtain

(8.10)
∫

Rn
|f(x, u0)|q ≤ C .

Next, we are going to apply estimates (8.9) and (8.10) to∫
Rn
|f(x, vk)vk − f(x, u0)u0|

≤
∫

Rn
|(f(x, vk)− f(x, u0))u0|+

∫
Rn
|f(x, vk)(vk − u0)| = I1 + I2 .

First, let us deal with I2. Estimate (8.9), Hölder’s inequality and vk → u0 in Lq
′
(Rn) yield

I2 =
∫

Rn
|f(x, vk)(vk − u0)| ≤ ||f(x, vk)||Lq(Rn)||vk − u0||Lq′ (Rn)

k→∞→ 0 .

In the rest of the proof we deal with I1. Fix ε > 0. From Fatou’s lemma, (1.13) and (7.5) we have∫
Rn
|f(x, u0)u0| <∞ .

Hence there is M1 >
1
ε such that

J2 :=
∫
{u0>M1}

|f(x, u0)u0| < ε .

Let δ > 0 be such that q = 1 + 2δ. By Assumption (1.19) we can find M2 ≥M1 so that

f(x, t)δ ≥ t for all t ≥M2 .

Hence from (8.9) we obtain

J3 :=
∫
{vk>M2}

|f(x, vk)u0| ≤
1
M2

∫
Rn
|f(x, vk)|1+δ|u0| ≤ Cε

where the last inequality follows from Hölder’s inequality with powers q
1+δ and ( q

1+δ )′ > n, (8.9)
and u0 ∈ Lr(Rn) for all r ∈ [n,∞).

Finally, by (1.16) we see that we have

(8.11) |f(x, t)| ≤ Ctn−1 for all t ∈ [0,M2]

and moreover, as vk converge in Ln(Rn), there is their common majorant U ∈ Ln(Rn). We have

I1 ≤ J1 + J2 + J3 where J1 =
∫

Rn
|f(x, vk)χ{vk≤M2} − f(x, u0)χ{u0≤M2}||u0|

and J2, J3 are defined above. Hence, it is enough to show that J1 → 0. We observe that the
integrand converges to zero a.e. in Rn, therefore it suffices to find an integrable majorant so that
we could conclude the proof using the Lebesgue Dominated Convergence Theorem. But we have
plainly from (8.11)

|f(x, vk)χ{vk≤M2}||u0| ≤ C|vk|n−1|u0| ≤ C|U |n−1|u0| ∈ L1(Rn)

and
|f(x, u0)χ{u0≤M2}||u0| ≤ C|u0|n−1|u0| = C|u0|n ∈ L1(Rn) .

Hence we have proved (8.6) also in the second case and we are done. �

Finally, we see that Theorem 1.1 follows from Propositions 8.1, 8.2 and 8.3.
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9. Concluding remarks

Sub-critical case. Similarly as in papers [11], [8] and [9], we can use our methods to obtain the
existence of at least two non-trivial weak solutions to (1.10) also in the sub-critical case. It is, instead
of (1.16) we have

for every b > 0 there is Cb > 0 such that

|f(x, t)| ≤ C|t|n−1 + Cb

(
exp[`](b|t|γ)− S`,n,α(b|t|γ)

)
whenever t ∈ R and x ∈ Rn .

In this case we do not need to assume (1.8) and (1.19).

Case of a bounded domain. Quasilinear nonhomogenous problems are often studied on bounded
domains. It is, in our case, we consider (1.10) for the functions from W0L

Φ(Ω) where Ω ⊂ Rn is
a bounded domain.

Recall that the space W0L
Φ(Rn) is compactly embedded into LΦ(Ω) and Lr(Ω) for all r ∈ [1,∞)

and we have the equivalence of the W0L
Φ(Ω)-norm of a function and the LΦ(Ω)-norm of its gradient.

Hence, we do not have to construct the auxiliary space X(Ω) as we had to in the case of WLΦ(Rn).
This time we suppose that the potential V is non-negative, continuous and bounded.
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[25] do Ó J. M., Medeiros E., Severo U., On a quasilinear nonhomogenous elliptic equation with critical growth in
RN , J. Differential Equations 246 (2009), 1363-1386.
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