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I want to speak here about inequalities of the form

(1)

(∫
Ω
|f(x)|qu(x) dx

)1/q

5 C

(∫
Ω
|∇f(x)|pv(x) dx

)1/p

with Ω a domain in RN , with parameters p = 1, q > 0, and with u, v given weight
functions (i.e. functions measurable and positive a.e. in Ω). We want the inequality
to hold for, say, all functions f from C∞0 (Ω) with a constant C > 0 independent of
f .
It was Jindřich NEČAS who linked my attention to this inequality in the sixties

(of the last century). At that time, he has held a lecture series at the Charles
University, devoted to modern methods of solving (linear, elliptic) partial differen-
tial equations, and this topic involved the theory of (classical) Sobolev spaces, in
particular imbedding theorems for these spaces. And inequality (1) - with special
weight functions u(x) = v(x) ≡ 1 - expresses one of these imbeddings.
J. NEČAS investigated and used also weighted Sobolev spaces with special

weights, namely powers of the distance to the boundary ∂Ω of Ω. He collected
his results in the book [7], and his approach to the investigation of Sobolev spaces
(weighted as well as nonweighted) was based on a certain “geometry”of the domain
Ω (ore, more precisely, of the boundary ∂Ω) which he explained in his famous, may
be not enough evaluated, paper [6]. Here, he has described a class of domains which
have shown to be a very useful tool in investigating function spaces of Sobolev type
on domains and inequalities of the form (1). Among other, his approach allowed to
reduce the investigation of such inequalities to the one-dimensional case. Finally,
having in (1) weights of the form

(2) u(x) = [dist(x, ∂Ω)]α, v(x) = [dist(x, ∂Ω)]β , α, β ∈ R,

inequality (1) can be handled - for p = q - by the classical Hardy inequality

(3)
∫ ∞

0
|f(t)|p tλ−p dt 5 C

∫ ∞

0
|f ′(t)|ptλ dt

valid
(i) for λ < p− 1 provided f(0) = 0,
(ii) for λ > p− 1 provided f(∞) = 0,
with the (exact) constant

C =

(
p

|p− λ− 1|

)p

.
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In fact, I want to speak here about the one-dimensional analogue of (1), i.e.
about the inequality

(4)

(∫ b

a

|f(t)|qu(t) dt
)1/q

5 C

(∫ b

a

|f ′(t)|pv(t) dt
)1/p

for functions f satisfying
f(a) = 0,

with (a, b) a fixed interval in R and u, v general weight functions, but first, let me
say a few words about inequality (1), more precisely, about its special case:

1 < p = q, v(x) ≡ 1, u(x) = [dist(x, ∂Ω)]−p,

i.e. about the inequality

(5)
∫
Ω

∣∣∣∣ f(x)
dist(x, ∂Ω)

∣∣∣∣p dx 5 C

∫
Ω
|∇f(x)|p dx,

also commonly called Hardy’s inequality.
Inequality (5), although it is simple and could be considered a counter part of

(3) for λ = 0, is repeatedly up to now subject of many papers, the most recent
being (probably) the paper of P. KOSKELA and X. ZHONG [4] from 2003. Of
course, these papers are mainly dealing with question for what class of domains the
inequality is still valid, since for “reasonable” domains, (5) can be derived easily
for f ∈ C∞0 (Ω) with

C =

(
p

p− 1

)p

.

In this connection, let me mention a result of J. KADLEC (a gifted but unfortu-
nately late student of J. NEČAS) and myself [3] from 1967 where a characterization
of functions with zero traces is given : a function f ∈ W 1,p(Ω) belongs to W 1,p

0 (Ω)
iff u/d ∈ Lp(Ω) with d(x) = dist(x, ∂Ω) (which means that inequality (5) holds).
But now, let us consider the general one-dimensional Hardy inequality (4). We

can assume that a = 0, hence we will deal with the inequality

(6)

(∫ b

0
|f(t)|qu(t) dt

)1/q

5 C

(∫ b

0
|f ′(x)|pv(x) dt

)1/p

with a fixed b, 0 < b 5 ∞, for functions f satisfying

f(a) = 0

and for parameters p, q satisfying

1 < p 5 q < ∞.

[The case p > q must be handled separately.]
There are several criteria for the validity of (6). First, let us introduce some

auxiliary functions. Suppose that

V (x) : =
∫ x

0
v1−p′

(t) dt < ∞ for every x ∈ (0, b)
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where p′ = p/(p− 1), and denote

AM (x) : =

(∫ b

x

u(t) dt

)1/q(∫ x

0
v1−p′

(t) dt

)1/p′

(7)

=

(∫ b

x

u(t) dt

)1/q

V 1/p′
(x);

AT (x) : =

(∫ x

0
u(t)V q(t) dt

)1/q

V −1/p(x) :

AB(x, g) : =

(
1

g(x)

∫ x

0
u(t)[g(t) + V (t)]q/p′+1 dt

)1/q

, g(x) > 0;

AW (x, s) : =

(∫ b

x

u(t)V q(p−s)/p(t) dt

)1/q

V (s−1)/p(x), 1 < s < p.

If we further denote

A1 : = sup
x∈(0,b)

AM (x)

A2 : = sup
x∈(0,b)

AT (x)(8)

A3 : = inf
g(x)>0

sup
x∈(0,b)

AB(x, g)

A4(s) : = sup
x∈(0,b)

AW (x, s),

then the following important result holds:

Theorem 1. The Hardy inequality (6) holds with 1 < p 5 q < ∞ for all function
f such that f(0) = 0 if and only if any of the numbers A1, A2, A3 and A4(s)
(1 < s < p) is finite.

Hence, we have four criteria for the validity of (6), four necessary and sufficient
conditions. The letters M, T, B and W are due to B. MUCKENHOUPT, G.
TOMASELLI, P. R. BEESACK and A. WEDESTIG who have been (probably)
the first who introduced the corresponding functions, as least for the case p = q.
More precisely, G. TOMASELLI [9] used AM (x) and AT (x) for p = q in 1969, B.
MUCKENHOUPT [5] published the function AM (x) for p 5 q in 1972, while the
version of AT (x) for p 5 q is due to L. E. PERSSON and V. STRPANOV [8] in
2002. The oldest result is due to BEESACK [1] (1961) with AB(x) for p = q, which
the form given here for p 5 q is due to D. GURKA [2] (1984). The results of A.
WEDESTIG is the most recent and appeared up to now only in her Thesis [10].

Remark 1. Notice that AW (x, p) = AM (x), so that A1 is an extension of A4(s)
involving a new parameter s. Moreover, since V (t) is increasing and q(p−s)/p > 0,
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we immediately have that

Aw(x, s) =

(∫ b

x

u(t)V q(p−s)/p(t) dt

)1/q

V (s−1)/p(x) dx

=

(∫ b

x

u(t)V q(p−s)/p(x) dt

)1/q

V (s−1)/p(x)

=

(∫ b

x

u(x) dt

)1/q

V (p−s)/p(x)V (s−1)/p(x)

=

(∫ b

x

u(x) dt

)1/q

V (p−1)/p(x) = AM (x).

The numbers A1, A2, A3 and A4(s) can be used to estimate the best constant C
in (6). It is

1 5
C

A1
5 k(p, q)

with

(9) k(p, q) =

(
1 +

q

p′

)1/q(
1 +

p′

q

)1/p′

,

and

1 5
C

A2
5 p′,

(p′/q)1/q

k(p, q)
5

C

A3
5

(
p′

q

)1/q

,

and
(10)

sup
1<s<p

{[
1 +

1
s− 1

+

(
p− s

p

)1/p]−1/p

A4(s)

}
5 C 5 inf

1<s<p

[(
p− 1
p− s

)1/p′

A4(s)

]
.

In fact, we can also obtain other criteria for the validity of (6). Using duality
arguments, we can introduce the following analogue of AW (x, s):

A5(x, s) =

( ∫ x

0
v1−p′

(t)

( ∫ b

t

u(s) ds

)p′(q′−s)/q′

dt

)1/p′

( ∫ b

x

u(s) ds

)(s−1)/q′

, 1 < s < q′,

and the analogue of AT (x):

A6(x) =

( ∫ b

x

v1−p′
(t)

( ∫ b

t

u(s) dt

)p′

ds

)1/p′( ∫ b

x

u(s) ds

)−1/q′

.

Again, inequality (6) holds if and only if

A5(s) : = sup
0<x<b

A5(x, s) < ∞
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or
A6 : = sup

0<x<b
A6(x) < ∞

and we have the estimate

1 5
C

A6
5 q

and an estimate analogous to (10) with A5(s).

Remark 2. Analogously as in Remark 1, it is

A5(x, q′) = AM (x)

and, since the function U(t) =
∫ b

t
u(s) ds is decreasing,

A5(x, s) = AM (x).

Moreover, the dual analogue of AB(x, g) reads

A7(x;h) =

(
1

h(x)

∫ b

x

v1−p′
(t)

[
h(t) +

∫ ∞

t

u(s) ds

]p′/q+1

dt

)1/p′

, h(x) > 0,

with the estimate
(q/p′)1/p′

k(q′, p′)
5

C

A7
5 (

q

p′
)1/p′

where
A7 : = inf

h(x)>0
sup

x∈(0,b)
A7(x;h).

Obviously, using the fact that the (best) constant C in (6) satisfies C ≈ Ai for
i = 1, 2, . . . , 7, we can now easily estimate any of the constants Ai with help of any
Aj , j 6= i. But it would be useful to estimate mutually not only the suprema of
the functions Ai(x), but also the functions themselves. One reason for this claim
is based on the fact that the mapping

(11) H : Lp(0, b; v)→ Lq(0, b;u)

with H the Hardy operator,

(Hf)(x) : =
∫ x

0
f(t) dt,

which is continuous due to the Hardy inequality

(12)

( ∫ b

0
|(Hf)(x)|qu(x) dx

)1/q

5 C

( ∫ b

0
|f(t)|pv(t) ds

)1/p

if and only if any of the numbers Ai is finite [notice that the last inequality and
inequality (6) for functions vanishing at zero are equivalent], is, moreover, compact
if and only if

(13) lim
x→0+

AM (x) = 0, lim
x→b−

AM (x) = 0.
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Consequently, if we would for example know, that

AM (x) ≈ AT (x),

i.e., that there exist positive constants C1, C2 such that

(14) C1AM (x) 5 AT (x) 5 C2AM (x) for x ∈ (0, b),
we could conclude from the properties of the function AM (x) to the properties of
AT (x).
But unfortunately, estimates of the type (14) need not to hold:
Example 1. Let us take u(t) = tα, v(t) = tβ , α, β ∈ R. The condition

V (t) =
∫ x

0 v1−p′
(t) ds < ∞ leads to the claim

(15) β < p− 1.
(i) Let us first consider the case b =∞, i.e. investigate the validity of (6) [or (12)]

on the interval (0,∞). Then all functions AM (x), AT (x), AW (x) and also AB(x, g)
for g = V are of the form

Ai(x) = cix
α+1

q − β+1
p +1

with some positive constants ci. Consequently, the numbers Ai : = supx>0Ai(x)
are finite if and only if the pair α, β satisfies

α+ 1
q

− β + 1
p
+ 1 = 0.

For this pair, inequality (6) holds and the mapping (11) is continuous, but cannot
be compact, since the conditions (13) cannot be satisfied.
(ii) Let us now consider the interval (0, b) with b < ∞, say b = 1. Then we have

again

AT (x) = CT xλ, λ =
α+ 1

q
− β + 1

p
+ 1

and the mapping M will be continuous provided

(16)
α+ 1

q
− β + 1

p
+ 1 = 0.

On the other hand, we have that

AM (x) = CM

(
1− xα+1

α+ 1

)1/q

x−(β+1)/p+1

with α 6= −1 and β < p − 1. Consequently, the mapping H will be continuous if
(14) holds, and moreover, it will be compact since AM (0) = AM (1) = 0.
But a comparison of the formulas of AM (x) and AT (x) shows that we never can

expect that it would be AT (x) ≈ AM (x) for x ∈ (0, 1) due to the behaviour in the
neighbourhood of x = 1 where AM (x) vanishes but AT (1) = CT > 0.
Up to now, we have only the estimates

AW (x) = AM (x) and A5(x) = AM (x)

(see Remark 1 and Remark 2). Hence let us formulate two open questions:

Question 1. Is it possible to estimate at least some if the function Ai(x) from
above and from below by some other function Aj(x), j 6= i?

Question 2. Is it possible to give conditions for the compactness of the mapping
H in terms of some of the functions Ai(x) (except AM (x))?
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