Brains in Games

Artificial intelligence
In videogames

Jifri Hanak

Foreword — meaning of ‘Al

e ‘Al’ - a bit distorted term
* Same word, different meanings — depends on who you ask

* In this presentation, Al:
* doesn’t mean a LLM, a tool for content generation
* means a controller for non-player entities in video games

Not really talking about ChatGPT

Are there less than 40 days in a month?

* Not this:

No, there are more than 40 days in a
month. A month is a unit of time that is
commonly used to measure the duration of
time between two dates. The length of a
month varies depending on the calendar
system that is being used. In the Gregorian
calendar, which is the most widely used
calendar system, a month is typically

defined as the time it takes for one full

moon to occur and pass. This means that

a month is about 29.5 days long. Since
29.5 is less than 40, there are more than 40

days in a month.

Fig 1. LLM spewing nonsense. ChatGPT, OpenAl, 2024

Not really talking about ChatGPT

e But this:

7 5 S i \ L
& ! IR "" { A & B Y) T o S e
% s : f X £ e S
77 g} } T 5 3 ~,_ P
] S (48P 50 B4 :

n that can actually happen in a game with robust Al. FarCry 5, Ubisoft, 2018

What is ‘game Al'?

» System for controlling in-game entities

What is ‘game Al’? - Entities

» System for controlling in-game entities

X

N
=

J
v

A 77X =
's

f

©—rm
T
Q
“-;

b
L v
W,

37
3

ALE. :
WIRL X \ v

Fig 3. Al entities’ can mean a horde of zombies. Days Gone, Bend Studio, 2021

What is ‘game Al’? - Entities

g ¢

* System for controlling in-game entities

Fig 4. Al is often used for controlling ‘baddies’, like the group of cultists here. Far Cry
5, Ubisoft, 2018

What is ‘game Al'? - Entities

 System for controlling in-game entities

Fig 5. But Al can control friendly entities just as well - like this bunch of cute
slimes. Slime Rancher 2, Monomi Park, 2022

What is ‘game Al’?

» System for controlling in-game entities
* Movement / pathfinding '
 Combat
* Interaction with world / other entities
e Cooperation / Competition

* Goal
* Good ‘actors’
* Breathing life into the world
* Fun experience

Fig 6. Controlling enemy entities — like this group of gnolls in Baldur’s
Gate - is what game Al is very often about. Baldur’s Gate 3, Larian,

2023

Specific demands of games

 Performance considerations

* Running in real time — Al needs to react to player & world changes
e 60 FPS is ~16ms of CPU per frame — total budget , machine dependent :(

* Design considerations

* Tuning behaviours is necessary — the goal is a fun game and that often involves

challenge

e Deterministic vs reactive

’I..:\ - f
/¥

» other aspect of fun can be overcoming rulesets - : AR,

* Every game’s different

Fig 7. Overcoming Al rules can be very satisfying for tough enemies that are
otherwise hard to beat — if you play it right, Commander O’Neill can follow
you into deadly geysers of scarlet rot. Elden Ring, FromSoftware, 2022

Specific demands of games

* Performance considerations

* Running in real time — Al needs to react to player & world changes
e 60 FPS is ~16ms of CPU per frame — total budget , machine dependent :(

* Design considerations

* Tuning behaviours is necessary — the goal is a fun game and that often involves
challenge : |

* Deterministic vs reactive
* other aspect of fun can be overcoming rulesets
* Every game’s different

* Player expectations
* Al needs to behave in a believable manner
* Al needs to provide a challenge that’s ‘just right’

Fig 8. An NPC walking into an obstacle. Starfield, Bethesda, 2023

Before we start...

Before we start...

* Multiple techniques, we’ll scratch the surface

« Attain knowledge to know more!

Before we start...

* Multiple techniques, we’ll scratch the surface

* No generally correct approach — complex implementation != fun (or
successful) game

* When you’re holding a hammer, everything looks like a nail

* Learn to realize when you need to use a screwdriver
e (or when duct tape will do..!)

« Choosing the right approach is half the battle »

Before we start...

* Multiple techniques, we’ll scratch the surface

* No generally correct approach — complex implementation != fun (or
successful) game

* When you’re holding a hammer, everything looks like a nail

* Learn to realize when you need to use a screwdriver
e (or when duct tape will do..!)

* Evolving field, YOU could be the one to come up with a new solution

« The field of game Al is incomplete, you may help by expanding it »

Before we start...

* Multiple techniques, we’ll scratch the surface

* No generally correct approach — complex implementation != fun (or
successful) game

* When you’re holding a hammer, everything looks like a nail

* Learn to realize when you need to use a screwdriver
e (or when duct tape will do..!)

* Evolving field, YOU could be the one to come up with a new solution
* There’s always a trade-off somewhere, learn to live with it

« Perfect is the enemy of good (or released!) game »

Note: Static vs Dynamic behavior

* Techniques differ in various aspects, you could categorize along either
e E.g. how static vs. dynamic the resulting behavior is:

 ‘Static’ = Al controlled entities always behave the same way

* ‘Dynamic’ = Al controlled entities can surprise the player, they adjust their
plans according to situation

* As everything in life, it’s a spectrum :)

Static Dynamic

‘Scripted behavior’

‘Scripted behaviour’

* Behaviour of non-player entities is determined ahead of time

* Driven by code that describes a sequence of conditions and actions, a
‘script’
* E.g. Tower in tower defense games — ‘If enemy is close enough, shoot’

* Complexity varies — can be used in different genres and scenarios
* Or just specific parts of a game

‘Scripted behaviour’

e Can take the form of direct instruction set
e Go to this location
* Look at the player
e Shoot them with a bazooka
* Put on sunglasses

e Or conditions that are evaluated and trigger actions
* If an enemy passes by close enough, shoot them with a cannon

* Once every 5 seconds, pop up from the trench and shoot in the player’s
direction

e ...or a combination of either

‘Scripted behavior’

] 23]
T T I
: READY” .

o L. i@l e

Fig. 9. Ghosts in Pac-Man use fairly simple conditions for their behaviour. Pac-Man,
Namco, 1980.

'Scripted behavior’

Fig. 10. Raids in World of Warcraft have bosses whose behaviour follows a pre-
determined script. World of Warcraft, Blizzard Entertainment, 2004.

’Scripted behavior’

®y 812 | “ P wave 19/19 %ﬁ%’ﬂ QA / @P
7 : | s §

Fig. 11. Enemies in a tower defense game. Kingdom Rush, Ironhide Game Studio, 2014.

‘Scripted behavior’

Fig. 12. A whole sequence can be scripted — enemy vehicles spawn from predetermined
points, follow a path while the soldiers shoot the player. Call of Duty 2, Infinity Ward, 2005.

‘Scripted behavior’ — Example

‘Scripted behavior’

e Code often written in a different programming (‘scripting’) language
different from the rest of the game (Lua, Python, C#, often custom
solution)

* Designer accessibility
e Less work for programmers :)

* Technical reason — scripts compiled separately / evaluated at runtime; faster
iteration when developing game content

‘Scripted behavior’ — Advantages

 Direct control over the game experience
* Adjust difficulty, pacing, ...

e Authored by game-designers (usually)
* Programmers can focus on other things :)

 ‘Solvable’ by players - Can be advantageous to certain game genres

* Generally cheap, performance-wise

‘Scripted behavior’” — Disadvantages

e Amount of work!

 Game-designers can only work with what we give them :(
* Programmers may need to expose additional functionality as scripts grow

* Predictability — limits replay-ability

* Not very responsive to player behavior
* Behavior and the conditions to set it off need to be prepared

‘Scripted behavior’ - Overall

e Works surprisingly well for certain genres

e Usually used as a part of more complex solution

* |s this (strictly speaking) Al?
e Debatable :)

Static Scripted Dynamic
Al

State machines

or Finite State Machines (FSM)

State machines

e A graph of states the entity can currently be in
e Defined connections/transitions between states

e Simple example — lightbulb

Turn on
>
Light off Interact with the switch Light on
<

Turn off

State machines — Example Usage

IDLE

Fig. 13. A character model
‘Wraith’ from an unreleased
game. Paragon Asset Pack,
Epic Games, ~2020.

State machines — Example Usage

Idle for 15 s
IDLE) | PATROL

Patrol completed

Fig. 14. Patrolling is NPC’s
bread and butter. Paragon
Asset Pack, Epic Games,
~2020.

State machines — Example Usage

Idle for 15 s

__
»

PATROL

Patrol completed

R\\Z
*

ATTACK

Fig. 14. Patrolling is NPC’s
bread and butter. Paragon
Asset Pack, Epic Games,
~2020.

State machines — Example Usage

Idle for 15 s

__
»

PATROL

Patrol completed
%
No enemy | | See enemy ©
in sight whileidling
<&

ATTACK

Fig. 15. This NPC woke up
and chose violence. Paragon
Asset Pack, Epic Games,
~2020.

State machines — Example Usage

Idle for 15 s

PATROL

Patrol completed

Friends won
FLEE ’ IDLE)
o

by No enemy See enemy &
. insight while idling o™
(S <</(\e’

ATTACK

Fig. 16. Discretion is better
part of valor. Paragon Asset
Pack, Epic Games, ~2020.

State machines - Advantages

* More complex entity behavior

* Could still be authored by game designers :)
e With the right support (tooling, exposing behaviors...)

* You can have graphs within graphs — see hierarchical state machines

State machines — Example Usage

SEARCH

a

It wasn’t
rats!
Heard a Must have
noise? been rats
Friends won M Scenario start
FLEE) PATROL
See no evil 4 Patrol completed
Go RV\2
¢ No enemy | | See enemy 4\5{0
in sight whileidling
<«

ATTACK

Fig. 17. It’s getting pretty
complex. Paragon Asset Pack,
Epic Games, ~2020.

State machines - Disadvantages

e States and transitions have to be explicitly defined

* Difficult to have things that ‘happen regardless of state’ — e.g. always flee
when health is low

* Always in just one state
 Difficult to do model things that could be feasibly done at once (run & shoot)

* Complexity-creep
e Can be tamed with hierarchical state machines (or worsened)

State machines - Overall

* Basic system that can work well in many games

* Doesn’t have to be complex to allow complex behaviors

* Complexity can be manageable if hierarchies are used, states and transitions
well thought out

* Can lead to fairly responsive Al entities
* while allowing for design control

Static Scripted State Dynamic
Al machines

Behavior trees

Behavior trees - Basics

A tree of nodes that represent states or
actions — each node has 0+ children nodes

Tree is continuously evaluated from the
root (traversed)

Leaf nodes represent actions

Transitions handled by tree structure and
composite / utility / ‘meta’ nodes

Composite nodes affect the tree traversal
and the Al agent’s behavior

SELECTOR

MOVE
TOWARDS
SHOOT

SELECTOR

SEQUENCE

WAIT

. . SEQUENCE
Behavior trees - Mechanism -

 Each node returns state
« commonly ‘success’, ‘failure’, running’
e Sequence node

e Evaluate children node one after the other

e Selector node
* Choose which child node to evaluate

CLOSE IN
IDLE ON ENEMY ATTACK
SELECTOR

 Decorator nodes

* ‘Tacked onto’ other nodes, to e.g. add a condition,
store state etc. CANNOT SEE ENEMY NOT ENEMY IN
e Standalone nodes in some frameworks ENEMY IN RANGE RANGE

CLOSE IN
IDLE ON ENEMY ATTACK

ROOT

Behavior trees - Example |

CAN SEE PLAYER

SEQUENCE
‘GET CLOSE & ATTACK’

MOVE TO RANGE SEQUENCE
OF PLAYER ‘ATTACK’

ROOT

Behavior trees - Example |

%

CAN SEE PLAYER KNOWS PLAYER'’S

LAST POSITION

SEQUENCE
‘GET CLOSE & ATTACK’ SEQUENCE
: ‘INVESTIGATE’

MOVE TO RANGE SEQUENCE MOVE TO CLEAR LAST
OF PLAYER ‘ATTACK’ LAST KNOWN KNOWN

POSITION POSITION

-

ROOT

Behavior trees - Example |

-

CAN SEE PLAYER KNOWS PLAYER'’S SEQUENCE

LAST POSITION ‘PATROL’

SEQUENCE
‘GET CLOSE & ATTACK’ SEQUENCE
: ‘INVESTIGATE’

MOVE TO RANGE SEQUENCE MOVE TO CLEAR LAST
OF PLAYER ‘ATTACK’ LAST KNOWN KNOWN

POSITION POSITION

MOVE TO
NEXT PATROL
SPOT

Behavior trees - Advantages

Powerful in terms of defining behavior

Can be defined and maintained by designers (once actions are implemented by
programmers)

Reactive Al behavior

Game engine support
* Most game engines will support this out of the box (e.g. Unreal, Godot, ...) or have plugins (Unity)

Fairly ‘simple’ debugging (why is the Al doing what it’s doing)

e Usually visual representation in engine or framework

Behavior trees - Disadvantages

* Can get complex
* It might get a bit difficult to define a tree that works well

* Can get performance ‘heavy’
e Each agent having its own complex tree might be too much

* Some engines/frameworks use special considerations to lessen the burden
(conditional decorator checks in Unreal etc.)

Behavior trees - Overall

* Probably the most prevalent Al approach in games today

* Entities can react to changes in the game state

e Still fairly controllable by designers (win)

* Meaning maintenance of the Al behavior is game design’s problem :)
e (until the design team comes with a requirement for a new action or decorator)

* Works well for many use-cases

* depending on tree structure you can get a lot of emergent behavior or fairly strict
sequences of actions

Static Scripted State Behavior Dynamic
Al machines trees

Side-quest:
Utility-based approaches

Utility-based approaches

* Behavior in previous examples fairly rigidly built

* Not quite how humans work
* Decisions we make depend on a lot of factors, often very subjective

* If we could model this, we’d be closer to a more ‘human’ behaving Al
entity
* Believable choices and behavior

* Potentially emergent behavior => interesting solutions to problems
* Orinteresting new problems... (e.g. drunk cats in Dwarf Fortress)

Utility-based approaches

* Each decision the Al can make is given a Aldages
utility score, affecting the ‘choices’ the Al | SLEEP [0.8 |

makes

* The score is re-evaluated as the game state
ENTES

Fig. 18. Sometimes sleep is a priority. Sims 4,
Maxis, 2014.

Utility-based approaches

* Each decision the Al can make is given a

utility score, affecting the ‘choices’ the Al _ SLEEP L 0.8
makes

* The score is re-evaluated as the game state
changes

e Effect doesn’t have to be linear

* Multiple factors can be combined

* E.g. entity is hungry but has no food to eat — eat action

utility score will be zero Fig. 19. Example hunger curve where until hunger

hits a certain threshold, it has no effect at all — Al
won’t consider eating when it’s barely hungry
(x = normalized hunger value, y = utility score).

Utility-based approaches - Overall

e Usually used as part of a more complex solution for Al

Side-guest completead

Goal Oriented Action Planning
(GOAP)

Goal Oriented Action Planning - Basics

* An Al solution where we leave the choice of what the
entity should do (and how) in a given moment to the Al
system

* Decision making is done during run-time

* Al ‘planner’ builds a plan of actions based on the state of the
in-game world, then acts on it

 ‘Utility’ approach is used on multiple levels (choosing
actions, choosing plan)

Goal Oriented Action Planning - Mechanism

* Al chooses a Goal, then builds a Plan from Actions

GOAL — KILL PLAYER

* Goal PLAN 1 PLAN 2
* what the Al wants to ultimately do SMACK W/ STICK SHOOT W/ BOW

* Plan
* asequence of actions that should allow the Al to reach its Goal

« Action MELEE ATTACK(1 | RANGED ATTACK| 1

* anin-game action the Al entity can do; each has it’s own cost

MOVE TO MELEE ENSURE LINE OF

* Actions that take us closer to the Goal are selected (utility) and a plan is RANGE | 10 SIGHT
created

* Plan built from the end

* Plan score can be simply a sum of action costs EQUIP MELEE
WEAPON m EQUIP BOW B

* Rinse and repeat — then choose the best plan (utility score of actions)

Goal Oriented Action Planning - Mechanism

* Al chooses a Goal, then builds a Plan from Actions

GOAL — KILL PLAYER

* Goal PLAN 1 PLAN 2
* what the Al wants to ultimately do SMACK W/ STICK SHOOT W/ BOW

* Plan
* asequence of actions that should allow the Al to reach its Goal

« Action MELEE ATTACK(1 | RANGED ATTACK| 1

* anin-game action the Al entity can do; each has it’s own cost

MOVE TO MELEE ENSURE LINE OF

* Actions that take us closer to the Goal are selected (utility) and a plan is RANGE | 10 SIGHT
created

* Plan built from the end

* Plan score can be simply a sum of action costs EQUIP MELEE
WEAPON E EQUIP BOW B

* Rinse and repeat — then choose the best plan (utility score of actions)

NO STICK :(

e Action costs can be conditional

Goal Oriented Action Planning — Game Examples

Fig. 2—0:7.{7The ame where GOAP made its debut. F.E.A.R., 2005, Monolith
Productions.

Goal Oriented Action Planning — Game Examples

IS

Fig. 21. Middle-earth: Shadow of Mordor, 2014, Monolith Productions.

Goal Oriented Action Planning — Game Examples

¢

Fig. 22. Tomb Raider, 2013, Monolith

g

Productions.

Goal Oriented Action Planning - Advantages

* Given action building blocks, Al agent can achieve a lot of goals

* Entity should be naturally trying to do things that bring it closer to its
Goal => it will do things the player might do in their shoes!
 E.g. An NPC in a turn-based RPG game wants to attack our player character
e But our character is just outside of their range of movement

 What if they have a potion of speed in their pockets...
* They can use that, move closer and smack the player (with a stick)!

e Usable for different genre of games (not only combat-oriented)

Goal Oriented Action Planning - Disadvantages

Performance heavy
» Al will prefer the simplest plan (lowest cost / highest utility score) but can still build multiple
* And doesn’t scale too well (more actions => longer building; more Al entities => costly)

May require additional work on the game content (tagging etc.)

* so that Al can interact with the world (e.g. tagging certain entities as ‘doors’, adding cover
points...)

Designh complexity

* Designers can only affect behavior indirectly, via utility costs of actions and other means;
they might have issues ‘reading the state’

Debugging ‘fairly complex’

* Depends on your tooling and/or skillset but might require a programmer

Goal Oriented Action Planning - Overall

* Leads to systemic behavior => dynamic gameplay => more replay
value (than statically scripted game sections)

e Can run into problems at scale
* Building plans is a lot of calculations, so too many entities can be problematic

e Can lead to very interesting gameplay choices

o—©O o o o—©
Static Scripted State Behavior GOAP Dynamic
Al machines trees

Wrap up!

* None of the solutions represented is a ‘silver bullet’
* You could use multiple or neither in a successful game

e Data-driven is the way to go
* Leave the ‘grunt’ work to game/content designers! :)

Further topics for those interested

* Game Al systems/architectures
e Hierarchical Task Network Planning (HTN)
* Hierarchical State Machines

e Other interesting topics
e Pathfinding
* Nav-mesh building (and simplification)
* Entity detection, collision detection

References

* Fenlon, W. (2016, March 31). How cats get drunk in Dwarf Fortress, and why its creators haven’t figured out
time travel (yet). Pcgamer.

* GDC. (2017, October 9). Goal-Oriented Action Planning: Ten years of Al programming [Video]. YouTube.

https://www.pcgamer.com/how-cats-get-drunk-in-dwarf-fortress-and-why-its-creators-havent-figured-out-time-travel-yet/
https://www.pcgamer.com/how-cats-get-drunk-in-dwarf-fortress-and-why-its-creators-havent-figured-out-time-travel-yet/
https://www.youtube.com/watch?v=gm7K68663rA

Thank you!

	Title
	Snímek 1: Brains in Games – Artificial intelligence in videogames
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5

	Intro
	Snímek 6: Foreword – meaning of ‘AI’
	Snímek 7: Not really talking about ChatGPT
	Snímek 8: Not really talking about ChatGPT
	Snímek 9: What is ‘game AI’?
	Snímek 10: What is ‘game AI’? - Entities
	Snímek 11: What is ‘game AI’? - Entities
	Snímek 12: What is ‘game AI’? - Entities
	Snímek 13: What is ‘game AI’?
	Snímek 14: Specific demands of games
	Snímek 15: Specific demands of games

	Loading Hints
	Snímek 16: Before we start…
	Snímek 17: Before we start…
	Snímek 18: Before we start…
	Snímek 19: Before we start…
	Snímek 20: Before we start…
	Snímek 21: Note: Static vs Dynamic behavior

	Scripted
	Snímek 22: ‘Scripted behavior’
	Snímek 23: ‘Scripted behaviour’
	Snímek 24: ‘Scripted behaviour’
	Snímek 25: ‘Scripted behavior’
	Snímek 26: ‘Scripted behavior’
	Snímek 27: ‘Scripted behavior’
	Snímek 28: ‘Scripted behavior’
	Snímek 29: ‘Scripted behavior’ – Example
	Snímek 30: ‘Scripted behavior’
	Snímek 31: ‘Scripted behavior’ – Advantages
	Snímek 32: ‘Scripted behavior’ – Disadvantages
	Snímek 33: ‘Scripted behavior’ - Overall

	State Machines
	Snímek 34: State machines
	Snímek 35: State machines
	Snímek 36: State machines – Example Usage
	Snímek 37: State machines – Example Usage
	Snímek 38: State machines – Example Usage
	Snímek 39: State machines – Example Usage
	Snímek 40: State machines – Example Usage
	Snímek 41: State machines - Advantages
	Snímek 42: State machines – Example Usage
	Snímek 43: State machines - Disadvantages
	Snímek 44: State machines - Overall

	Behaviour trees
	Snímek 45: Behavior trees
	Snímek 46: Behavior trees - Basics
	Snímek 47: Behavior trees - Mechanism
	Snímek 48: Behavior trees - Example
	Snímek 49: Behavior trees - Example
	Snímek 50: Behavior trees - Example
	Snímek 51: Behavior trees - Advantages
	Snímek 52: Behavior trees - Disadvantages
	Snímek 53: Behavior trees - Overall
	Snímek 54: Side-quest: Utility-based approaches
	Snímek 55: Utility-based approaches
	Snímek 56: Utility-based approaches
	Snímek 57: Utility-based approaches
	Snímek 58: Utility-based approaches - Overall
	Snímek 59: Side-quest completed
	Snímek 60: Goal Oriented Action Planning (GOAP)
	Snímek 61: Goal Oriented Action Planning - Basics
	Snímek 62: Goal Oriented Action Planning - Mechanism
	Snímek 63: Goal Oriented Action Planning - Mechanism
	Snímek 64: Goal Oriented Action Planning – Game Examples
	Snímek 65: Goal Oriented Action Planning – Game Examples
	Snímek 66: Goal Oriented Action Planning – Game Examples
	Snímek 67: Goal Oriented Action Planning - Advantages
	Snímek 68: Goal Oriented Action Planning - Disadvantages
	Snímek 69: Goal Oriented Action Planning - Overall
	Snímek 70: Wrap up!
	Snímek 71: Further topics for those interested
	Snímek 72: References
	Snímek 73: Thank you!

