
Brains in Games
–

Artificial intelligence
in videogames

Jiří Hanák

Foreword – meaning of ‘AI’

• ‘AI’ - a bit distorted term
• Same word, different meanings – depends on who you ask

• In this presentation, AI:
• doesn’t mean a LLM, a tool for content generation

• means a controller for non-player entities in video games

Not really talking about ChatGPT

• Not this:

Fig 1. LLM spewing nonsense. ChatGPT, OpenAI, 2024

Not really talking about ChatGPT

• But this:

Fig 2. A situation that can actually happen in a game with robust AI. FarCry 5, Ubisoft, 2018

What is ‘game AI’?

• System for controlling in-game entities

What is ‘game AI’? - Entities

• System for controlling in-game entities

Fig 3. ‘AI entities’ can mean a horde of zombies. Days Gone, Bend Studio, 2021

What is ‘game AI’? - Entities

• System for controlling in-game entities

Fig 4. AI is often used for controlling ‘baddies’, like the group of cultists here. Far Cry
5, Ubisoft, 2018

What is ‘game AI’? - Entities

• System for controlling in-game entities

Fig 5. But AI can control friendly entities just as well - like this bunch of cute
slimes. Slime Rancher 2, Monomi Park, 2022

What is ‘game AI’?

• System for controlling in-game entities
• Movement / pathfinding

• Combat

• Interaction with world / other entities

• Cooperation / Competition

• Goal
• Good ‘actors’

• Breathing life into the world

• Fun experience
Fig 6. Controlling enemy entities – like this group of gnolls in Baldur’s
Gate - is what game AI is very often about. Baldur’s Gate 3, Larian,
2023

Specific demands of games

• Performance considerations
• Running in real time – AI needs to react to player & world changes

• 60 FPS is ~16ms of CPU per frame – total budget , machine dependent :(

• Design considerations
• Tuning behaviours is necessary – the goal is a fun game and that often involves

challenge

• Deterministic vs reactive
• other aspect of fun can be overcoming rulesets

• Every game’s different

Fig 7. Overcoming AI rules can be very satisfying for tough enemies that are
otherwise hard to beat – if you play it right, Commander O’Neill can follow
you into deadly geysers of scarlet rot. Elden Ring, FromSoftware, 2022

Specific demands of games

• Performance considerations
• Running in real time – AI needs to react to player & world changes
• 60 FPS is ~16ms of CPU per frame – total budget , machine dependent :(

• Design considerations
• Tuning behaviours is necessary – the goal is a fun game and that often involves

challenge
• Deterministic vs reactive

• other aspect of fun can be overcoming rulesets

• Every game’s different

• Player expectations
• AI needs to behave in a believable manner
• AI needs to provide a challenge that’s ‘just right’

Fig 8. An NPC walking into an obstacle. Starfield, Bethesda, 2023

Before we start…

Before we start…

• Multiple techniques, we’ll scratch the surface

Attain knowledge to know more!

Before we start…

• Multiple techniques, we’ll scratch the surface

• No generally correct approach – complex implementation != fun (or
successful) game
• When you’re holding a hammer, everything looks like a nail

• Learn to realize when you need to use a screwdriver
• (or when duct tape will do..!)

Choosing the right approach is half the battle

Before we start…

• Multiple techniques, we’ll scratch the surface

• No generally correct approach – complex implementation != fun (or
successful) game
• When you’re holding a hammer, everything looks like a nail

• Learn to realize when you need to use a screwdriver
• (or when duct tape will do..!)

• Evolving field, YOU could be the one to come up with a new solution

The field of game AI is incomplete, you may help by expanding it

Before we start…

• Multiple techniques, we’ll scratch the surface

• No generally correct approach – complex implementation != fun (or
successful) game
• When you’re holding a hammer, everything looks like a nail

• Learn to realize when you need to use a screwdriver
• (or when duct tape will do..!)

• Evolving field, YOU could be the one to come up with a new solution

• There’s always a trade-off somewhere, learn to live with it

Perfect is the enemy of good (or released!) game

Note: Static vs Dynamic behavior

• Techniques differ in various aspects, you could categorize along either

• E.g. how static vs. dynamic the resulting behavior is:

• ‘Static’ = AI controlled entities always behave the same way

• ‘Dynamic’ = AI controlled entities can surprise the player, they adjust their
plans according to situation

• As everything in life, it’s a spectrum :)

Static Dynamic

‘Scripted behavior’

‘Scripted behaviour’

• Behaviour of non-player entities is determined ahead of time

• Driven by code that describes a sequence of conditions and actions, a
‘script’
• E.g. Tower in tower defense games – ‘If enemy is close enough, shoot’

• Complexity varies – can be used in different genres and scenarios
• Or just specific parts of a game

‘Scripted behaviour’

• Can take the form of direct instruction set
• Go to this location

• Look at the player

• Shoot them with a bazooka

• Put on sunglasses

• Or conditions that are evaluated and trigger actions
• If an enemy passes by close enough, shoot them with a cannon

• Once every 5 seconds, pop up from the trench and shoot in the player’s
direction

• …or a combination of either

‘Scripted behavior’

Fig. 9. Ghosts in Pac-Man use fairly simple conditions for their behaviour. Pac-Man,
Namco, 1980.

‘Scripted behavior’

Fig. 10. Raids in World of Warcraft have bosses whose behaviour follows a pre-
determined script. World of Warcraft, Blizzard Entertainment, 2004.

‘Scripted behavior’

Fig. 11. Enemies in a tower defense game. Kingdom Rush, Ironhide Game Studio, 2014.

‘Scripted behavior’

Fig. 12. A whole sequence can be scripted – enemy vehicles spawn from predetermined
points, follow a path while the soldiers shoot the player. Call of Duty 2, Infinity Ward, 2005.

‘Scripted behavior’ – Example

‘Scripted behavior’

• Code often written in a different programming (‘scripting’) language
different from the rest of the game (Lua, Python, C#, often custom
solution)

• Designer accessibility
• Less work for programmers :)

• Technical reason – scripts compiled separately / evaluated at runtime; faster
iteration when developing game content

‘Scripted behavior’ – Advantages

• Direct control over the game experience
• Adjust difficulty, pacing, …

• Authored by game-designers (usually)
• Programmers can focus on other things :)

• ‘Solvable’ by players - Can be advantageous to certain game genres

• Generally cheap, performance-wise

‘Scripted behavior’ – Disadvantages

• Amount of work!

• Game-designers can only work with what we give them :(
• Programmers may need to expose additional functionality as scripts grow

• Predictability – limits replay-ability

• Not very responsive to player behavior
• Behavior and the conditions to set it off need to be prepared

‘Scripted behavior’ - Overall

• Works surprisingly well for certain genres

• Usually used as a part of more complex solution

• Is this (strictly speaking) AI?
• Debatable :)

Static DynamicScripted
AI

State machines
or Finite State Machines (FSM)

State machines

• A graph of states the entity can currently be in

• Defined connections/transitions between states

• Simple example – lightbulb

Light off Light on

Turn on

Turn off

Interact with the switch

State machines – Example Usage

IDLE

Fig. 13. A character model
‘Wraith’ from an unreleased
game. Paragon Asset Pack,
Epic Games, ~2020.

State machines – Example Usage

IDLE PATROL

Idle for 15 s

Patrol completed

Fig. 14. Patrolling is NPC’s
bread and butter. Paragon
Asset Pack, Epic Games,
~2020.

State machines – Example Usage

IDLE PATROL

ATTACK

Idle for 15 s

Patrol completed

Fig. 14. Patrolling is NPC’s
bread and butter. Paragon
Asset Pack, Epic Games,
~2020.

State machines – Example Usage

IDLE PATROL

ATTACK

Idle for 15 s

Patrol completed

Fig. 15. This NPC woke up
and chose violence. Paragon
Asset Pack, Epic Games,
~2020.

No enemy
in sight

See enemy
while idling

State machines – Example Usage

IDLE PATROL

ATTACK

Idle for 15 s

Patrol completed

Fig. 16. Discretion is better
part of valor. Paragon Asset
Pack, Epic Games, ~2020.

FLEE

Friends won

No enemy
in sight

See enemy
while idling

State machines - Advantages

• More complex entity behavior

• Could still be authored by game designers :)
• With the right support (tooling, exposing behaviors…)

• You can have graphs within graphs – see hierarchical state machines

State machines – Example Usage

IDLE PATROL

ATTACK

Scenario start

Patrol completed

Fig. 17. It’s getting pretty
complex. Paragon Asset Pack,
Epic Games, ~2020.

FLEE

Friends won

No enemy
in sight

SEARCH

Heard a
noise?

Must have
been rats

It wasn’t
rats!

See no evil

See enemy
while idling

State machines - Disadvantages

• States and transitions have to be explicitly defined
• Difficult to have things that ‘happen regardless of state’ – e.g. always flee

when health is low

• Always in just one state
• Difficult to do model things that could be feasibly done at once (run & shoot)

• Complexity-creep
• Can be tamed with hierarchical state machines (or worsened)

State machines - Overall

• Basic system that can work well in many games

• Doesn’t have to be complex to allow complex behaviors
• Complexity can be manageable if hierarchies are used, states and transitions

well thought out

• Can lead to fairly responsive AI entities
• while allowing for design control

Static DynamicScripted
AI

State
machines

Behavior trees

Behavior trees - Basics

• A tree of nodes that represent states or
actions – each node has 0+ children nodes

• Tree is continuously evaluated from the
root (traversed)

• Leaf nodes represent actions

• Transitions handled by tree structure and
composite / utility / ‘meta’ nodes

• Composite nodes affect the tree traversal
and the AI agent’s behavior

ROOT

SELECTOR

IDLE SELECTOR …

SEQUENCE
MOVE

TOWARDS
…

SHOOT WAIT

Behavior trees - Mechanism

• Each node returns state
• commonly ‘success’, ‘failure’, running’

• Sequence node
• Evaluate children node one after the other

• Selector node
• Choose which child node to evaluate

• Decorator nodes
• ‘Tacked onto’ other nodes, to e.g. add a condition,

store state etc.

• Standalone nodes in some frameworks

SEQUENCE

SHOOT WAIT

IDLE
CLOSE IN

ON ENEMY
ATTACK

SELECTOR

IDLE
CLOSE IN

ON ENEMY
ATTACK

SELECTOR

ENEMY NOT
IN RANGE

ENEMY IN
RANGE

CANNOT SEE
ENEMY

Behavior trees - Example ROOT

Selector

SEQUENCE
‘GET CLOSE & ATTACK’

CAN SEE PLAYER

MOVE TO RANGE
OF PLAYER

SEQUENCE
‘ATTACK’

SHOOT WAIT

Behavior trees - Example ROOT

Selector

SEQUENCE
‘GET CLOSE & ATTACK’

CAN SEE PLAYER KNOWS PLAYER’S
LAST POSITION

SEQUENCE
‘INVESTIGATE’

MOVE TO RANGE
OF PLAYER

SEQUENCE
‘ATTACK’

SHOOT WAIT

MOVE TO
LAST KNOWN

POSITION

CLEAR LAST
KNOWN

POSITION

WAIT
5 s

Behavior trees - Example ROOT

Selector

SEQUENCE
‘GET CLOSE & ATTACK’

CAN SEE PLAYER KNOWS PLAYER’S
LAST POSITION

SEQUENCE
‘INVESTIGATE’

MOVE TO RANGE
OF PLAYER

SEQUENCE
‘ATTACK’

SHOOT WAIT

MOVE TO
LAST KNOWN

POSITION

CLEAR LAST
KNOWN

POSITION

WAIT
5 s

SEQUENCE
‘PATROL’

MOVE TO
NEXT PATROL

SPOT

WAIT
5 s

Behavior trees - Advantages

• Powerful in terms of defining behavior

• Can be defined and maintained by designers (once actions are implemented by
programmers)

• Reactive AI behavior

• Game engine support
• Most game engines will support this out of the box (e.g. Unreal, Godot, …) or have plugins (Unity)

• Fairly ‘simple’ debugging (why is the AI doing what it’s doing)
• Usually visual representation in engine or framework

Behavior trees - Disadvantages

• Can get complex
• It might get a bit difficult to define a tree that works well

• Can get performance ‘heavy’
• Each agent having its own complex tree might be too much

• Some engines/frameworks use special considerations to lessen the burden
(conditional decorator checks in Unreal etc.)

Behavior trees - Overall

• Probably the most prevalent AI approach in games today

• Entities can react to changes in the game state
• Still fairly controllable by designers (win)

• Meaning maintenance of the AI behavior is game design’s problem :)
• (until the design team comes with a requirement for a new action or decorator)

• Works well for many use-cases
• depending on tree structure you can get a lot of emergent behavior or fairly strict

sequences of actions

Static DynamicScripted
AI

State
machines

Behavior
trees

Side-quest:
Utility-based approaches

Utility-based approaches

• Behavior in previous examples fairly rigidly built
• Not quite how humans work

• Decisions we make depend on a lot of factors, often very subjective

• If we could model this, we’d be closer to a more ‘human’ behaving AI
entity
• Believable choices and behavior

• Potentially emergent behavior => interesting solutions to problems
• Or interesting new problems... (e.g. drunk cats in Dwarf Fortress)

Utility-based approaches

• Each decision the AI can make is given a
utility score, affecting the ‘choices’ the AI
makes

• The score is re-evaluated as the game state
changes

SLEEP 0.3

EAT 0.2

SLEEP 0.8

EAT 0.1

ENERGY 0.25

Fig. 18. Sometimes sleep is a priority. Sims 4,
Maxis, 2014.

Utility-based approaches

• Each decision the AI can make is given a
utility score, affecting the ‘choices’ the AI
makes

• The score is re-evaluated as the game state
changes
• Effect doesn’t have to be linear

• Multiple factors can be combined
• E.g. entity is hungry but has no food to eat – eat action

utility score will be zero

SLEEP 0.3

EAT 0.2

SLEEP 0.8

EAT 0.1

ENERGY 0.25

SLEEP 0.2

EAT 0.7

SATIETY 0.20

Fig. 19. Example hunger curve where until hunger
hits a certain threshold, it has no effect at all – AI
won’t consider eating when it’s barely hungry
(x = normalized hunger value, y = utility score).

Utility-based approaches - Overall

• Usually used as part of a more complex solution for AI

Side-quest completed

Goal Oriented Action Planning
(GOAP)

Goal Oriented Action Planning - Basics

• An AI solution where we leave the choice of what the
entity should do (and how) in a given moment to the AI
system

• Decision making is done during run-time
• AI ‘planner’ builds a plan of actions based on the state of the

in-game world, then acts on it

• ‘Utility’ approach is used on multiple levels (choosing
actions, choosing plan)

Goal Oriented Action Planning - Mechanism

• AI chooses a Goal, then builds a Plan from Actions

• Goal
• what the AI wants to ultimately do

• Plan
• a sequence of actions that should allow the AI to reach its Goal

• Action
• an in-game action the AI entity can do; each has it’s own cost

• Actions that take us closer to the Goal are selected (utility) and a plan is
created

• Plan built from the end
• Plan score can be simply a sum of action costs

• Rinse and repeat – then choose the best plan (utility score of actions)

GOAL – KILL PLAYER

PLAN 1
SMACK W/ STICK

PLAN 2
SHOOT W/ BOW

MELEE ATTACK

MOVE TO MELEE
RANGE

EQUIP MELEE
WEAPON

RANGED ATTACK

ENSURE LINE OF
SIGHT

EQUIP BOW

1 1

10 5

80

11 14

Goal Oriented Action Planning - Mechanism

• AI chooses a Goal, then builds a Plan from Actions

• Goal
• what the AI wants to ultimately do

• Plan
• a sequence of actions that should allow the AI to reach its Goal

• Action
• an in-game action the AI entity can do; each has it’s own cost

• Actions that take us closer to the Goal are selected (utility) and a plan is
created

• Plan built from the end
• Plan score can be simply a sum of action costs

• Rinse and repeat – then choose the best plan (utility score of actions)

• Action costs can be conditional

GOAL – KILL PLAYER

PLAN 1
SMACK W/ STICK

PLAN 2
SHOOT W/ BOW

MELEE ATTACK

MOVE TO MELEE
RANGE

EQUIP MELEE
WEAPON

RANGED ATTACK

ENSURE LINE OF
SIGHT

EQUIP BOW

NO STICK :(

1 1

10 5

88

19 14

Goal Oriented Action Planning – Game Examples

Fig. 20. The game where GOAP made its debut. F.E.A.R., 2005, Monolith
Productions.

Goal Oriented Action Planning – Game Examples

Fig. 21. Middle-earth: Shadow of Mordor, 2014, Monolith Productions.

Goal Oriented Action Planning – Game Examples

Fig. 22. Tomb Raider, 2013, Monolith Productions.

Goal Oriented Action Planning - Advantages

• Given action building blocks, AI agent can achieve a lot of goals

• Entity should be naturally trying to do things that bring it closer to its
Goal => it will do things the player might do in their shoes!
• E.g. An NPC in a turn-based RPG game wants to attack our player character

• But our character is just outside of their range of movement

• What if they have a potion of speed in their pockets…

• They can use that, move closer and smack the player (with a stick)!

• Usable for different genre of games (not only combat-oriented)

Goal Oriented Action Planning - Disadvantages

• Performance heavy
• AI will prefer the simplest plan (lowest cost / highest utility score) but can still build multiple

• And doesn’t scale too well (more actions => longer building; more AI entities => costly)

• May require additional work on the game content (tagging etc.)
• so that AI can interact with the world (e.g. tagging certain entities as ‘doors’, adding cover

points…)

• Design complexity
• Designers can only affect behavior indirectly, via utility costs of actions and other means;

they might have issues ‘reading the state’

• Debugging ‘fairly complex’
• Depends on your tooling and/or skillset but might require a programmer

Goal Oriented Action Planning - Overall

• Leads to systemic behavior => dynamic gameplay => more replay
value (than statically scripted game sections)

• Can run into problems at scale
• Building plans is a lot of calculations, so too many entities can be problematic

• Can lead to very interesting gameplay choices

Static DynamicScripted
AI

State
machines

Behavior
trees

GOAP

Wrap up!

• None of the solutions represented is a ‘silver bullet’
• You could use multiple or neither in a successful game

• Data-driven is the way to go
• Leave the ‘grunt’ work to game/content designers! :)

Further topics for those interested

• Game AI systems/architectures
• Hierarchical Task Network Planning (HTN)

• Hierarchical State Machines

• Other interesting topics
• Pathfinding

• Nav-mesh building (and simplification)

• Entity detection, collision detection

References

• Fenlon, W. (2016, March 31). How cats get drunk in Dwarf Fortress, and why its creators haven’t figured out
time travel (yet). Pcgamer. https://www.pcgamer.com/how-cats-get-drunk-in-dwarf-fortress-and-why-its-
creators-havent-figured-out-time-travel-yet/

• GDC. (2017, October 9). Goal-Oriented Action Planning: Ten years of AI programming [Video]. YouTube.
https://www.youtube.com/watch?v=gm7K68663rA

https://www.pcgamer.com/how-cats-get-drunk-in-dwarf-fortress-and-why-its-creators-havent-figured-out-time-travel-yet/
https://www.pcgamer.com/how-cats-get-drunk-in-dwarf-fortress-and-why-its-creators-havent-figured-out-time-travel-yet/
https://www.youtube.com/watch?v=gm7K68663rA

Thank you!

	Title
	Snímek 1: Brains in Games – Artificial intelligence in videogames
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5

	Intro
	Snímek 6: Foreword – meaning of ‘AI’
	Snímek 7: Not really talking about ChatGPT
	Snímek 8: Not really talking about ChatGPT
	Snímek 9: What is ‘game AI’?
	Snímek 10: What is ‘game AI’? - Entities
	Snímek 11: What is ‘game AI’? - Entities
	Snímek 12: What is ‘game AI’? - Entities
	Snímek 13: What is ‘game AI’?
	Snímek 14: Specific demands of games
	Snímek 15: Specific demands of games

	Loading Hints
	Snímek 16: Before we start…
	Snímek 17: Before we start…
	Snímek 18: Before we start…
	Snímek 19: Before we start…
	Snímek 20: Before we start…
	Snímek 21: Note: Static vs Dynamic behavior

	Scripted
	Snímek 22: ‘Scripted behavior’
	Snímek 23: ‘Scripted behaviour’
	Snímek 24: ‘Scripted behaviour’
	Snímek 25: ‘Scripted behavior’
	Snímek 26: ‘Scripted behavior’
	Snímek 27: ‘Scripted behavior’
	Snímek 28: ‘Scripted behavior’
	Snímek 29: ‘Scripted behavior’ – Example
	Snímek 30: ‘Scripted behavior’
	Snímek 31: ‘Scripted behavior’ – Advantages
	Snímek 32: ‘Scripted behavior’ – Disadvantages
	Snímek 33: ‘Scripted behavior’ - Overall

	State Machines
	Snímek 34: State machines
	Snímek 35: State machines
	Snímek 36: State machines – Example Usage
	Snímek 37: State machines – Example Usage
	Snímek 38: State machines – Example Usage
	Snímek 39: State machines – Example Usage
	Snímek 40: State machines – Example Usage
	Snímek 41: State machines - Advantages
	Snímek 42: State machines – Example Usage
	Snímek 43: State machines - Disadvantages
	Snímek 44: State machines - Overall

	Behaviour trees
	Snímek 45: Behavior trees
	Snímek 46: Behavior trees - Basics
	Snímek 47: Behavior trees - Mechanism
	Snímek 48: Behavior trees - Example
	Snímek 49: Behavior trees - Example
	Snímek 50: Behavior trees - Example
	Snímek 51: Behavior trees - Advantages
	Snímek 52: Behavior trees - Disadvantages
	Snímek 53: Behavior trees - Overall
	Snímek 54: Side-quest: Utility-based approaches
	Snímek 55: Utility-based approaches
	Snímek 56: Utility-based approaches
	Snímek 57: Utility-based approaches
	Snímek 58: Utility-based approaches - Overall
	Snímek 59: Side-quest completed
	Snímek 60: Goal Oriented Action Planning (GOAP)
	Snímek 61: Goal Oriented Action Planning - Basics
	Snímek 62: Goal Oriented Action Planning - Mechanism
	Snímek 63: Goal Oriented Action Planning - Mechanism
	Snímek 64: Goal Oriented Action Planning – Game Examples
	Snímek 65: Goal Oriented Action Planning – Game Examples
	Snímek 66: Goal Oriented Action Planning – Game Examples
	Snímek 67: Goal Oriented Action Planning - Advantages
	Snímek 68: Goal Oriented Action Planning - Disadvantages
	Snímek 69: Goal Oriented Action Planning - Overall
	Snímek 70: Wrap up!
	Snímek 71: Further topics for those interested
	Snímek 72: References
	Snímek 73: Thank you!

