- From the given vectors v_1, \dots, v_{n+2} , form vectors $w_1, \dots, w_{n+2} \in \mathbb{R}^{n+1}$ so that their first n coordinates are the same as those of corresponding v_i 's and their last coordinate is 1. The vectors w_i being linearly dependent (there is more of them then the dimension of the space), there is a non-trivial linear combination resulting in zero. This equality in the last coordinate forces the sum of coefficients to be zero as desired.
- Firstly,

$$k\binom{s}{k} = s\binom{s-1}{k-1},$$

so we need to compute

$$\sum_k \binom{n}{k} \binom{s-1}{k-1}.$$

However, this is just a special case of the problem 3.3 (domácí série), thus the result is

$$s\binom{n+s-1}{n-1}$$
.

Second solution. Let P be the set of prime numbers, and for an infinite subset $\Sigma = \{p_0, p_1, ...\}$ of P arranged in increasing order assign

$$A_{\Sigma} = \{p_0, p_0p_1, p_0p_1p_2, \ldots\}.$$

The prime factorization for integers is unique, hence if $\Sigma' \subseteq P$ is another infinite subset of P different from Σ , then A_{Σ} and $A_{\Sigma'}$ have only finitely many common terms. Since the number of different Σ 's is continuum (see Problems 5 and 2.4), we are done.

Third solution. It is sufficient to show the result for Q rather than for N, i.e., that there are continuum many sets $A_{\gamma} \subset \mathbf{Q}$ such that if $\gamma_1 \neq \gamma_2$, then $A_{\gamma_1} \cap A_{\gamma_2}$ is a finite set. Now choose for every $\gamma \in \mathbf{R}$ a rational sequence $A_{\gamma} =$ $\{r_k^{(\gamma)}\}_{k=0}^{\infty}$ converging to γ . These A_{γ} sets clearly satisfy the requirements, for two sequences converging to different limits can have only finitely many terms

$$(2) \left(1 + \frac{1}{M}\right) \left(1 + \frac{1}{M^2}\right) \left(1 + \frac{1}{M^4}\right) \dots = 1 + \frac{1}{M} + \frac{1}{M^2} + \frac{1}{M^3} + \dots = 1 + \frac{1}{M-1}.$$

b) From (2) α is rational if its product ends in the stated way. Conversely, suppose α is the rational number $\frac{p}{q}$. Our aim is to show

$$\theta_{m-1} = \frac{n_m}{n_m - 1}.$$
 $\theta_k = \frac{\alpha}{\prod_{1}^k (1 + \frac{1}{n_t})}$

Suppose this is not the case, so that for every m,

$$\theta_{m-1} < \frac{n_m}{n_m - 1}.$$

For each k we write

$$\theta_k = \frac{p_k}{q_k}$$

as a fraction (not necessarily in lowest terms) where

$$p_0 = p, \quad q_0 = q$$

and in general

$$p_k = p_{k-1}n_k, \quad q_k = q_{k-1}(n_k+1).$$

The numbers $p_k - q_k$ are positive integers: to obtain a contradiction it suffices to show that this sequence is strictly decreasing. Now,

$$\begin{array}{lll} p_k - q_k - (p_{k-1} - q_{k-1}) & = & n_k p_{k-1} - (n_k + 1)q_{k-1} - p_{k-1} + q_{k-1} \\ \\ & = & (n_k - 1)p_{k-1} - n_k q_{k-1} \end{array}$$

and this is negative because

$$\frac{p_{k-1}}{q_{k-1}} = \theta_{k-1} < \frac{n_k}{n_k - 1}$$

by inequality (3).