Two Conjectures of Astala on Distortion of Sets under Quasiconformal Maps and related Removability Problems

Ignacio Uriarte-Tuero

(joint works with Michael T. Lacey, István Prause, Eric T. Sawyer, and Xavier Tolsa)

September 25, 2011

SIZE OF SETS: HAUSDORFF MEASURES AND DIMENSION

DEFINITION

A "gauge function" is a continuous increasing $h:[0,\infty)\to[0,\infty)$ such that h(0)=0.

Let $E \subset \mathbb{C}$ be compact and let $0 < \delta \leq \infty$. Define

$$\mathcal{H}^h_{\delta}(E) = \inf \left\{ \sum_{i=1}^{\infty} h(r_i) : E \subset \cup_{i=1}^{\infty} B(x_i, r_i), 2r_i \leq \delta \right\}$$

If $\delta = \infty$: \mathcal{H}_{∞}^{h} is called Hausdorff content.

$$\mathcal{H}^h(E) = \lim_{\delta \to 0} \mathcal{H}^h_{\delta}(E)$$
 "Hausdorff Measure"

If
$$h(t) = t^s$$
, then $\mathcal{H}^h(E) = \mathcal{H}^s(E)$
 $Dim(E) = \inf\{s > 0 : \mathcal{H}^s(E) = 0\} = \sup\{t > 0 : \mathcal{H}^t(E) = \infty\}$
 $\mathcal{H}^s(E) = 0$ if and only if $\mathcal{H}^s_\infty(E) = 0$

An orientation-preserving homeomorphism $\phi:\Omega\to\Omega'$ between planar domains $\Omega,\Omega'\subset\mathbb{C}$ is called K-quasiconformal (K-QC) if it belongs to the Sobolev space $W^{1,2}_{loc}(\Omega)$ and satisfies the distortion inequality

$$\max_{\alpha} |\partial_{\alpha} \phi| \le K \min_{\alpha} |\partial_{\alpha} \phi| \quad \text{a.e. in } \Omega . \tag{1}$$

Actually, $J(z, \phi) \leq |D\phi(z)|^2 \leq K J(z, \phi)$

If ϕ is just required to be continuous instead of homeomorphism: ϕ is K-quasiregular (K-QR)

In \mathbb{C} , any ϕ K-QR solves the Beltrami equation $\overline{\partial}\phi = \mu\partial\phi$, where $\|\mu\|_{\infty} \leq \frac{K-1}{K+1} =: k < 1$. (Recall $\overline{\partial}f = \frac{1}{2}(f_X + if_Y)$ and $\partial f = \frac{1}{2}(f_X - if_Y)$.)

Using Calderón-Zygmund theory: there is a unique homeomorphic normalized solution f to Beltrami (e.g. fixing 0, 1, ∞ .)

Why QC maps are important

- Generalize conformal maps to \mathbb{R}^n
- Geometry: hyperbolic 3-manifolds, Kleinian groups
- Dynamics: quasiconformal removability appears in problems related to MLC, Fatou conjecture (that hyperbolic systems are dense.) It started with $p_i(z) = z^2 + i$: exterior of Julia set is John domain, so its boundary is removable (first non-trivial example, non-quasicircle, -dendrite-): Jones (91).
- PDE: complex gradient $(u_x, -u_y)$ of solutions to p-Laplacian $div(|\nabla u|^{p-2}\nabla u)=0$ are qr. (Bojarski, Iwaniec, p>2; Manfredi, 88, $1< p<\infty$)
- PDE: inverse problems: geophysical prospecting, medical imaging (electrical impedance tomography): assume $\Omega \subset \mathbb{R}^n$ is bounded domain, connected complement, and $\sigma, \sigma^{-1}: \Omega \to (0, \infty)$ measurable, bounded.

WHY QC MAPS ARE IMPORTANT II: INVERSE PROBLEMS CONT'D

Given boundary values $\phi \in H^{\frac{1}{2}}(\partial\Omega)$, let $u \in H^1(\Omega)$ be the unique solution to the conductivity equation:

$$\nabla \cdot \sigma \nabla u = 0 \quad \text{in } \Omega, \quad u = \phi \quad \text{on } \partial \Omega$$
 (2)

It describes behavior of electric potential in a conductive body. A.P. Calderón (80): can one recover conductivity σ from boundary measurements? I.e. from Dirichlet to Neumann map

$$\Lambda_{\sigma}: \phi \to \sigma \frac{\partial u}{\partial \nu}\Big|_{\partial\Omega}$$

u: outer normal to $\partial\Omega$; $\sigma\frac{\partial u}{\partial\nu}\in H^{-\frac{1}{2}}(\partial\Omega)$, defined by $\langle\sigma\frac{\partial u}{\partial\nu},\psi\rangle=\int_{\Omega}\sigma\nabla u\cdot\nabla\psi$ dm, where $\psi\in H^1(\Omega)$, dm= Lebesgue. Sylvester, Uhlmann (Annals 87); Nachman (Annals 96): let $v=\sigma^{\frac{1}{2}}u$. From (2), get $\Delta v-qv=0$ where $q=\sigma^{-\frac{1}{2}}\Delta\sigma^{\frac{1}{2}}$: need 2 derivatives (smoothness in σ .)

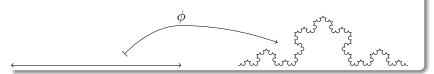
Astala, Päivärinta (Annals 06): use qc maps substitution: positive answer to Calderón's problem in \mathbb{R}^2 with $\sigma \in L^\infty$

 PDE: nonlinear elasticity: Antman, Ball, Ciarlet: maps minimizing energy integrals: they are not always qr, but same governing PDEs.

Infinitesimally, quasiconformal mappings carry circles to ellipses with eccentricity at most K.

Macroscopically: they take discs to "quasidiscs" (one can inscribe and circunscribe circles of radii r and R such that $\frac{R}{r} \leq C(K)$). I.e. something somewhat round, neither "cigarettes" nor "horseshoes".

These mappings can distort dimension



THEOREM (STOILOW FACTORIZATION)

Let f be the homeomorphic normalized solution to the Beltrami equation:

$$\overline{\partial}\phi = \mu\partial\phi$$
, where $\|\mu\|_{\infty} < 1$. (3)

Let $g \in W^{1,2}_{loc}(\Omega)$ be another solution to (3) Then there exists a holomorphic $\psi : f(\Omega) \to \mathbb{C}$ such that $g(z) = \psi(f(z))$. Conversely, for any holomorphic ψ in $f(\Omega)$, $\psi \circ f \in W^{1,2}_{loc}$ and solves Beltrami in $f^{-1}(\Omega)$.

Examples of K-quasiconformal f:

- f conformal
- f bilipschitz $(c|z-w| \le |f(z)-f(w)| \le C|z-w|)$
- radial stretching: $z \to |z|^{K-1}z$; $z \to |z|^{\frac{1}{K}-1}z$

Theorem (Astala - Area Distortion - Acta '94) If ϕ is K-quasiconformal, then

$$|\phi(E)| \lesssim |E|^{1/K}$$
.

Theorem (Astala - Higher Integrability - Acta '94) If ϕ is K-quasiconformal, then

$$\|\phi\|_{W_{loc}^{1,p}} < \infty, \qquad p < \frac{2K}{K-1} (> 2!).$$

THEOREM (ASTALA - H-DIMENSION DISTORTION - ACTA '94) For any compact set E with Hausdorff dimension 0 < t < 2 and any K-quasiconformal mapping ϕ we have

$$\frac{1}{K} \left(\frac{1}{t} - \frac{1}{2} \right) \le \frac{1}{\dim(\phi E)} - \frac{1}{2} \le K \left(\frac{1}{t} - \frac{1}{2} \right) \tag{4}$$

Finally, these bounds are optimal, in that equality may occur in either estimate.

In other words, $\dim(E) \leq t$ implies $\dim(\phi E) \leq t' = \frac{2Kt}{2+(K-1)t}$. Equation (4) conjectured by Iwaniec, Martin - Acta '93 (n instead of 2.)

Progress on these questions in higher dimensions is much harder.

Main Theorem (Lacey, Sawyer, UT - Acta '10)

If ϕ is a planar K-quasiconformal mapping, $0 \le t \le 2$ and $t' = \frac{2Kt}{2+(K-1)t}$, then we have the implication below for all compact sets $E \subset \mathbb{C}$.

$$\mathcal{H}^{t}(E) = 0 \implies \mathcal{H}^{t'}(\phi E) = 0,$$
 (5)

If ϕ is K-quasiconformal, ϕ^{-1} is also K-quasiconformal

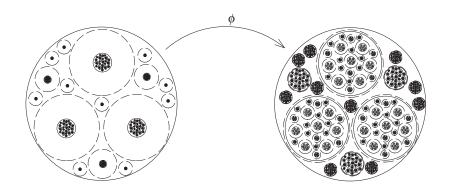
So, it follows that

$$\mathcal{H}^{t'}(\phi E) > 0 \implies \mathcal{H}^{t}(E) > 0.$$

$$\mathcal{H}^{t}(E) < \infty$$
 need not imply $\mathcal{H}^{t'}(\phi E) = 0$. (UT - IMRN '08)

The conclusion $\mathcal{H}^{t'}(E)=0$ cannot be strengthened to H-D w.r.t. a gauge. (UT - IMRN '08)

For any gauge function h satisfying $\lim_{s\to 0}\frac{s^{t'}}{h(s)}=0$, there exists a compact set E and K-quasiconformal mapping ϕ with $\mathcal{H}^t(E)=0$ but $\mathcal{H}^h(\phi E)=\infty$.



DEFINITION

A K- quasicircle is the image of the unit circle under a K-quasiconformal homeomorphism of the Riemann sphere $\hat{\mathbb{C}}$. Sometimes quasilines more convenient (images of \mathbb{R} under a quasiconformal homeomorphism of the finite plane \mathbb{C}).

- A simply connected planar domain is a quasidisk if and only if it is a non-tangentially accessible domain (i.e. Harnack chain condition and two-sided corckscrew condition) (Jones).
- A simply connected planar domain D is a quasidisk if and only if it is a BMO extension domain (BMO functions relative to D, i.e. usual def. but for cubes $Q \subset D$, are planar BMO functions restricted to D) (Jones)
- A bounded and finitely connected domain D is extension domain for Sobolev spaces if and only if ∂D is a finite union of points and quasicircles (Jones). (For simply connected domains proved by Goldshtein, Latfullin, Vodopyanov.)

- Complex dynamics (Julia sets, limit sets of quasi-Fuchsian groups): rich source of examples of quasicircles with Hausdorff dimension greater than one.
- Dimension estimates of quasicircles important in theory of Kleinian groups.

Astala's Hausdorff dimension distortion theorem implies that the dimension of a $K=\frac{1+k}{1-k}$ -quasicircle Γ satisfies

$$1-k < \dim \Gamma < 1+k$$
.

The lower bound can clearly be improved: Γ is connected and compact, so dim $\Gamma=1!!$ Might the upper bound be also improvable?

Examples from complex dynamics (Ruelle) and a previous result of Becker-Pommerenke suggest the behavior

$$\dim\Gamma\leq 1+ck^2.$$

Conjecture (Astala '94)

Let Γ_k be a $K = \frac{1+k}{1-k}$ -quasicircle. Then

$$\dim(\Gamma_k) \le 1 + k^2 ,$$

and this bound is sharp.

THEOREM (SMIRNOV)

Let Γ_k be a $K = \frac{1+k}{1-k}$ -quasicircle. Then

$$\dim(\Gamma_k) \leq 1 + k^2 .$$

Theorem (Astala, Rohde, Schramm)

There exists a $K = \frac{1+k}{1-k}$ -quasicircle Γ_k with

$$\dim(\Gamma_k) \ge 1 + 0.69k^2.$$

So sharpness is still open (important connections to extremal behaviour of harmonic measure -Prause, Smirnov-)

THEOREM (PRAUSE, TOLSA, UT)

If Γ is a K-quasicircle in $\hat{\mathbb{C}}$, then

$$\mathcal{H}^{1+k^2}(\Gamma \cap B(z,r)) \leq C(K)r^{1+k^2}$$
 for all $z \in \mathbb{C}$ and with $k = \frac{K-1}{K+1}$.

IDEAS OF PROOF

- Factorization into "conformal inside" and "conformal outside" parts.
- Conformal inside part: taken care of by Smirnov
- Conformal outside part: use techniques from Lacey-Sawyer-UT (for the proof of first mentioned conjecture of Astala): boundedness of the Beurling transform with respect to weights arising from a special packing condition.
- Extra difficulties: [LSUT] well suited to estimate Hausdorff contents, we need Hausdorff measures. Factorization of quasiconformal maps and packing conditions are much more delicate in our case.

RELEVANCE OF THE FIRST CONJECTURE: ANALYTIC CAPACITY

- $E \subset \mathbb{C}$ compact
- $\gamma(E) = 0$ if and only if for any $U \supset E$ open, any bounded analytic $f: U \setminus E \to \mathbb{C}$, extends analytically to U.
- Independent of *U*
- $\mathcal{H}^1(E) = 0$ implies $\gamma(E) = 0$ (Painlevé): hence $\dim_H(E) < 1$ implies $\gamma(E) = 0$.
- $dim_H(E) > 1$ implies $\gamma(E) > 0$ (Ahlfors Duke '47)
- If $0 < \mathcal{H}^1(E) < \infty$ (or sigma-finite): $E = G \cup R \cup N$ (disjoint union), with $\mathcal{H}^1(G) = 0$, $\mathcal{H}^1(R \setminus \bigcup_{i=1}^{\infty} \Gamma_i) = 0$ (Γ_i Lipschitz or C^1 curves), for any rectifiable Γ , $\mathcal{H}^1(N \cap \Gamma) = 0$ (e.g. Garnett set)
 - Then, $\gamma(E)=0$ if and only if $R=\emptyset$ (David Rev. Mat. Ib. '98; Tolsa Acta '03)
- General case: crucial Tb theorem (Nazarov-Treil-Volberg -Acta '03); complete solution (Tolsa - Acta '03).

RELEVANCE OF THE FIRST CONJECTURE: I^{∞} -K-REMOVABILITY

- $E \subset \mathbb{C}$ compact is L^{∞} -K-removable if any $f : \mathbb{C} \setminus E \to \mathbb{C}$ in L^{∞} , K-quasiregular, can be extended to a global $(\mathbb{C} \to \mathbb{C})$ K-quasiregular map.
 - By Stoilow and Liouville's thms, such extension is constant.
- By Stoilow's theorem, the critical dimension is $\frac{2}{K+1}$.

Theorem (Astala, Clop, Mateu, Orobitg, UT - Duke '08)

Let $E \subset \mathbb{C}$ compact and f K-quasiregular

- (A) $\mathcal{H}^{\frac{2}{K+1}}(E) = 0$ (sigma-finite) implies $\mathcal{H}^1(fE) = 0$ (resp. sigma-finite)
- (B) $\mathcal{H}^{\frac{2}{K+1}}(E)$ sigma-finite and K > 1 implies E is L^{∞} -K-removable.
- (c) There exists E with $dim_H(E) = \frac{2}{K+1}$ not L^{∞} -K-removable.

Relevance of the first conjecture: L^{∞} -K-removability II

- Proof of easier version of case (B): if $\mathcal{H}^{\frac{2}{K+1}}(E) = 0$, E is L^{∞} -K-removable. (Conjectured Iwaniec-Martin, Acta'93; proved Astala '04 approx.)
- Let E compact, $\mathcal{H}^{\frac{2}{K+1}}(E) = 0$, and $g : \mathbb{C} \setminus E \to \mathbb{C}$ K-quasiregular, bounded.
- By Stoilow: $g = h \circ f$ with h analytic and bounded, and f K-quasiconformal.
- μ defined a.e. : solve Beltrami : f defined everywhere. The problem is whether h can be extended, i.e. whether $\gamma(fE) = 0$ for any K-quasiconformal f.
- By part (A), $\mathcal{H}^1(fE) = 0$ (quasiconformal distortion of sets: Astala's conjecture)
- By Painlevé, $\gamma(fE) = 0$, so h can be extended analytically (removability results for bounded analytic functions, i.e. analytic capacity).

Relevance of the first conjecture: L^{∞} -K-removability III

MAIN THEOREM (TOLSA, UT '09)

Let $E \subset \mathbb{C}$ compact and $\varphi : \mathbb{C} \to \mathbb{C}$ K-quasiconformal, K > 1. If E is contained in a ball B, then

$$\frac{\dot{C}_{\frac{2K}{2K+1},\frac{2K+1}{K+1}}(E)}{\mathsf{diam}(B)^{\frac{2}{K+1}}} \geq c^{-1} \left(\frac{\gamma(\varphi(E))}{\mathsf{diam}(\varphi(B))}\right)^{\frac{2K}{K+1}}.$$

Remarks

- $C_{\alpha,p}$ is a Riesz capacity associated to non linear potential.
- Indices $\alpha = \frac{2K}{2K+1}$, $p = \frac{2K+1}{K+1}$ are sharp.
- E non K-removable $\Rightarrow \dot{C}_{\frac{2K}{2K+1},\frac{2K+1}{K+1}}(E) > 0 \Rightarrow \mathcal{H}^{\frac{2}{K+1}}(E)$ non σ -finite. (Recover Astala, Clop, Mateu, Orobitg, UT '08 (B))
- Theorem only holds for K > 1.

L^{∞} -K-removability IV: Non linear potentials

$$\dot{C}_{\alpha,p}(E) = \inf \left\{ \|\psi\|_{\dot{W}^{\alpha,p}}^{p} : \psi \in C_{c}^{\infty}(\mathbb{C}), \ \psi \geq 1 \text{ on } E \right\} \\
= \sup_{\mu \in \mathcal{M}^{+}(E)} \left(\frac{\mu(E)}{\|I_{\alpha} * \mu\|_{p'}} \right)^{p}; \ I_{\alpha}(x) = \frac{c_{\alpha}}{|x|^{n-\alpha}} \text{ in } \mathbb{R}^{n}.$$

 $\mathcal{M}^+(E)$ are the positive Radon measures on E.

Wolff:

$$C_{\alpha,p}(E) \approx \sup \{ \mu(E) : \operatorname{supp}(\mu) \subset E; \ W_{\alpha,p}^{\mu}(x) \le 1 \ \forall x \in \mathbb{C} \},$$
 (7)

where

$$\dot{W}^{\mu}_{\alpha,p}(x) = \int_0^{\infty} \left(\frac{\mu(B(x,r))}{r^{2-\alpha p}}\right)^{p'-1} \frac{dr}{r}.$$

For $C_{\frac{2K}{2K+1},\frac{2K+1}{K+1}}(E)$,

$$\dot{W}^{\mu}_{\frac{2K}{2K+1},\frac{2K+1}{K+1}}(x) = \int_{0}^{\infty} \left(\frac{\mu(B(x,r))}{r^{\frac{2}{K+1}}}\right)^{\frac{K+1}{K}} \frac{dr}{r}.$$

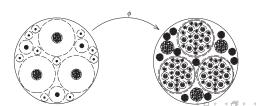
L^{∞} -K-removability IV: Sharpness

There are sets E with $\mathcal{H}^{\frac{2}{K+1}}(E)$ non σ -finite such that $\dot{C}_{\alpha,p}(E)=0$ for all α,p with $2-\alpha\,p=\frac{2}{K+1}$. New examples of K-removable sets.

THEOREM (TOLSA, UT '09)

For all $\beta, q > 0$ such that $2 - \beta q = \frac{2}{K+1}$ and $q' < \frac{K+1}{K}$, there exists $E \subset \mathbb{C}$ and a K-quasiconformal map φ such that $\gamma(\varphi E) > 0$ (and so $C_{\frac{2K}{2K+1}}, \frac{2K+1}{K+1}(E) > 0$), but $C_{\beta,q}(E) = 0$.

$$\Rightarrow$$
 $\dot{C}_{\alpha,p}(E) = 0$ if $2 - \alpha p > \frac{2}{K+1}$.



L^{∞} -K-removability V: Sharpness

THEOREM (TOLSA, UT '09)

Let h be a positive function on $(0, \infty)$ such that

$$\varepsilon(r) = \frac{h(r)}{r^{\frac{2}{K+1}}} \to 0 \quad \text{as } r \to 0.$$

Then there is a compact set $E \subset \mathbb{C}$ such that $\mathcal{H}^h(E) = 0$ and a K-quasiconformal map φ such that $\gamma(\varphi(E)) > 0$ (and thus $\dot{C}_{\frac{2K}{2K+1},\frac{2K+1}{K+1}}(E) > 0$.)

• E can be taken so that $\mathcal{H}^h(E) = 0$ for all ε which is nondecreasing and

$$\int_0^{\infty} \left(\frac{h(r)}{r^{\frac{2}{K+1}}} \right)^a \frac{dr}{r} < \infty$$

for some a > 0 (E independent of h).

More on K-removability

- Instead of L^{∞} , work with BMO.
- Analytic case: $\gamma_{BMO}(E)=0$ if and only if $\mathcal{H}^1(E)=0$ (Král Wilhelm Pieck Univ. '78; Kaufman Pacific J. '82)
- K-quasiregular case: if $\mathcal{H}^{\frac{2}{K+1}}(E)=0$, then E is BMO-K-removable (Astala, Clop, Mateu, Orobitg, UT '08). There exists E with $0<\mathcal{H}^{\frac{2}{K+1}}(E)<\infty$, not BMO-K-removable (UT '08). Hence the L^∞ and BMO K-removability problems are different (answering Question 4.2 in Astala, Clop, Mateu, Orobitg, UT '08)
- Can also work with Lipschitz (or Hölder) (α).
- Analytic case: $\gamma_{Lip(\alpha)}(E)=0$ if and only if $\mathcal{H}^{1+\alpha}(E)=0$ (Dolženko Uspekhi Mat. Nauk. '63)
- K-quasiregular case: let $d_{\alpha} = \frac{2}{K+1}(1+\alpha K)$. If $\mathcal{H}^{d_{\alpha}}(E) = 0$, E is $\operatorname{Lip}(\alpha)$ -K-removable (Clop Ann. Acad. Sci. Fenn. '07). There exists E with $0 < \mathcal{H}^{d_{\alpha}}(E) < \infty$, not $\operatorname{Lip}(\alpha)$ -K-removable (Clop, UT J. d'Analyse, '09).

IDEAS OF PROOF OF THE FIRST CONJECTURE OF ASTALA

Recall statement of Astala's conjecture: (5)

- Can reduce to the case of K-quasiconformal ϕ , with $0 < K < 1 + \epsilon$ very close to one.
- ϕ is a solution to the Beltrami equation $\overline{\partial}\phi=\mu\partial\phi$, where $\|\mu\|_{\infty}\leq K-1\leq\epsilon$.
- We have the Beurling operator which intertwines ∂ and $\overline{\partial}$:

$$\mathsf{B}\,f(z) = \int \frac{f(w)}{(z-w)^2}\,dz \wedge d\overline{z}$$

$$\partial f = 1 + \mathsf{B}(\overline{\partial}f) \qquad (\overline{\partial}f = \mu\partial f; \, \mathsf{homeo}, \, \mathsf{normalized})$$

• And so, we have a formal expansion

$$\overline{\partial} f = \mu \partial f = \mu + \mu B \mu + \mu B(\mu B \mu) + \cdots$$

• There is one additional factorization that we will come to.

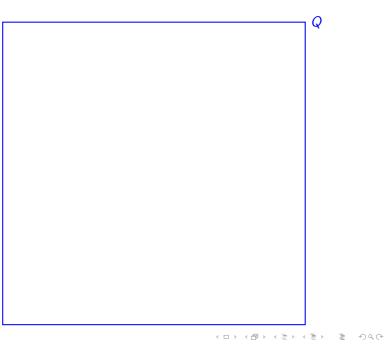
Approximating E: Packing Condition

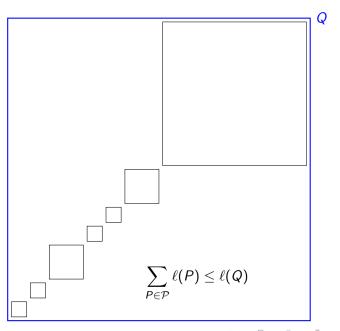
DEFINITION

Let $\mathcal P$ be a finite collection of disjoint dyadic cubes in the plane. Let 0 < t < 2. We denote the t-Carleson packing norm of $\mathcal P$ as follows:

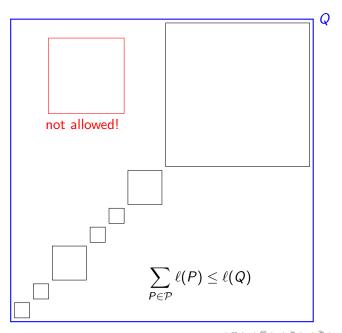
$$\|\mathcal{P}\|_{t\text{-pack}} = \sup_{Q} \left[\ell(Q)^{-t} \sum_{\substack{P \in \mathcal{P} \\ P \subset Q}} \ell(P)^{t} \right]^{1/t},$$

where the supremum is taken over all dyadic cubes Q.





4□ b 4□ b 4 \(\bar{a}\) b



Approximating E: Packing Lemma

Lemma (Packing Lemma)

Suppose E is a compact subset of $(0,1)^2 \subset \mathbb{C}$, 0 < t < 2, and $\varepsilon > 0$. Then there is a positive constant C and a finite collection of closed dyadic cubes $\mathcal{P} = \{P_i\}_{i=1}^N$ such that

- (A) $4P_i \cap 4P_j = \emptyset$ for $i \neq j$.
- (B) $E \subset \bigcup_{i=1}^{N} 12P_i$.
- (c) $\|\mathcal{P}\|_{t\text{-pack}} \leq 1$.
- (D) $\sum_{i=1}^{N} \ell(P_i)^t \leq C (\mathcal{H}_{\infty}^t(E) + \varepsilon).$

$$d\alpha = \sum_{P \in \mathcal{P}} \frac{\mathbf{1}_P}{\ell(P)^{2-t}} dx$$
 . Remember this!

A Weighted Estimate for Beurling Transform

THEOREM

For any 0 < t < 2, and any collection \mathcal{P} with $\|\mathcal{P}\|_{t\text{-pack}} < \infty$, we have

$$\|\mathsf{B}(f_{\chi_{\cup_{P \in \mathcal{P}}P}})\|_{L^p(\alpha)} \lesssim \|f\|_{L^p(\alpha)}, \qquad 1$$

HEURISTICS OF THE PROOF:

- 1 The measures α are not A_p weights, so the inequality above is certainly not trivial.
- 2 Indeed, one may need to use the general theory of two-weight inequalities, which is a rather thin literature.
- 3 A direct proof is the hardest route. Slightly easier is the weak-type approach. Easier still is the restricted weak-type approach.
- 4 The combinatorial properties of *t*-packing permit a simple self-contained proof.

Combining the Elements of the Proof

- 1 Given $\epsilon > 0$, approximate E by the Packing Lemma, approximate by the cubes \mathcal{P} .
- 2 Factorize $\varphi = \varphi_{\mathsf{in}} \circ \varphi_{\mathsf{out}}$, where $\varphi_{\mathsf{in/out}}$ is conformal in/out—side $\varphi_{\mathsf{out}} \left(\bigcup P_j \right) / \bigcup P_j$.
- 3 The inside piece has improved endpoint integrability for Sobolev spaces, so it is easier to handle (Astala - Nesi.)
- So it remains to control the outside piece, and here the weighted inequality is decisive.

Recall $d\alpha = dx \sum_{P \in \mathcal{P}} \mathbf{1}_P / \ell(P)^{2-t}$, and $\sum_{P \in \mathcal{P}} \ell(P)^t < \epsilon$.

$$\begin{split} \left(\sum_{P\in\mathcal{P}} \operatorname{diam}(f(P))^t\right)^{\frac{2}{t}} &\lesssim \int_E J(z,f) \ \alpha(dz \wedge d\overline{z}) \\ &= \int_E (|f_z|^2 - |f_{\overline{z}}|^2) \ \alpha(dz \wedge d\overline{z}) \ \ (f_z = 1 + B(f_{\overline{z}})) \\ &\leq 2 \int_E (1 + |\mathsf{B}(f_{\overline{z}})|^2 + |f_{\overline{z}}|^2) \ \alpha(dz \wedge d\overline{z}) \\ \int_E 1 \alpha(dz \wedge d\overline{z}) &= \sum_{P\in\mathcal{P}} \ell(P)^t < \epsilon \qquad \text{by construction.} \end{split}$$

$$\int_{E} |\mathsf{B}(f_{\overline{z}})|^{2} \alpha(dz \wedge d\overline{z}) \lesssim \int_{E} |(f_{\overline{z}})|^{2} \alpha(dz \wedge d\overline{z}) \qquad \text{by wtd ineq}$$

< ロ > ← 目 > ← 目 > ← 目 > ← 回

Recall: $\overline{\partial} f = \mu \partial f = \mu + \mu \, \mathsf{B} \, \mu + \mu \, \mathsf{B} (\mu \, \mathsf{B} \, \mu) + \cdots$, so

$$\left[\int_{E} |f_{\overline{z}}|^{2} \alpha (dz \wedge d\overline{z}) \right]^{1/2} \leq \sum_{n=0}^{\infty} \|\mu \, \mathbf{B} \, \mu \cdots \mathbf{B} \, \mu\|_{L^{2}(\alpha)}
\leq \sum_{n=0}^{\infty} \left[\|\mu\|_{\infty} \|\mathbf{B}\|_{L^{2}(\alpha) \to L^{2}(\alpha)} \right]^{n} \alpha(\mathbb{C})^{1/2}
< \epsilon^{1/2}$$

IDEAS OF PROOF OF REMOVABILITY RESULT:

ANALYTIC CAPACITY AND NON LINEAR POTENTIALS

THEOREM (TOLSA - INDIANA '02)

$$\gamma(E) \approx \sup \big\{ \mu(E) : \operatorname{supp}(\mu) \subset E; M\mu(x) + c_{\mu}(x) \leq 1 \ \forall x \in \mathbb{C} \big\},$$
 where $M\mu(x) = \sup_{r>0} \frac{\mu(B(x,r))}{r}, \ c_{\mu}(x)^2 = \iint \frac{1}{R(x,y,z)^2} \, d\mu(y) d\mu(z).$

Recall:

$$\dot{W}_{2/3,3/2}^{\mu}(x) = \int_0^{\infty} \left(\frac{\mu(B(x,r))}{r}\right)^2 \frac{dr}{r} \approx \sum_{k \in \mathbb{Z}} \left(\frac{\mu(B(x,2^k))}{2^k}\right)^2.$$

We have (recall Wolff: (7))

$$M\mu(x)^2 + c_\mu(x)^2 \lesssim \dot{W}^\mu_{2/3,3/2}(x) \qquad \Rightarrow \qquad \gamma(E) \gtrsim \dot{C}_{2/3,3/2}(E).$$

QC Distortion of Sets And Removability

$$\gamma$$
 and $\dot{C}_{2/3,3/2}$

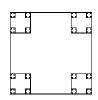
$$\gamma \gtrsim \dot{C}_{2/3,3/2}$$
.

But it is false that $\gamma \approx C_{2/3,3/2}$.

Example: if L is a segment, then

$$\gamma(L) = \frac{\mathcal{H}^1(L)}{4}, \qquad \dot{C}_{2/3,3/2}(L) = 0.$$

But for "typical Cantor sets", $\gamma(F) \approx C_{2/3,3/2}(F)$.



FIRST STEP FOR PROOF OF MAIN RESULT

Distortion of $C_{2/3,3/2}$:

THEOREM (TOLSA, UT '09)

Let $E \subset \mathbb{C}$ compact and $\varphi : \mathbb{C} \to \mathbb{C}$ K-quasiconformal, K > 1. If E is contained in a ball B, then

$$\frac{\dot{C}_{\frac{2K}{2K+1},\frac{2K+1}{K+1}}(E)}{\operatorname{diam}(B)^{\frac{2}{K+1}}} \geq c^{-1} \left(\frac{\dot{C}_{2/3,3/2}(\varphi(E))}{\operatorname{diam}(\varphi(B))}\right)^{\frac{2K}{K+1}}.$$

- The theorem also holds for other capacities $\dot{C}_{\alpha,p}$.

SECOND STEP: CORONA TYPE DECOMPOSITION

 $\mathcal{D} = \mathsf{dyadic} \; \mathsf{lattice}.$

 $\mathcal{T} \subset \mathcal{D}$ is a tree if:

- There exists $Q_0 \in \mathcal{T}$ which contains all other $Q \in \mathcal{T}$.
- If $Q, R \in \mathcal{T}$, with $Q \subset R$, then \mathcal{T} contains also the intermediate squares

$$P$$
 such that $Q \subset P \subset R$.

 $Q_0 = \text{Top square of } \mathcal{T}.$ Leaves of $\mathcal{T} = \text{stopping squares}.$

A corona type decomposition is a partition of \mathcal{D} (or $\mathcal{D}(R_0)$) into trees.

THE CORONA TYPE DECOMPOSITION

We set
$$\theta(Q):=rac{\mu(Q)}{\ell(Q)},$$
 $c^2(\mu):=\iiintrac{1}{R(x,y,z)^2}d\mu(x)d\mu(y)d\mu(z).$

Lemma (Corona decomposition [Tolsa - Annals of Math. '05])

Let μ with linear growth and $supp(\mu) \subset Q_0$.

I. Uriarte-Tuero

There exists a corona type decomposition of $\mathcal{D}(\mathcal{Q}_0)$ such that

$$\sum_{Q\in\operatorname{Top}}\theta(Q)^2\,\mu(Q)\leq C\,\big(\mu(\mathbb{C})+c^2(\mu)\big),$$

where, for each tree T with top square $Q \in \mathrm{Top}$ there exists a chord arc curve $\Gamma_{\mathcal{T}}$ such that

- If $P \in \mathcal{T}$, then $8P \cap \Gamma_{\mathcal{T}} \neq \emptyset$.
- If $P \in \mathcal{T}$, then $\theta(P) \approx \theta(Q)$.

Some ideas for the proof of the Main THEOREM

Take μ supported on E such that $\mu(E) \approx \gamma(E)$, with linear growth and $c^2(\mu) < \mu(E)$.

By Tchebytchev, there exists $F \subset E$, $\mu(F) \geq \mu(E)/2$, such that

$$\sum_{Q \in \text{Top}: x \in \Omega} \theta(Q)^2 \lesssim 1 \quad \text{ for } x \in F.$$

If Top = \mathcal{D} , then

$$W_{2/3,3/2}^{\mu}(x) pprox \sum_{Q \in \text{Top:x} \in \mathbb{Q}} \theta(Q)^2 \lesssim 1 \quad \text{ for } x \in F..$$

In the general case we combine ideas from distortion of $C_{2/3,3/2}$ with improved distortion of estimates of subset of chord arc curves.

Recall [ACM+]: If $E \subset \Gamma$, Γ chord arc curve, then

$$\dim_H(arphi(E))>rac{2}{K+1}.$$

I. Uriarte-Tuero QC Distortion of Sets And Removability

QC Distortion of Sets And Removability

References:

- ACT+ Astala, Clop, Tolsa, U-T, Verdera, "QC distortion of Riesz capacities and Hausdorff measures in the plane", Amer. J. of Math., to appear.
- ACM+ Astala, Clop, Mateu, Orobitg, U-T, "Distortion of Hausdorff measures and improved Painlevé removability for quasiregular mappings", Duke Math. J., (2008)
- LSUTA Lacey, Sawyer, U-T, "Astala's conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane", Acta Math., (2010) LSUTB Lacey, Sawyer, U-T, "A characterization of two weight norm
- inequalities for maximal singular integrals", submitted. PTU Prause, Tolsa, U-T, "Hausdorff measure of quasicircles", sub.
 - TUT Tolsa, U-T, "Quasiconformal maps, analytic capacity, and non
 - linear potentials", submitted.
 - UT U-T, "Sharp Examples for Planar Quasiconformal Distortion of Hausdorff Measures and Removability", Int. Math. Res. Not., (2008) 4日 → 4周 → 4 = → 4 = → 9 Q P