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Ω ⊂ R2 open; f : Ω
onto−→ Ω′ ⊂ R2 homeomorphism

Definition 1

f is bisobolev iff:
f , f −1 ∈W 1,1

loc

(
f = (u, v) : Ω

onto−→ Ω′; f −1 = (x , y) : Ω′
onto−→ Ω

)
While one can be interested in the question how the Sobolev regularity of
f reflects in the regularity of its inverse ([Hencl, Koskela (2006)], [Hencl,
Koskela, Malý (2006)], [Csörney, Hencl, Malý (2010)]) here we start from
mappings which have the same Sobolev regularity of the inverse.
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Remark 1:
If f ∈W 1,1

loc only, then automatically f −1 ∈ BVloc and

(1) |∇y |(Ω′) =

∫
Ω

∣∣∣∣∂f

∂x

∣∣∣∣ dz

(2) |∇x |(Ω′) =

∫
Ω

∣∣∣∣∂f

∂y

∣∣∣∣ dz

[Di Gironimo, D’Onofrio, S. ,Schiattarella, Ann. Fenn., (2011)]
[Hencl, Koskela, Onninen, Arch. Ration. Mech. Anal., (2007)],
qualitatively
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Remark 2:
If we further weaken and assume f ∈ BVloc only, then (1) and (2) extend
to

(3) |∇y |(Ω′) =

∣∣∣∣∂f

∂x

∣∣∣∣ (Ω)

(4) |∇x |(Ω′) =

∣∣∣∣∂f

∂y

∣∣∣∣ (Ω)

[D’onofrio, Schiattarella, to appear]

The advantage of quantitative equalities is seen considering sequences.
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If we go to bisobolev precise results hold true:

Theorem 1 (Hencl, Moscariello, Passarelli, S., (2009))

Let f = (u, v) : Ω→ Ω′ be a bisobolev homeomorphism. Then

Cu = {z : |∇u(z)| = 0} = {z : |∇v(z)| = 0} = Cv a.e.

The reason is that (u, v) is a solution of a non trivial linear system whose
symmetric coefficient matrix A(z) has det A(z) = 1

(5) ? ∇v = A(z)∇u

1 easy case: f −1 ∈W 1,2

2 general bisobolev case

3 ACL-homeomorphism
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Theorem 2

A sufficient condition for f ∈W 1,1
loc ∩ Hom to be a bisobolev is

Jf (z) > 0 a.e.

On the other hand bisobolev homeomorphisms may verify

Jf (z) = 0 on |Zf | > 0.

The point is that we are assuming only

f , f −1 ∈W 1,1
loc .

In the category of W 1,p bisobolev the case 1 ≤ p < 2 is critical because
the (N)-property of Lusin

|E | = 0 =⇒ |f (E )| = 0

is missing (Ponomarev 1971) (while it holds true for p = 2)
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In particular, the area formula ( for Jf ≥ 0) holds as an inequality∫
B

Jf ≤ |f (B)|

CLASSICAL RESULTS:

Theorem A (Lehto- Virtanen Th.6.1. III)

If f ∈W 1,2
loc ∩ Hom, then f satisfies the (N)-property.

( More general results Df ∈ L
2)
b or Kf ∈ L

1)
b (Giannetti - Passarelli))

Theorem B (Gehring-Lehto, 1959)

If f ∈W 1,1
loc ∩ Hom, then f is differentiable a.e.

(false if n > 2; |Df | ∈ Lp, p > n − 1 is sufficient)
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CLASSICAL RESULTS:

Theorem C (Sard)

f : Ω −→ Ω′ bi-Sobolev, Zf = {z : Jf (z) = 0}.
=⇒ ∃N0 such that |N0| = 0 and |f (Zf \N0)| = 0.

Theorem D (Hencl, Maly (2009) for a recent proof)

If f is a planar bisobolev homeomorphism, then

either Jf ≥ 0 a.e., or Jf ≤ 0 a.e.

True also for ACL-homeomorphism.
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Proof of Theorem 1 in the particular case f −1 ∈W 1,2

Claim:
|Cu| = |Cv | = |Zf | = 0

In fact
Cu ⊂ Zf = {z : Jf (z) = 0}

Theo C of Sard =⇒ |f (Zf )| = 0

Theo A for f−1 =⇒ f −1 verifies (N) condition
=⇒ 0 = |Zf | =

∣∣f −1 (f (Zf ))
∣∣

=⇒ |Cu| = 0.

Similarly |Cv | = 0.
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bi-ACL homeomorphism

Definition 2

A real function u = u(x , y) continuous in Ω ⊂ R2 is said absolutely
continuous on lines in Ω if for every rectangle

]a, b[×]c , d [⊂⊂ Ω

u is absolutely continuous as a function of the real variable x on a.e.
segment Iy =]a, b[×{y} and as a function of y on a.e. segment
{y}×]c , d [.

It is well known that a continuous function u : Ω→ R which is absolutely
continuous on lines (ACL for short) in Ω, possesses finite partial derivates
a.e. in Ω.
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bi-ACL homeomorphism

In the following we will assume that f = (u, v) : Ω ⊂ R2 → Ω ′ ⊂ R2 is a
homeomorphism with u and v ACL together with the components of the
inverse f −1 and call such a mapping a bi-ACL homeomorphism.

Remark 3:
bi-ACL homeomorphism are a wider class than bi-Sobolev homeomorphism.
A mapping f is in W 1,1 iff it is in ACL and |Df | ∈ L1.
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Theorem 1’ ( Moscariello, Passarelli, S., (2009))

Let f = (u, v) : Ω ⊂ R2 onto−→ Ω′ ⊂ R2 be a bi-ACL homeomorphism.
Then the components of f have the same critical points, i.e.

Cu = {z ∈ Ω : |∇u| = 0} = {z ∈ Ω : |∇v | = 0} = Cv = Zf a.e.

hence Df (x) vanishes a.e. on Zf .

Proposition (Schiattarella, (2009))

Let f : Ω
onto−→ Ω′ be a bi-ACL homeomorphism. If f belongs to the

Sobolev space W 1,1
loc (Ω;R2) then f is bisobolev and

(6)

∫
Ω ′
|Df −1(w)|dw =

∫
Ω

|Df (z)|dz
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Proof of Theorem 1’

Suppose, by contradiction, that there exists a Borel set A ⊂ Zf ; |A| > 0
such that

|∇u(z)| = 0 |∇v(z)| > 0 a.e. z ∈ A.

1 Fubini: 0
Sard
= |f (A)| =

∫
H1 (f (A) ∩ l(t)) dH1(t)

l(t) = horizontal line segment

2 Coarea:

0 <
∫
A
|∇v(z)| dz =

∫
H1
(
f −1(f (A)) ∩ l(t)

)
dH1(t)

3 (N)-property of f−1 with respect to Hausdorff

H1- measure:

H1 (f (A) ∩ l(t)) = 0 =⇒ H1
(
f −1(f (A)) ∩ l(t)

)
= 0
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In a paper [Moscariello, Passarelli, S. , Commun. Pure Appl. Anal. 9,
(2010)] examples of bi-ACL homeomorphism which are not bisobolev.
Winding around one point: polar coordinates

f (r , ϕ) =

[
r , ϕ+

1

r

]

f −1(s, θ) =

[
s, θ − 1

s

]
.
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Remark 4:
The condition

Jf (z) = 0 =⇒ |Df (z)|2 = 0 a.e.z ∈ Ω

implies the (distortion) inequality

(♦) |Df (z)|2 ≤ K (z)Jf (z)

to be satisfied a.e. in Ω for some measurable function 1 ≤ K (z) <∞ a.e.

(
Recall Hadamard inequality Jf (z) ≤ |Df (z)|2

)

The smallest function K ≥ 1 for which (♦) holds is called the distortion
function of f and is denoted by Kf .

Carlo Sbordone Bisobolev mappings and non-isotropic elliptic equations 17/70



Definitions and main properties of planar bisobolev mappings
Sequences of bisobolev mappings

Composition of bisobolev maps
Definitions and main properties of planar bisobolev mappings

Remark 5:
By symmetry, for bi-ACL homeomorphism f , also f −1 : Ω ′ −→ Ω satisfies
a distortion inequality

(♦♦)
∣∣Df −1(w)

∣∣2 ≤ H(w) Jf−1 (w) a.e. in Ω ′

Theorem 3 (Greco, S. , Trombetti (2007) )

Let f be bi-ACL homeomorphism f : Ω
onto−→ Ω ′. Let K be the distortion

of f and H the distortion of f −1. Then

H(w) = K
(
f −1(w)

)
a.e. w ∈ Ω ′.

(More general results n ≥ 2 Fusco, Moscariello, S. Calc. Var. (2008))
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The interplay between the Theory of mappings f : Ω ⊂ R2 −→ Ω ′ ⊂ R2

and planar PDE’s goes back to Morrey (1938).
We will show , as a consequences of Theorem 1, that bisobolev maps
represent a class of mappings which permits a far reaching generalization
of Morrey’s results.

The space of Sobolev mappings is the largest space in which one can
begin to discuss what it means to be a solution (u, v) to the degenerate
elliptic system

(7) ? ∇v = A(z)∇u

Here

? ∇v = ?

 vx

vy

 =

 vy

−vx
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Theorem 4

To each bi-ACL homeomorphism f = (u, v) : Ω
onto−→ Ω′ there corresponds

a unique (non trivial) degenerate elliptic system such that u and v satisfy
(7), where: A : Ω −→ R2×2 is a measurable matrix valued function such
that tA(z) = A(z), det A(z) = 1 a.e. and ∀ξ ∈ R2,

|ξ|2

Kf (z)
≤ 〈A(z)ξ, ξ〉 ≤ Kf (z) |ξ|2 a.e. z ∈ Ω.
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Proof of Theorem 4

Define A(z) = ( ai j(z) ) as follows:

a11(z) =
v 2
y (z) + u2

y (z)

Jf (z)
,

a12(z) = a21(z) = −vx(z)vy (z) + ux(z)uy (z)

Jf (z)

a22(z) =
v 2
x (z) + u2

x (z)

Jf (z)

for z ∈ Rf = {z ∈ Ω : f is differentiable at z and Jf (z) > 0}, while

aij(z) = δij if z ∈ Ω \ Rf .

By a direct computation if z ∈ Rf .

If Jf (z) = 0 then |Df (z)| = 0 by Theorem 1 therefore the system (7) is
clearly satisfied.
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Remark 6:
Conversely if there exists a non-trivial degenerate elliptic system (7) such
that u, v represents a solution, then

Cu = Cv .

In fact if ∇v(z0) = 0 then

0 = A(z0)∇u(z0) =

 a11(z0)ux(z0) + a12(z0)uy (z0)

a12(z0)ux(z0) + a22(z0)uy (z0)


since det A(z0) = 1, we deduce ∇u(z0) = 0.
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Remark 7:
Actually we have

A(z) = [G∗f (z)]−1 a.e. z ∈ Ω.

Moreover u and v have finite energy:∫
Ω

〈A(z)∇u(z),∇u(z)〉 dz =

∫
Ω

〈A(z)∇v(z),∇v(z)〉 dz

=

∫
Ω

Jf (z) dz ≤ |f (Ω)|.
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Corollary

Let f : Ω ⊂ R2 onto−→ Ω ′ ⊂ R2 be a homeomorphism. Then

f = (u, v) bi-ACL homeomorphism

m

?∇v = A(z)∇u in Ω, where

(*)


I

K(z) ≤ A(z) = tA(z) ≤ K (z)I

det A(z) = 1 a.e.

1 ≤ K (z) <∞ a.e. Borel

Remark 8:
Hence condition (*) is inherited by the inverse f −1 = (s, t) with H(w) =
K (f −1(w)) and B(w) = A(f −1(w)).
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The regularity of the deformation quotients Kf (z) and Kf−1 (w) is strictly
related with the W 1,p bi-Sobolev regularity of f .

Namely
Kf and Kf−1 belong to L1

if and only if

f is W 1,2bisobolev.

Moreover (Hencl, Moscariello, Passarelli, S. (2009))∫
Ω

|Df (z)|2 dz =

∫
Ω ′

Kf−1 (w) dw

and ∫
Ω ′

∣∣Df −1(w)
∣∣2 dw =

∫
Ω

Kf (z) dz .
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A different matter is the existence problem of homeomorphic solutions to
the elliptic system

? ∇v = A(x)∇u

The assumption K ∈ L1 or even stronger K ∈ Lp for p > 1 is not
sufficient.

in Ryazanov-Srebro-Yakubov (2001))

The assumption K ∈ EXP is the right one.
(Iwaniec, S. Ann. Inst. H. Poincaré, (2001)
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The “continuity” of the operator

f −→ Af = [Gf ]−1

has been studied by Capozzoli, Carozza (2008).

The “right” topology on coefficient matrices is the Γ- convergence.
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Bisobolev mappings (in plane) are simply homeomorphisms f : Ω→ Ω′

(Ω,Ω′ ⊂ R2 domains) such that

i) f belongs to Sobolev class W 1,1
loc (Ω,R2)

and

ii) f = (u, v) satisfies the Beltrami system

Dt f (z)Df (z) = Jf (z)Gf (z) a.e.z ∈ Ω

where the measurable symmetric matrix field Gf satisfies:

detGf (z) = 1,

∀ξ ∈ R2,
|ξ|2

Kf (z)
≤ 〈Gf (z)ξ, ξ〉 ≤ Kf (z)|ξ|2

and
Kf : Ω→ [1,∞[ is Borel.
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Theorem

Af = Gf
−1 f = (u, v) =⇒

{
divAf∇u = 0

divAf∇v = 0
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Theorem 0 (Fusco, Moscariello, S. , (2008))

fj : Ω
onto−→ Ω′ bisobolev

fj
W 1,1

⇀ f ∈W 1,1
loc ∩ Hom

Kfj ⇀ K σ(L1, L∞)

)
=⇒

 f bisobolev
Kf (z) ≤ K (z)∫

Ω
Kf ≤ lim inf j

∫
Ω

Kfj

Moreover:

fj
C 0

−→ f
K∗fj (z) ≤ K (z)

)
=⇒

 f −1
j

W 1,1

⇀ f −1

f −1
j

C 0

−→ f −1

SHARP: EXAMPLE (D’Onofrio, Schiattarella, to appear)
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Theorem 1

Let be fj ∈W 1,2 ∩ Hom such that {fj} converges weakly in W 1,1 and
c-uniformly to a map f ∈W 1,1. Then f admits a.e. a right inverse
h ∈ BV , that is f (h(w)) = w a.e. and

‖h‖BV ≤ C

∫
Ω

|Df |

The Jacobians of fj = (uj , vj) bisobolev

Jf ∈ L1(Ω)

(weak continuity)
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Theorem 2 (Dal Maso, S. (1994))

fj , f ∈W 1,2(Ω); fj
W 1,1

⇀ f =⇒ Jfj ⇀ Jf weakly in L1
loc(Ω).

Theorem 3 (Iwaniec, Martin)

P(t) = t2 log−1(e + t), fj , f ∈W 1,P(Ω)

fj
W 1,P

⇀ f =⇒ Jfj ⇀ Jf weakly in L1
loc(Ω).
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EXAMPLE:
z = (x , y) ∈ (0, 1)2

hj(x) =

∫ x

0

ϕj(s) ds kj(y) =

∫ y

0

ψj(s) ds

h, k strictly increasing;

1

ϕj
⇀

1

ϕ−
; ϕj ⇀ ϕ+;

1

ψj
⇀

1

ψ−
; ψj ⇀ ψ+ σ(L1, L∞).

fj(x , y)
def
= (hj(x), kj(y))

Dfj(z) =

(
ϕj(x) 0

0 ψj(y)

)
L1

⇀

(
ϕ+(x) 0

0 ψ+(y)

)
= Df (z)
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f (x , y) =

(∫ x

0

ϕ+,

∫ y

0

ψ+

)

Jfj (z) = ϕj(x)ψj(y) ⇀ Jf = ϕ+(x)ψ+(y)

Notice:
ϕ−(s) ≤ ϕ+(s)

ψ−(t) ≤ ψ+(t)

Carlo Sbordone Bisobolev mappings and non-isotropic elliptic equations 34/70



Definitions and main properties of planar bisobolev mappings
Sequences of bisobolev mappings

Composition of bisobolev maps
Sequences of bisobolev mappings

The Beltrami matrix of fj = (uj , vj)

Afj =


[

Dt fj(z)Dfj(z)

Jfj (z)

]−1

if Jfj (z) > 0

I , ifJfj (z) = 0

satisfies
tAfj = Afj

detAfj = 1 a.e.

|ξ|2

Kj(z)
≤ 〈Afj ξ, ξ〉 ≤ Kj(z)|ξ|2{
div
(
Afj∇uj

)
= 0

div
(
Afj∇vj

)
= 0
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So uj , vj are distributional solutions with finite energy:∫
Ω

〈Afj∇uj ,∇uj〉 =

∫
Ω

Jfj =

∫
Ω

〈Afj∇vj ,∇vj〉

Actually, adopting the notation

fj =
(

f
(1)
j , f

(2)
j

)
we have

〈Afj (z)∇f
(r)
j ,∇f

(s)
j 〉 = Jfj (z)δrs
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For the example

fj(z) =

(∫ x

0

ϕj ,

∫ y

0

ψj

)
under the assumptions

ϕj ⇀ ϕ+
1

ϕj
⇀

1

ϕ−

ψj ⇀ ψ+
1

ψj
⇀

1

ψ−

in σ(L1, L∞) we have
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Afj (z) =

(
ψj (y)
ϕj (x) 0

0
ϕj (x)
ψj (y)

)
⇀

(
ψ+(y)
ϕ−(x) 0

0 ϕ+(x)
ψ−(y)

)
= A+

f (z)

(weakly in L1
loc)

f (x , y) =

(∫ x

0

ϕ+,

∫ y

0

ψ+

)

detA+
f (z) =

ψ+(y)

ϕ−(x)

ϕ+(x)

ψ−(y)
> 1
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Definition of G -convergence

Let Aj(z) and A(z), j ∈ N be symmetric matrices satisfying uniform
ellipticity

(8)
|ξ|2

K
≤ 〈Aj(z)ξ, ξ〉 ≤ K |ξ|2

(9)
|ξ|2

K
≤ 〈A(z)ξ, ξ〉 ≤ K |ξ|2

a.e. z ∈ Ω ⊂ R2, bounded simply connected domain, ∀ξ ∈ R2.
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We say that

(10) Aj
G−→ A

iff for any ξ ∈ R2, the unique solutions uj ∈W 1,2
0 (Ω) + 〈ξ, z〉 of the

Dirichlet problems

(11)

{
div(Aj(z)∇uj) = 0 in Ω

uj(z) = 〈ξ, z〉 on ∂Ω

converge weakly in W 1,2 to the (unique) solution u ∈W 1,2
0 (Ω) + 〈ξ, z〉 of

the Dirichlet problem

(12)

{
div(A(z)∇u) = 0 in Ω

u(z) = 〈ξ, z〉 on ∂Ω

Theorem 4 (S.Spagnolo (1967))

Any sequence Aj satisfying (8) contains a subsequence Ajr G-converging
to a symmetric matrix A satisfying (9).
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Definition of Beltrami matrices

For f : Ω→ Ω′ bisobolev, its Beltrami matrix is

(13) Af (z) =


[
Dt f (z)Df (z)

Jf (z)

]−1

if Jf (z) > 0

I otherwise

detAf = 1 tAf = Af
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Definition of Γ-convergence

Let Aj(z) and A(z), j ∈ N be symmetric matrices satisfying a.e. z ∈ Ω;

0 ≤ 〈Aj(z)ξ, ξ〉 ≤ Kj(z)|ξ|2 ∀ξ ∈ R2

0 ≤ 〈A(z)ξ, ξ〉 ≤ K (z)|ξ|2 ∀ξ ∈ R2

for Kj , K ∈ L1(Ω).
We say that

Aj
Γ−→ A

iff the two conditions (i), (ii) are satisfied:

(i) uj , u ∈W 1,∞(Ω) and uj
L1(Ω)−→ u ⇒∫

Ω

〈A∇u,∇u〉 ≤ lim
j

′
∫

Ω

〈Aj∇uj ,∇uj〉

(ii) ∀u ∈W 1,∞(Ω) ∃wj ∈W 1,∞(Ω) : wj
L1(Ω)−→ u and∫

Ω

〈A∇u,∇u〉 = lim
j

∫
Ω

〈Aj∇wj ,∇wj〉
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Theorem 5 (Marcellini, S. , J.Math. Pures Appl., (1977))

If Kj ⇀ K0 in σ(L1, L∞) then there exists a subsequence Ajr such that

Ajr
Γ−→ A

for A satisfying 0 ≤ 〈A(z)ξ, ξ〉 ≤ K0(z)|ξ|2

Remark 1:
If 1 ≤ Kj(z) ≤ K0 are equibounded, then

Aj
G−→ A ⇔ Aj

Γ−→ A

On the other hand, in general, no relation with convergence of solutions
to Dirichlet problems.
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Remark 2: If ‖Kj‖L1 ≤ C0 ∀j ∈ N the Γ−compactness result of Marcellini,
S. fails.

Fj(u) =

∫
Ω

Kj(z)|∇u|2dz

Ω = [0, 1]2 3 z = (x , y)

Kj(z) =


j in Ωj = Ω ∩ |x | < 1

j

1 in Ω \ Ωj

Fj(u)
Γ−→
∫

Ω

|∇u|2 + |u(0, 1)− u(0,−1)|2

for u ∈ C 1(Ω) : x → u(x , 1) and x → u(x ,−1) are constant near zero
and u(0, y) = my + q.
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Definition of ΓQ –convergence

For sequences Aj(z) satisfying

|ξ|2

Kj(z)
≤ 〈Aj(z)ξ, ξ〉 ≤ Kj(z)|ξ|2

−
∫

Ω

e
Kj (z)

λ0 dz ≤ C0 for 0 < λ0 < 1/2 and C0 ≥ 1

let P(t) = t2 log−1(e + t), Q(t) = t log(e + t).

We say that

Aj
ΓQ−→ A

iff

(iQ) uj , u ∈W 1,Q(Ω), uj
LQ (Ω)−→ u ⇒

∫
Ω
〈A∇u,∇u〉 ≤ lim

j

′ ∫
Ω
〈Aj∇uj ,∇uj〉

(iiQ) ∀u ∈W 1,Q(Ω) ∃wj ∈W 1,Q(Ω) : wj
LQ (Ω)−→ u and∫

Ω

〈A∇u,∇u〉 = lim
j

∫
Ω

〈Aj∇wj ,∇wj〉
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Theorem 6 (Capozzoli, Carozza, Ric. Mat. (2009))

Let fj , f ∈W 1,1(Ω;R2) ∩Hom satisfy

(i) |Dfj(z)|2 ≤ Kj(z)Jfj (z) a.e. z ∈ Ω

(ii) ∃ 0 < λ < 1/2, ∃C0 ≥ 1 :

−
∫

Ω

e
Kj (z)

λ dz ≤ C0 ∀j ∈ N

(iii) fj ⇀ f weakly in W 1,1
loc

Then f is bisobolev and we have

−
∫

Ω

e
Kf (z)

λ dz ≤ C0

and
Afj

Γ−→ Af
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Under previous EXP assumptions we have, for v ∈W 1,Q(Ω) ⊂W 1,P(Ω)

c

∫
Ω

|∇v |2 log−1

(
e +

|∇v |
|∇v |Ω

)
≤
∫

Ω

〈Aj∇v ,∇v〉

≤ C

∫
Ω

|∇v |2 log

(
e +

|∇v |
|∇v |Ω

)
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We need the regularity results Astala-Gill-Rohde-Saksman (2009)

Theorem 7

f : Ω→ Ω′ bisobolev, if ∃ 0 < λ0 < 1/2 such that
∫

Ω
e

Kf (z)

λ0 dz ≤ C0, then:∫
B

|Df |2 log

(
e +

|Df |
|Df |Ω

)
≤
∫

2B

Jf

for all concentric disks B ⊂⊂ 2B ⊂ Ω.

Theorem 8 (Moscariello (1994))

f : Ω→ Ω′ bisobolev, |Df | ∈ L2 log−1 L(Ω); then Jf ∈ L log logloc(Ω) and∫
B

Jf log log(e + Jf )dz ≤ c

[∫
2B

|Df |2 log−1(e + |Df |2) + 1

]
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Proof of Theorem 6

STEP 1: By Theorem 5 we know that there exists a subsequence

Afjr

Γ−→ A on W 1,∞

where A = tA satisfies

0 ≤ 〈A(z)ξ, ξ〉 ≤ K (z)|ξ|2.

If we prove

A(z) =

[
Dt f (z)Df (z)

Jf (z)

]−1

a.e.

this will imply better bound

|ξ|2

K (z)
≤ 〈A(z)ξ, ξ〉

and that the entire sequence will Γ-converge to A:

Aj
Γ−→ A.
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Since ∀ Ω1 ⊂ Ω ∫
Ω1

〈Aj∇u,∇u〉 ≤
∫

Ω1

Kj(z)|∇u|2

≤ 2‖Kj‖EXP‖∇u‖2
LQ (Ω1)

≤ c‖∇u‖2
LQ (Ω1)

the functionals

u →
(∫

Ω

〈Aj∇u,∇u〉
)1/2

are equilipschitz in W 1,Q
loc ; a legitimate reason for passing from

Γ-convergence to the stronger

Aj
ΓQ−→ A on W 1,Q

(by an abstract result on Γ- convergence)
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STEP 2: Let us show that, for any Ω1 ⊂⊂ Ω, if fjr = (ur , vr ), f = (u, v),
then ∫

Ω1

〈A(z)∇u,∇u〉 = lim
r

∫
Ω1

〈Ajr (z)∇ur ,∇ur 〉∫
Ω1

〈A(z)∇v ,∇v〉 = lim
r

∫
Ω1

〈Ajr (z)∇vr ,∇vr 〉

By Theorem 7 ur
LQ (Ω1)−→ u. Let wr be a sequence in W 1,Q(Ω1) such that

wr
LQ (Ω)−→ u and∫

Ω1

〈A(z)∇u,∇u〉 = lim
r

∫
Ω1

〈Ajr (z)∇vr ,∇vr 〉.

Fix S ⊂⊂ Ω1 and ϕ ∈ C 1
0 (Ω1) cut-off (ϕ = 1 on S), t ∈ (0, 1) yields∫

Ω1

〈Ajr (z)∇wr ,∇wr 〉 ≥
∫

Ω1

〈Ajr (z)∇ur ,∇ur 〉(ϕ(z)− 1)

− 1− t

t
c‖∇ϕ‖2

∞‖wr − ur‖2
LQ (Ω1)
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as r →∞, t → 0∫
Ω1

〈A(z)∇u,∇u〉 ≥ lim′′r

∫
Ω1

〈Ajr (z)∇ur ,∇ur 〉

≥ lim′r

∫
S

〈Ajr (z)∇ur ,∇ur 〉

≥
∫
S

〈A(z)∇u,∇u〉

STEP 3:

Technical: use Kf ∈ EXP(Ω),

|Df | ∈ L2 log−1 L(Ω) =⇒ Jf ∈ L log log Lloc(Ω)
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Corollary

∀ϕ =
∑n

i=1 µiχBi ∣∣∣∣∣Ω1 \

(
n⋃

i=1

Bi

)∣∣∣∣∣ = 0 µi ≥ 0

lim
r

′
∫

Ω1

〈Ar∇ujr ,∇ujr 〉ϕ ≥
∫

Ω1

〈A∇u,∇u〉ϕ
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We already know that Kf ∈ EXP(Ω) and hence Jf > 0 a.e. in Ω.
Moreover, ∀S ⊂ Ω∫

S

|Dfj |2 log−1( ) ≤ 2λ0

[∫
S

(
Jfj + eKfj

/λ0 − 1
)]

and (Moscariello) hence

‖Jfj log log( )‖L1
loc
≤ C1

Since
Jfj (z) = 〈Afj (z)∇uj ,∇uj〉

we deduce ∃F ∈ L1(Ω1) :∫
Ω1

〈Ar (z)∇ujr ,∇ujr 〉ϕ −→
∫

Ω1

Fϕ ∀ϕ ∈ C 0(Ω1)
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and by Corollary ∫
Ω1

〈A∇u,∇u〉ϕ ≤
∫

Ω1

Fϕ

It is easy to arrive finally to

F (z) = 〈A(z)∇u,∇u〉 a.e. in Ω1

and ∀ ∈ C 0(Ω1)

(∗)
∫

Ω1

〈Afj (z)∇uj ,∇uj〉ϕ −→
∫

Ω1

〈A(z)∇u,∇u〉ϕ

and similarly for vj and v .
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Now recall that (by definition of Afj )

〈Afj (z)∇f
(r)
j ,∇f

(s)
j 〉 = Jfj (z)δrs

and use the weak continuity of Jacobian for fj ⇀ f in W 1,P

(generalization of Reshetnjak Theorem), (Iwaniec, Martin Theorem 8.4.2)
we get for the limit f =

(
f (1), f (2)

)
= (u, v)

〈A(z)∇f (r),∇f (s)〉 = Jf (z)δrs

and consequently
A(z) = Af (z)

since Jf (z) > 0 a.e.
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1) Classical results on change of variables:

Let f : Ω ⊂ R2 → Ω′ ⊂ R2 be a homeomorphism

Theorem 1

f biLipschitz, p ≥ 1,

w ∈W 1,p
loc (Ω′) =⇒ w ◦ f ∈W 1,p

loc (Ω)

Theorem 2 (Reimann)

f K -quasiconformal,

w ∈W 1,2
loc (Ω′) =⇒ w ◦ f ∈W 1,2

loc (Ω)

w ∈ BMO(Ω′) =⇒ w ◦ f ∈ BMO(Ω)

Actually the composition operator Tf (w) = w ◦ f maps W 1,2 into W 1,2

continuously
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Theorem 3 (Farroni-Giova, Studia Math. (2011))

f K -quasiconformal,

w ∈ EXP(D) =⇒ w ◦ f ∈ EXP(D)

and
1

1 + K log K
≤
‖w ◦ f ‖EXP(D)

‖w‖EXP(D)
≤ 1 + K log K

SHARP using Astala’s Theorem

w ∈ EXP(Ω)⇐⇒ ∃λ > 0:

∫
Ω

e
w(x)
λ dx <∞

Theorem 4 (Lehto-Virtanen, Ziemer)

f W 1,2-bisobolev,

w ∈W 1,2(Ω′) =⇒ w ◦ f ∈W 1,1(Ω).
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2) Composing bisobolev maps:

Theorem 5 (Hencl, Koskela (2008))

f : Ω→ Ω′ bisobolev, g : Ω′ → Ω′′ bisobolev,

f −1 ∈W 1,2

g ∈W 1,2 =⇒ g ◦ f bisobolev
g−1 satisfies the (N)-condition of Lusin

Remark 1:
The assumption g−1 satisfies (N) is not necessary (see Schiattarella
(2010))
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Theorem 6 (Greco, S., Schiattarella, Proc. Royal Soc. Edinburgh (2011))

f : Ω→ Ω′ bisobolev, g : Ω′ → Ω′′ biSobolev,

|Df −1| ∈ L2 logα L
=⇒ g ◦ f biSobolev

|Dg | ∈ L2 log−α L

and
Kg◦f (z) ≤ Kg (f (z))Kf (z) a.e. z ∈ Ω.
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We have always that f −1 satisfies the (N)- condition

Proposition (Greco, S., Schiattarella)

f : Ω→ Ω′, g : Ω′ → Ω′′ measurable
=⇒ g ◦ f measurable

f −1 satisfies the (N)- condition

To compare with classical facts:

f , g Borel =⇒ g ◦ f Borel

f measurable, g Borel =⇒ g ◦ f measurable
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Proof of Proposition

g ◦ f : Ω −→ Ω′′

We have to prove that:

(g ◦ f )−1 (E ′′) = f −1
(
g−1(E ′′)

)
is measurable for all E ′′ ⊂ Ω′′ open.

g is a measurable mapping =⇒ g−1(E ′′) is measurable.

Then ∃B ′ Borel ⊃ g−1(E ′′) such that |B ′ \ g−1(E ′′)| = 0.

f −1 verifies the (N)- condition =⇒ |f −1
(
B ′ \ g−1(E ′′)

)
| = 0

and the set

f −1
(
g−1(E ′′)

)
= f −1(B ′′) \ f −1

(
B ′ \ g−1(E ′′)

)
is measurable.
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Distortion of the composition

Theorem 7 (Greco, S., Schiattarella)

f : Ω→ Ω′, g : Ω′ → Ω′′ bisobolev
Let

(i) Kg ∈ EXPloc(Ω′)
Kf ∈ L2

loc(Ω)

)
=⇒

(
g ◦ f bisobolev

(j) Kg◦f ∈ L1
loc(Ω)

SHARP:
(i) cannot be dropped

(j) is optimal

∃ f (x) =
x

|x |
ρ1(|x |), g(x) =

x

|x |
ρ2(|x |)
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The inequality

|D(g ◦ f )(z)|2

Jg◦f (z)
≤ |Dg(f (z))|2

Jg (f (z))

|Df (z)|2

Jf (z)
for a.e. z ∈ Ω

does not require Jg (w) > 0 a.e. w ∈ Ω but it is sufficient that, for a.e.
z ∈ Ω

Jg (f (z)) = 0 =⇒ |Dg(f (z))| = 0

and this is true, thanks to

g bisobolev and f −1 verifies (N) condition

=⇒ |{z ∈ Ω : |Dg(f (z))| = 0} \ {z ∈ Ω : Jg (f (z)) = 0}|

=
∣∣{f −1 (w ∈ Ω′ : |Dg(w)| = 0} \ {w ∈ Ω′ : Jg (w) = 0})

∣∣ = 0.
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Recall that K ∈ EXP(Ω) if there exists λ > 0 such that∫
Ω

e
K(z)
λ dz <∞.

Then, for many reason it comes out that the space

W 1,P
loc (Ω), P(t) = t2 log−1(e + t)

is a good starting point for the existence and regularity theory. We have
the following:
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Theorem 8

Let tA(z) = A(z) be a measurable matrix field such that
det A(z) = 1 a.e. z ∈ D

|ξ|2
K(z) 6 〈A(z)ξ, ξ〉 6 K (z)|ξ|2

for K ∈ EXP(D); K (z) = 1 for |z | > 1.
Then, there exists a unique bisobolev map f = (u, v) ∈W 1,P(R2) solving
the system [

tDf Df

Jf

]−1

= A(z)

such that Jf > 0 a.e.

Remark 2:
|Df |2

log(e + |Df |)
6 2λ(Jf + e

K
λ − 1).

Carlo Sbordone Bisobolev mappings and non-isotropic elliptic equations 66/70



Definitions and main properties of planar bisobolev mappings
Sequences of bisobolev mappings

Composition of bisobolev maps
Composition of bisobolev maps

Remark 3:
The condition

det A(z) = 1

in some regularity problems can be removed because of the following
algebraic lemma (Capone, Iwaniec-S.) (Malý)

Lemma

Given a vector E = (E1,E2) and a symmetric matrix B ∈ R2×2 such that

|X |2

K
6 〈BX ,X 〉 6 K |X |2

for a K > 1; ∀X ∈ R2.
Then, there exists a symmetric matrix A ∈ R2×2 such that

detA = 1 AE = BE

|X |2

K
6 〈AX ,X 〉 6 K |X |2
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WA-solutions to div(A∇) = 0

Definition:

K ∈ EXP(Ω). The function u

u ∈WA(Ω) =

{
ϕ ∈W 1,1(Ω) :

∫
Ω

〈A(x)∇ϕ,∇ϕ〉 <∞
}

is a WA-solution if∫
Ω

〈A∇u,∇ϕ〉 = 0 ∀ϕ ∈WA(Ω), supp ϕ ⊂⊂ Ω.
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Theorem 9 (Ricciardi,Zecca Potential Anal., to appear)

Every WA-solution u to
divA∇u = 0

satisfies

|u(z)− u(z ′)|2 6
4π

λ
[
log log

( K
2πr2

)
− log log

(
Ke3

2πr̄2

)] ∫
Br̄

〈A∇u,∇u〉

z , z ′ ∈ B(z0, r), r < r̄ e−3 where Br̄ = B(z0, r̄) ⊂⊂ Ω.
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Theorem 10 (Ricciardi, Zecca)

If moreover det A = 1 a.e., then

|u(z)− u(z ′)|2 6
C(

log log K
2πr2

)
logλ

( K
2πr2

) ∫
Br̄

〈A∇u,∇u〉 dz

z , z ′ ∈ B(z0, r), r < r̄ e−6, C = C (λ, r̄ ,K).

In the spirit of mappings f = (u, v), the WA-condition means

∂2f

∂x∂y
=

∂2f

∂y∂x

in a stranger sense then in the distributional one.

To compare with Koskela-Onninen, Onninen-Zhong, Campbell-Hencl.
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