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Q C R? open; f: Q M QY C R? homeomorphism

f is bisobolev iff:

ff e W
(F=(u,v): Q2B f1=(xy): @ 23Q) J

While one can be interested in the question how the Sobolev regularity of
f reflects in the regularity of its inverse ([Hencl, Koskela (2006)], [Hencl,
Koskela, Maly (2006)], [Csorney, Hencl, Maly (2010)]) here we start from
mappings which have the same Sobolev regularity of the inverse.
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Remark 1:
If f e Wlicl only, then automatically £~ € BV}, and

M) v = [ |55 <

2 oxi@) = [|5F] o

[Di Gironimo, D'Onofrio, S. ,Schiattarella, Ann. Fenn., (2011)]
[Hencl, Koskela, Onninen, Arch. Ration. Mech. Anal., (2007)],
qualitatively
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Remark 2:
If we further weaken and assume f € BV, only, then (1) and (2) extend
to

@) wrie) = | 5| @

@) V(@) = \g; (@)

[D'onoftio, Schiattarella, to appear]

The advantage of quantitative equalities is seen considering sequences.
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If we go to bisobolev precise results hold true:

Theorem 1 (Hencl, Moscariello, Passarelli, S., (2009))
Let f = (u,v): Q— Q' be a bisobolev homeomorphism. Then
Co={z:|Vu(z)|=0} ={z:|Vv(z)|]=0} =C, a.e.

The reason is that (u, v) is a solution of a non trivial linear system whose
symmetric coefficient matrix A(z) has det A(z) =1

(5) * Vv = A(z)Vu
@ casy case: f~1e W2

@ general bisobolev case
© ACL-homeomorphism
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Theorem 2

A sufficient condition for f € |/V,llj’c1 N Hom to be a bisobolev is

Jr(z) > 0 a.e.

On the other hand bisobolev homeomorphisms may verify
Je(z) =0on |Zf| > 0.
The point is that we are assuming only
fftewsh

In the category of WP bisobolev the case 1 < p < 2 is critical because
the (N)-property of Lusin

E|=0 = |F(E)| =0

is missing (Ponomarev 1971) (while it holds true for p = 2)
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In particular, the area formula ( for Jr > 0) holds as an inequality

/ Jr < |f(B)]
B

CLASSICAL RESULTS:
Theorem A (Lehto- Virtanen Th.6.1. III)

If f € WE2 0 Hom, then f satisfies the (N)-property.

( More general results Df € Li) or K € L[17) (Giannetti - Passarelli))

Theorem B (Gehring-Lehto, 1959)
Iff e W-in Hom, then f is differentiable a.e.

loc

(false if n > 2;

Df| € LP, p > n— 1 is sufficient)
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CLASSICAL RESULTS:

Theorem C (Sard)

f:Q — Q bi-Sobolev, Zr = {z : J¢(z) = 0}.
= JNy such that |No| = 0 and |f(Zr\No)| = 0.

Theorem D (Hencl, Maly (2009) for a recent proof)

If f is a planar bisobolev homeomorphism, then

either Js > 0 a.e., or Js <0 a.e.

True also for ACL-homeomorphism.

D
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Proof of Theorem 1 in the particular case f~1 € W12
Claim:
|Gl =G| =12 =0

In fact
CoCZr={z: Je(z) =0}

Theo C of Sard = |f(ZF)| =0

Theo A for f~! — -
— 0:|Zf|:‘f_1(f(z,r
= |G, =0.

verifies (N) condition

)

Similarly |C,| = 0.
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bi-ACL homeomorphism

Definition 2

A real function u = u(x, y) continuous in Q C R? is said absolutely
continuous on lines in Q if for every rectangle

la, b[x]c,d[CcC Q

u is absolutely continuous as a function of the real variable x on a.e.
segment /, =]a, b[x{y} and as a function of y on a.e. segment

{y}x]e,dl.

It is well known that a continuous function u : 2 — R which is absolutely
continuous on lines (ACL for short) in Q, possesses finite partial derivates
a.e. in Q.
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bi-ACL homeomorphism

In the following we will assume that f = (u,v): Q CR? - Q' CR?is a
homeomorphism with v and v ACL together with the components of the
inverse f ! and call such a mapping a bi-ACL homeomorphism.

Remark 3:
bi-ACL homeomorphism are a wider class than bi-Sobolev homeomorphism.
A mapping f is in Wb iff it is in ACL and |Df| € L.

Carlo Sbordone Bisobolev mappings and non-isotropic elliptic equations



Definitions and main properties of planar bisobolev mappings

Definitions and main properties of planar bisobolev mappings

Theorem 1’ ( Moscariello, Passarelli, S., (2009))

Let f = (u,v): Q C R2 28 Q' C R? be a bi-ACL homeomorphism.
Then the components of f have the same critical points, i.e.

Co={zeQ: |[Vul=0}={z€Q: |Vv|=0}=C, =27 ae.

hence Df (x) vanishes a.e. on Z.

Proposition (Schiattarella, (2009))

Let f: Q 28 Q' be a bi-ACL homeomorphism. If f belongs to the
Sobolev space W (Q2; R?) then f is bisobolev and

loc

(6) /Q,|Df_1(w)|dw = /Q|Df(z)|dz
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Proof of Theorem 1’

Suppose, by contradiction, that there exists a Borel set A C Zf; |A| > 0
such that

[Vu(z)] =0 [Vv(z)] >0 ae z€A.

© Fubini: 0°Z7 [F(A)| = [H! (F(A) N I(t)) dH(t)

I(t) = horizontal I|ne segment
@ Coarea:
0 < [, IVv(2)] dz = [H! (FH(F(A) N1(2)) dH (1)

© (N)-property of f~! with respect to Hausdorff
#!- measure:

HL(F(ANI(t) =0 = H (FHFA)NI(t) =
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In a paper [Moscariello, Passarelli, S. , Commun. Pure Appl. Anal. 9,
(2010)] examples of bi-ACL homeomorphism which are not bisobolev.
Winding around one point: polar coordinates

T

f1(s,0) = {5,9— i] .
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Remark 4:
The condition

J(z)=0 =  [Df(2)?=0 aezeQ
implies the (distortion) inequality
(©) Df(2)* < K(2)Jr(2)

to be satisfied a.e. in Q for some measurable function 1 < K(z) < o0 a.e.
(Recall Hadamard inequality Js¢(z) < |Df(z)|2)

The smallest function K > 1 for which (<») holds is called the distortion
function of f and is denoted by Kr.
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Remark 5:
By symmetry, for bi-ACL homeomorphism f, also f~1 : Q’ — Q satisfies
a distortion inequality

(¢ 0) |Dl[71(W)|2 < H(w) Jg-1(w) a.e. in Q'

Theorem 3 (Greco, S. , Trombetti (2007) )

Let f be bi-ACL homeomorphism f : Q M Q. Let K be the distortion
of f and H the distortion of f 1. Then

Hw) =K (f'(w)) ae weQ'

(More general results n > 2 Fusco, Moscariello, S. Calc. Var. (2008))
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The interplay between the Theory of mappings f : Q C R? — Q' C R?
and planar PDE’s goes back to Morrey (1938).

We will show , as a consequences of Theorem 1, that bisobolev maps
represent a class of mappings which permits a far reaching generalization
of Morrey'’s results.

The space of Sobolev mappings is the largest space in which one can
begin to discuss what it means to be a solution (u, v) to the degenerate
elliptic system

@) * Vv =A(z)Vu

Here
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Theorem 4

To each bi-ACL homeomorphism f = (u,v) : Q 2" Q) there corresponds

a unique (non trivial) degenerate elliptic system such that u and v satisfy
(7), where: A: Q — R2%? s 2 measurable matrix valued function such
that A(z) = A(z), det A(z) = 1 a.e. and V¢ € R?,

I{§

Rz S A@EE < Ki(2) € ae zeQ.
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Proof of Theorem 4
Define A(z) = (aij(z)) as follows:

4@+ i)

2 =750

e ()(2) + 22
Jr(2)

312(2) = 321(2) = —

v2(2) + u3(2)
Jr(2)

for z € Re = {z € Q : f is differentiable at z and J¢(z) > 0}, while

322(2) =

aij(Z):(S,'j ifZEQ\Rf.

By a direct computation if z € Ry.

If J;(z) = 0 then |Df(z)| = 0 by Theorem 1 therefore the system (7) is
clearly satisfied.
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Remark 6:
Conversely if there exists a non-trivial degenerate elliptic system (7) such

that u, v represents a solution, then
(@Y @
In fact if Vv(z) = 0 then
a11(20)ux(20) + a12(20) uy (20)
0= A(z) Vu(z) =

a12(20) ux(20) + a22(20) uy(20)

since det A(zy) = 1, we deduce Vu(z) = 0.
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Remark 7:
Actually we have

Az) =[G} (2)]" ae zeQ.

Moreover u and v have finite energy:

/(A(z)Vu(z),Vu(z)) dz :/(A(z)Vv(z),Vv(z)> dz
Q Q
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Corollary

Letf: QCR228 Q' CR? bea homeomorphism. Then

f = (u, v) bi-ACL homeomorphism

i)
*Vv = A(z)Vu in Q, where

K(Iz) < A(z) = fA(z) < K(2)!

(%) det A(z) =1 a.e

~

1< K(z) < oo a.e. Borel

Remark 8:
Hence condition (*) is inherited by the inverse f=1 = (s, t) with H(w) =
K(f~Y(w)) and B(w) = A(f~Y(w)).
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The regularity of the deformation quotients Kr(z) and Kr-1(w) is strictly
related with the WP bi-Sobolev regularity of f.

Namely
K¢ and K;-1 belong to L!

if and only if

f is Wh2bisobolev.
Moreover (Hencl, Moscariello, Passarelli, S. (2009))

/Q\Df(z)|2 dz:/lK,H(W) dw

and

/Q/ |DF Y (w)|? dWZ/QKf(z) dz.
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A different matter is the existence problem of homeomorphic solutions to
the elliptic system
* Vv =A(x)Vu

The assumption K € L! or even stronger K € LP for p > 1 is not
sufficient.

in Ryazanov-Srebro-Yakubov (2001))

The assumption K € EXP is the right one.
(Iwaniec, S. Ann. Inst. H. Poincaré, (2001)
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The “continuity” of the operator
f— Ar = [Gf] !

has been studied by Capozzoli, Carozza (2008).

The “right” topology on coefficient matrices is the I'- convergence.
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Bisobolev mappings (in plane) are simply homeomorphisms f : Q — Q’
(Q,9’ C R? domains) such that

i) f belongs to Sobolev class W' (€, R?)

loc
and

i) f = (u,v) satisfies the Beltrami system
D'f(z)Df(z) = Jr(2)Gr(2) aezeq

where the measurable symmetric matrix field Gr satisfies:
o det Gf(Z) =1,

[4§
o V€ ER? K@) < (Ge(2)€,€) < Ke(2)I€P

and
o Kr:Q — [1,00[ is Borel.
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divA4AsVu =10
divAfVv
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Theorem 0 (Fusco, Moscariello, S. , (2008))

fi:Q M Q) bisobolev

whi il f bisobolev
fi = f&Wg 1 Hom ) — Ke(z) < K(z2)
Kg — K ofL5 %) [y Kr < liminf; [, Ke
Moreover:
c° —1 WA g
K:(z) < K(2) £l (G
SHARP: EXAMPLE (D'Onofrio, Schiattarella, to appear) J
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Theorem 1

Let be f; € W12 N Hom such that {f;} converges weakly in W' and
c-uniformly to a map f € W, Then f admits a.e. a right inverse
h € BV, that is f(h(w)) = w a.e. and

Iy < C [ D7
Q

The Jacobians of f; = (uj, v;) bisobolev
Jr € Ll(Q)

(weak continuity)
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Theorem 2 (Dal Maso, S. (1994))

wit
—

£, f € W2(Q); f = Jp — Jr weakly in L}, (Q).

Theorem 3 (lwaniec, Martin)

P(t) = t?log '(e +t), f,fec WHP(Q)

fJ‘_ N f — Jf; = Jf Weak/y in Llloc(Q)‘
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EXAMPLE:
z=(x,y) €(0,1)?

me)= [ eds k)= [ ule)ds

h, k strictly increasing;

1 1 1 1
SDJ w_ J + wj ,(/17 J + ( )
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f(x,y) = (/Oxsu,/oym)

J5(2) = pi(x)¥i(y) = Jr = o1 (x)¥4(y)

Notice:
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Dfi(z)Dfi(2)] "
Af] _ [ Jﬁ (Z) if Je (Z) >0
[ ifJe(2) =0
satisfies
t.A,g. = As
det Ar =1 a.e
P < ae.6) < k()P
Kiz) = e =5
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So uj, v; are distributional solutions with finite energy:

/(Aﬁvujvvuj>:/J6 :/<A6V‘G’av‘0>
Q Q Q

Actually, adopting the notation

we have

(Ag(2)VED VD) = J(2)d,s
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For the example

fi(z) = (/Oij,/oyz/fj)

under the assumptions

1 1
Y — P+ —

®j P—

1 1

Y =y — = —

in o(L', L>°) we have
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Vi(y) 0 Di(y) 0
Aj(2) = (%(‘;) ()) - (“”0(*’ mx)) = A (2)
¥i(y)

f(x,y) = (/Oxw,/oym)

(weakly in LL )

loc
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Definition of G-convergence

Let Aj(z) and A(z), j € N be symmetric matrices satisfying uniform

ellipticity
[P 4 2
(8) "L < (A(2)6.6) < K¢
1€ >
(9) oL < (A ) < K

a.e. z€ Q C R?, bounded simply connected domain, V¢ € R?.

Carlo Sbordone Bisobolev mappings and non-isotropic elliptic equations



Sequences of bisobolev mappings Sequences of bisobolev mappings

We say that
(10) A S5 A

iff for any £ € R?, the unique solutions u; € W, %(Q) + (€, z) of the
Dirichlet problems

div(Aj(z)Vu;) =0 in Q
(11) { u(z) = (€2)  on 0Q

converge weakly in W12 to the (unique) solution u € Wy2(R) + (£, z) of
the Dirichlet problem

div(A(z)Vu) =0 in Q
(12) { u(z) = (&, 2) on 0Q

Theorem 4 (S.Spagnolo (1967))

Any sequence A; satisfying (8) contains a subsequence A; G-converging
to a symmetric matrix A satisfying (9).
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Definition of Beltrami matrices

For f : Q — Q' bisobolev, its Beltrami matrix is

. —1
[%] if Je(z) > 0
(13) Ar(z) =

/ otherwise

detAr =1  'A;= Ay
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Definition of '-convergence

Let Aj(z) and A j € N be symmetric matrices satisfying a.e. z € Q;

),
< (Ai(2)€,6) < Ki(2)|€)* V¢ eR?

(z

0

0<(A(2)6,6) < K2l veeRr?
for K;, K € L}(Q).
We say that

A -5 A

iff the two conditions (i), (ii) are satisfied:
(i) uj,ue WH*(Q) and y; RGN

/Q<AVU,VU> < IiJm’/(AjVuﬁVuj)

(il) Yu e Wh(Q) 3w € Wh(Q) : w; — v and

/(AVU,VU) = Iim/(AjVWj,VWj)
Q Q

J
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Theorem 5 (Marcellini, S. , J.Math. Pures Appl., (1977))

If Ki — Ko in (LY, L°°) then there exists a subsequence A, such that
A -5 A
for A satisfying 0 < (A(2)¢,€) < Ko(2)[¢]?

Remark 1:
If 1 < Kj(z) < Ko are equibounded, then

A-SA & A-DA

On the other hand, in general, no relation with convergence of solutions
to Dirichlet problems.
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Remark 2: If ||Kj||;1 < G Vj € N the '—compactness result of Marcellini,J
S. fails.

A = [ K(@)IVuPdz
Q
Q:[O,1]2BZ:(X,y)

Jj in Qj:Qﬂ|x\<jl.

Ki(z) =
1 in Q\QJ
Fi(u) / Vul +u(0,1) — u(0, ~1)P
Q

for u € CY(Q) : x = u(x,1) and x — u(x, —1) are constant near zero
and u(0,y) = my +gq.
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Definition of ' —convergence

For sequences A;(z) satisfying

5
k() = 268 < Ki)leP

K;(2)
][eTOdZSCO for0 < Ao <1l/2and Gg>1
Q

let P(t) = t?log (e + t), Q(t) = tlog(e + t).

We say that
A% A
iff
(iQ) uj,u € WHR(Q), u; LE) u = [o(AVu,Vu) < IiJr_n' Jo(AiVu;, Vu))

Q
(iig) Yu e WHO(Q) Jw; € WEO(Q) - w; =% 4 and

/(AVU,VU) = Iim/(AjVWj,VWj)
Q Q

J

Bisobolev mappings and non-isotropic elliptic equations
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Theorem 6 (Capozzoli, Carozza, Ric. Mat. (2009))

Let f;, f € WH1(Q; R?) N Hom satisfy
() IDEP < Ki(2)Jy(z) 2 ze
(i) 30 <A< 1/2,3G > 1:

K;(z

)
]lerngo VjeN
Q

(iii) ;= f weakly in W

loc

Then f is bisobolev and we have

Ke(2)
][e B dz < Gy
Q

.Afj —)Af

and
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Under previous EXP assumptions we have, for v € WHQ(Q) ¢ WHP(Q)
c/ |Vv|?log™! <e+|v‘/|> < /<AJ'VV,VV>
Q Vvla Q

Vv|
<C Vv|?lo <e+>
< [ 1VvPiog (et it
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We need the regularity results Astala-Gill-Rohde-Saksman (2009)

Theorem 7

Ke(

2)
f:Q — Q' bisobolev, if 30 < \g < 1/2 such that |, e dz < G, then:

Df|
Df2log<e+ | ></ Jr
o Dfla) < s

for all concentric disks B CC 2B C Q.

Theorem 8 (Moscariello (1994))
f:Q — Q bisobolev, |Df| € L?log™* L(Q); then Js € Lloglog,.(R) and

/ Js log |og(e + _/f)dz <c [/ |Df‘2 |og*1(e aF |Df|2) aF 1:|
B 2B
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Proof of Theorem 6
STEP 1: By Theorem 5 we know that there exists a subsequence
Ar —5 A  on Wh™

where A = A satisfies

0 < (A(2)&,€) < K(2)[¢.

If we prove )
_[Df@or@)

= [P e

this will imply better bound

€7
K(2)

< (A(2)§,€)

and that the entire sequence will '-converge to A:

A -5 A.
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SinceVQ; CQ

| avuvi < [ Ko
Ql Ql

<2||Kjllexe [ Vullfay

< o[ VulZo,,

u— (/Q<Ajvu, Vu>>1/2

are equilipschitz in VV&;CQ; a legitimate reason for passing from
I-convergence to the stronger

the functionals

.
A =% A on WHQ

(by an abstract result on - convergence)
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STEP 2: Let us show that, for any Q1 CC Q, if f;, = (u,, v,), f = (u,v),

then
/ (A(z)Vu,Vu) = Iim/ (A, (z2)Vur,Vu,)
931 r 1
/ (A(z)Vv,Vv) = Iim/ (A, (2)VVv,, V)
Q] r Ql
LQ(Q1) . 1,Q
By Theorem 7 u, —" u. Let w, be a sequence in W¥(€Q;) such that
L°(Q)

w, — u and

/{21<A(z)vu,vu> — lim /QI<AJ,(Z)W,W>.

r

Fix S CC Q and p € C}(1) cut-off (p =1 on S), t € (0,1) yields

/ (A (2) VWi, Vi) > / (A (2)Vur, V) (p(2) — 1)
(o} 1931

1—
t

t
cllVellZllw: = urllfegq,)
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asr—oo, t—0

/Ql<A(z)Vu,Vu> > Iim’,’/ (A (2)Vu,, Vi)

921
> Iimr/5<Aj,(z)Vur,Vu,>
Z/S<A(Z)VU,VU>

STEP 3:
Technical: use Kr € EXP(Q),

IDf| € [2log ' L(Q) = Jr € Lloglog Li,c()
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Corollary

Vo =31, 1ixs;

Iim’/ (A,Vuj,,VuJ',><p2/ (AVu,Vu)p
e Ql Q1

Carlo Sbordone Bisobolev mappings and non-isotropic elliptic equations

53/70



Sequences of bisobolev mappings Sequences of bisobolev mappings

We already know that K¢ € EXP(Q) and hence Jr > 0 a.e. in Q.
Moreover, VS C Q

/lDGI2Iog‘1( ) < 2o U (JG+6K5/A01)]
S S

and (Moscariello) hence

[[J5 loglog(" )l <G
Since

Jg(2) = (As(2)Vy;, Vi)
we deduce IF € L}(Q) :

/ (Ar(2)Vuj,Vuj)p — Fo Yo € Co(ﬁl)
Ql Ql
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and by Corollary

/(AVU,VU)gog/ Fo
Ql Q1

It is easy to arrive finally to
F(z) = (A(z)Vu,Vu) a.e. in

and V € CO()

(*) / (Ae(2)Vu;, Vuj)o — (A(z2)Vu,Vu)p
Q @

and similarly for v; and v.
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Now recall that (by definition of Ar)

(Ap(2)VED VED) = Jp(2)0
and use the weak continuity of Jacobian for f; — f in W1F
(generalization of Reshetnjak Theorem), (Iwaniec, Martin Theorem 8.4.2)
we get for the limit £ = (F1), f@) = (u,v)

(A(z)VFD, VFOY = Je(2)6,6

and consequently
A(z) = Ar(2)

since Jr(z) > 0 a.e.
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1) Classical results on change of variables:

Let f: Q C R?2 = Q' C R? be a homeomorphism

Theorem 1
f biLipschitz, p > 1,

w e WHP(Q) = wofe WP(Q)

loc loc

Theorem 2 (Reimann)

f K-quasiconformal,

we W2AQ) = wofe Wb (Q)

loc loc
w € BMO(Q') = wo f € BMO(Q)

Actually the composition operator T¢(w) = w o f maps W2 into W12
continuously
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Theorem 3 (Farroni-Giova, Studia Math. (2011))

f K-quasiconformal,

weEXP(D) =  wof € EXP(D)

" [wo
1 w o f||ExXP(D)
= <1+ KlogK
1+ KlogK = [[wllexp() &
SHARP using Astala’s Theorem )

w € EXP(Q) <= 3\ > 0: /e@dx«m
Q

Theorem 4 (Lehto-Virtanen, Ziemer)
f WL2_pisobolev,

w e WH3(Q) = wo f e Whi(Q).
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2) Composing bisobolev maps:

Theorem 5 (Hencl, Koskela (2008))
f: Q — Q bisobolev, g: Q' — Q" bisobolev,

Fle w2
g e wt? — gof bisobolev
g ! satisfies the (N)-condition of Lusin

Remark 1:
The assumption g~
(2010))

! satisfies (N) is not necessary (see Schiattarella
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Theorem 6 (Greco, S., Schiattarella, Proc. Royal Soc. Edinburgh (2011))

f: Q— Q bisobolev, g: Q' — Q" biSobolev,

|IDfF 1| € L?log™ L
— gof biSobolev
|Dg| € L?log™* L

and
Keor(z) < Kg(f(2))Kr(2) ae ze.
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We have always that f~! satisfies the (N)- condition

Proposition (Greco, S., Schiattarella)

f:Q—Q g:Q — Q" measurable
—> gof measurable
f=1 satisfies the (N)- condition

To compare with classical facts:

f, g Borel == g o f Borel

f measurable, g Borel == g o f measurable
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Proof of Proposition
gof:Q—Q"
We have to prove that:

(gof) ' (E")=f"1 (g }(E")) is measurable for all E” Q" open.

y

g is a measurable mapping = g (E”) is measurable.

Then 3B’ Borel D g~ 1(E”) such that |B’\ g }(E")| = 0.

=1 verifies the (N)- condition = |f~*(B'\ g }(E"))|=0
and the set

f—l (g—l(E/l)) — f—l(B//) \ f_]' (B/ \ g—l(E//))

is measurable.
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Distortion of the composition

Theorem 7 (Greco, S., Schiattarella)

f:Q—Q, g:Q — Q" bisobolev
Let

@) Kg € EXP1oc(Q') g o f bisobolev
Kr € L2 _(Q) () Kgor € L1, .(Q)

loc loc
SHARP:
(i) cannot be dropped
(j) is optimal
X X
) = —=pllxl),  &(x) = 7=pallx])
| Ix]
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The inequality

[D(g o F)(2)P _ |De(f(2))]? |Df(2)]?
Jgor(2) T Je(f(2))  Jr(2)

does not require Jg(w) > 0 a.e. w € Q but it is sufficient that, for a.e.
ze

for a.e. z€Q

J(f(2)) =0 = [Dg(f(2))| =0
and this is true, thanks to
g bisobolev and f~! verifies (N) condition
= {ze€Q:|Dg(f(2))] =0} \ {z € Q: Jg(f(2)) = O}
=[{f T (weQ :|Dg(w)|=0}\{weQ : J(w)=0}) =0.
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Recall that K € EXP(Q) if there exists A > 0 such that

K@)
e~ dz < oo.
Q

Then, for many reason it comes out that the space

WEP(Q),  P(t) = t?log (e + t)

loc

is a good starting point for the existence and regularity theory. We have
the following:
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Let 'A(z) = A(z) be a measurable matrix field such that

detA(z) =1 ae zeD

KL < (A(2)6,6) < K(2)I6P

for K € EXP(D); K(z) =1 for |z| > 1.
Then, there exists a unique bisobolev map f = (u,v) € W1P(R?) solving
the system

{tDZfDq - A2)

such that Jr > 0 a.e.

Remark 2:
|DF?

K
N L) £_1).
ogle o) S AUr+er —1)
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Remark 3:
The condition
detA(z) =1

in some regularity problems can be removed because of the following
algebraic lemma (Capone, Iwaniec-S.) (Maly)

Lemma

Given a vector E = (Ey, E) and a symmetric matrix B € R**2 such that

X 2
X < (8x, x) < KIxP?

fora K >1;¥X € R2.
Then, there exists a symmetric matrix A € R?*? such that

det A =1 AE = BE

|X]?

o < (AX, X) < KIXP?
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Wi-solutions to div(AV) =0

K € EXP(£). The function u

uc Wa(Q) = {@ e Wh(Q): /Q (A(X)Vp, Vo) < oo}

is a Wjy-solution if

/ (AVu, Vo) =0 Vo € Wa(Q), supp ¢ CC Q.
Q
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Theorem 9 (Ricciardi,Zecca Potential Anal., to appear)
Every Wx-solution u to
divAVu =20
satisfies
41

lu(z) — u(Z')]> < : [Iog o (5] loalog (éff;” / (AVu, Vu)

=

z,7' € B(zo,r), r < Fe=3 where B; = B(z,F) CC Q.
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Theorem 10 (Ricciardi, Zecca)

If moreover det A =1 a.e., then

C

(log log 525) log™ (55

|u(z) — u(2)? <

/ (AVu,Vu) dz
) Ja

z,7 € B(zp,r), r<re % C=C(\FK).

In the spirit of mappings f = (u, v), the Wx-condition means

o*f  O*f
Oxdy  Oydx

in a stranger sense then in the distributional one.

To compare with Koskela-Onninen, Onninen-Zhong, Campbell-Hencl.
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