Bisobolev mappings and non-isotropic elliptic equations

Carlo Sbordone

University of Naples Federico II

Prague September 24 - 28, 2011 Joint work with

- S. Hencl (Prague)
- C. Capozzoli, L. D'Onofrio, F. Farroni
 - N. Fusco, F. Giannetti, R. Giova, L. Greco, G. Moscariello,
 - A. Passarelli di Napoli, T. Ricciardi, R. Schiattarella, C. Trombetti,
 - G. Zecca (Napoli)
- M. Carozza (Benevento)
- P. Di Gironimo (Salerno)

Outline:

- Definitions and main properties of planar bisobolev mappings
- Sequences of bisobolev mappings
- Composition of bisobolev mappings

$\Omega \subset \mathbb{R}^2$ open; $f: \Omega \xrightarrow{onto} \Omega' \subset \mathbb{R}^2$ homeomorphism

Definition 1

f is bisobolev iff:

$$f, f^{-1} \in W^{1,1}_{\mathrm{loc}}$$

$$(f = (u, v) : \Omega \xrightarrow{\text{onto}} \Omega'; f^{-1} = (x, y) : \Omega' \xrightarrow{\text{onto}} \Omega)$$

While one can be interested in the question how the Sobolev regularity of f reflects in the regularity of its inverse ([Hencl, Koskela (2006)], [Hencl, Koskela, Malý (2006)], [Csörney, Hencl, Malý (2010)]) here we start from mappings which have the same Sobolev regularity of the inverse.

Remark 1: If $f \in W_{loc}^{1,1}$ only, then automatically $f^{-1} \in BV_{loc}$ and

(1)
$$|\nabla y|(\Omega') = \int_{\Omega} \left| \frac{\partial f}{\partial x} \right| dz$$

(2)
$$|\nabla x|(\Omega') = \int_{\Omega} \left| \frac{\partial f}{\partial y} \right| dz$$

[Di Gironimo, D'Onofrio, S. ,Schiattarella, Ann. Fenn., (2011)] [Hencl, Koskela, Onninen, Arch. Ration. Mech. Anal., (2007)], qualitatively

Remark 2:

If we further weaken and assume $f\in \mathrm{BV}_{\mathrm{loc}}$ only, then (1) and (2) extend to

(3)
$$|\nabla y|(\Omega') = \left|\frac{\partial f}{\partial x}\right|(\Omega)$$

(4)
$$|\nabla x|(\Omega') = \left|\frac{\partial f}{\partial y}\right|(\Omega)$$

[D'onofrio, Schiattarella, to appear]

The advantage of quantitative equalities is seen considering sequences.

If we go to bisobolev precise results hold true:

Theorem 1 (Hencl, Moscariello, Passarelli, S., (2009))

Let $f = (u, v) : \Omega \to \Omega'$ be a bisobolev homeomorphism. Then

$$C_u = \{z : |\nabla u(z)| = 0\} = \{z : |\nabla v(z)| = 0\} = C_v$$
 a.e.

The reason is that (u, v) is a solution of a non trivial linear system whose symmetric coefficient matrix A(z) has det A(z) = 1

(5)
$$\star \nabla v = A(z) \nabla u$$

- easy case: $f^{-1} \in W^{1,2}$
- 2 general bisobolev case
- ACL-homeomorphism

Theorem 2

A sufficient condition for $f \in W_{loc}^{1,1} \cap$ Hom to be a bisobolev is

 $J_f(z) > 0$ a.e.

On the other hand bisobolev homeomorphisms may verify

 $J_f(z) = 0$ on $|Z_f| > 0$.

The point is that we are assuming only

$$f, f^{-1} \in W^{1,1}_{loc}.$$

In the category of $\mathcal{W}^{1,p}$ bisobolev the case $1\leq p<2$ is critical because the (N)-property of Lusin

$$|E|=0 \implies |f(E)|=0$$

is missing (**Ponomarev 1971**) (while it holds true for p = 2)

In particular, the area formula (for $J_f \ge 0$) holds as an inequality

 $\int_B J_f \leq |f(B)|$

CLASSICAL RESULTS:

Theorem A (Lehto- Virtanen Th.6.1. III)

If $f \in W_{loc}^{1,2} \cap$ Hom, then f satisfies the (N)-property.

(More general results $Df \in L_b^{(2)}$ or $K_f \in L_b^{(1)}$ (Giannetti - Passarelli))

Theorem B (Gehring-Lehto, 1959)

If
$$f \in W_{loc}^{1,1} \cap$$
 Hom, then f is differentiable a.e.
(false if $n > 2$; $|Df| \in L^p$, $p > n - 1$ is sufficient.

CLASSICAL RESULTS:

Theorem C (Sard)

$$f: \Omega \longrightarrow \Omega' \text{ bi-Sobolev, } Z_f = \{z: J_f(z) = 0\}.$$

$$\implies \exists N_0 \text{ such that } |N_0| = 0 \text{ and } |f(Z_f \setminus N_0)| = 0.$$

Theorem D (Hencl, Maly (2009) for a recent proof)

If f is a planar bisobolev homeomorphism, then

either
$$J_f \ge 0$$
 a.e., or $J_f \le 0$ a.e.

True also for ACL-homeomorphism.

Proof of Theorem 1 in the particular case $f^{-1} \in W^{1,2}$ Claim:

$$C_u | = |C_v| = |Z_f| = 0$$

In fact

$$C_u \subset Z_f = \{z : J_f(z) = 0\}$$

Theo C of Sard
$$\implies$$
 $|f(Z_f)| = 0$

Theo A for f⁻¹ \implies f^{-1} verifies (N) condition \implies 0 = $|Z_f| = |f^{-1}(f(Z_f))|$ \implies $|C_u| = 0.$

Similarly $|C_v| = 0$.

Definitions and main properties of planar bisobolev mappings Sequences of bisobolev mappings Composition of bisobolev maps

Definitions and main properties of planar bisobolev mappings

bi-ACL homeomorphism

Definition 2

A real function u = u(x, y) continuous in $\Omega \subset \mathbb{R}^2$ is said **absolutely** continuous on lines in Ω if for every rectangle

 $]a, b[\times]c, d[\subset \subset \Omega$

u is absolutely continuous as a function of the real variable *x* on a.e. segment $l_y =]a, b[\times \{y\} \text{ and as a function of } y \text{ on a.e. segment } \{y\} \times]c, d[.$

It is well known that a continuous function $u : \Omega \to \mathbb{R}$ which is absolutely continuous on lines (ACL for short) in Ω , possesses finite partial derivates a.e. in Ω .

Definitions and main properties of planar bisobolev mappings Sequences of bisobolev mappings Composition of bisobolev maps

Definitions and main properties of planar bisobolev mappings

bi-ACL homeomorphism

In the following we will assume that $f = (u, v) : \Omega \subset \mathbb{R}^2 \to \Omega' \subset \mathbb{R}^2$ is a homeomorphism with u and v ACL together with the components of the inverse f^{-1} and call such a mapping a **bi-ACL homeomorphism**.

<u>Remark 3:</u> bi-ACL homeomorphism are a wider class than bi-Sobolev homeomorphism. A mapping f is in $W^{1,1}$ iff it is in ACL and $|Df| \in L^1$.

Theorem 1' (Moscariello, Passarelli, S., (2009))

Let $f = (u, v) : \Omega \subset \mathbb{R}^2 \xrightarrow{onto} \Omega' \subset \mathbb{R}^2$ be a bi-ACL homeomorphism. Then the components of f have the same critical points, i.e.

 $C_u = \{z \in \Omega : |\nabla u| = 0\} = \{z \in \Omega : |\nabla v| = 0\} = C_v = Z_f \text{ a.e.}$

hence Df(x) vanishes a.e. on Z_f .

Proposition (Schiattarella, (2009))

Let $f : \Omega \xrightarrow{onto} \Omega'$ be a bi-ACL homeomorphism. If f belongs to the Sobolev space $W^{1,1}_{loc}(\Omega; \mathbb{R}^2)$ then f is bisobolev and

(6)
$$\int_{\Omega'} |Df^{-1}(w)| dw = \int_{\Omega} |Df(z)| dz$$

Proof of Theorem 1'

Suppose, by contradiction, that there exists a Borel set $A\subset Z_f; \; |A|>0$ such that

$$|\nabla u(z)| = 0$$
 $|\nabla v(z)| > 0$ a.e. $z \in A$.

• <u>Fubini:</u> $0 \stackrel{Sard}{=} |f(A)| = \int \mathcal{H}^1(f(A) \cap I(t)) d\mathcal{H}^1(t)$ I(t) = horizontal line segment

2 Coarea:

$$0 < \int_{\mathcal{A}} |\nabla v(z)| \, dz = \int \mathcal{H}^1\left(f^{-1}(f(\mathcal{A})) \cap I(t)\right) \, d\mathcal{H}^1(t)$$

 $(N)-property of f^{-1} with respect to Hausdorff$ $<math>\overline{\mathcal{H}^{1-} \text{ measure:}}$

 $\mathcal{H}^1(f(A) \cap I(t)) = 0 \implies \mathcal{H}^1(f^{-1}(f(A)) \cap I(t)) = 0$

In a paper [Moscariello, Passarelli, S. , Commun. Pure Appl. Anal. 9, (2010)] examples of bi-ACL homeomorphism which are not bisobolev. Winding around one point: polar coordinates

$$f(r, arphi) = \left[r, arphi + rac{1}{r}
ight]$$
 $f^{-1}(s, heta) = \left[s, heta - rac{1}{s}
ight]$

Remark 4:

The condition

$$J_f(z) = 0 \implies |Df(z)|^2 = 0 \quad a.e.z \in \Omega$$

implies the (distortion) inequality

$$|\langle \diamond \rangle$$
 $|Df(z)|^2 \leq K(z)J_f(z)$

to be satisfied a.e. in Ω for some measurable function $1 \leq \mathcal{K}(z) < \infty$ a.e.

$$\left(ext{Recall Hadamard inequality} \quad J_f(z) \leq |Df(z)|^2
ight)$$

The smallest function $K \ge 1$ for which (\Diamond) holds is called the distortion function of f and is denoted by K_f .

Remark 5:

By symmetry, for bi-ACL homeomorphism f, also $f^{-1}:\Omega'\longrightarrow\Omega$ satisfies a distortion inequality

$$(\diamondsuit\diamondsuit) = \left| Df^{-1}(w)
ight|^2 \leq H(w) \, J_{f^{-1}}(w)$$
 a.e. in Ω'

Theorem 3 (Greco, S., Trombetti (2007))

Let f be bi-ACL homeomorphism $f : \Omega \xrightarrow{onto} \Omega'$. Let K be the distortion of f and H the distortion of f^{-1} . Then

$$H(w) = K(f^{-1}(w))$$
 a.e. $w \in \Omega'$.

(More general results $n \ge 2$ Fusco, Moscariello, S. Calc. Var. (2008))

The interplay between the Theory of mappings $f : \Omega \subset \mathbb{R}^2 \longrightarrow \Omega' \subset \mathbb{R}^2$ and planar PDE's goes back to Morrey (1938).

We will show , as a consequences of Theorem 1, that bisobolev maps represent a class of mappings which permits a far reaching generalization of Morrey's results.

The space of Sobolev mappings is the largest space in which one can begin to discuss what it means to be a solution (u, v) to the degenerate elliptic system

(7)
$$\star \nabla v = A(z) \nabla u$$

Here

$$\star \nabla v = \star \left(\begin{array}{c} v_x \\ v_y \end{array} \right) = \left(\begin{array}{c} v_y \\ -v_x \end{array} \right)$$

Theorem 4

To each bi-ACL homeomorphism $f = (u, v) : \Omega \xrightarrow{onto} \Omega'$ there corresponds a unique (non trivial) degenerate elliptic system such that u and v satisfy (7), where: $A : \Omega \longrightarrow \mathbb{R}^{2 \times 2}$ is a measurable matrix valued function such that ${}^{t}A(z) = A(z)$, det A(z) = 1 a.e. and $\forall \xi \in \mathbb{R}^{2}$,

$$rac{\left|\xi
ight|^{2}}{K_{f}(z)}\leq \ \left\langle \mathsf{A}(z)\xi,\xi
ight
angle\leq K_{f}(z)\left|\xi
ight|^{2} \ \textit{a.e.} \ z\in\Omega.$$

Definitions and main properties of planar bisobolev mappings Sequences of bisobolev mappings Composition of bisobolev maps

Proof of Theorem 4

Define $A(z) = (a_{ij}(z))$ as follows:

$$\begin{aligned} a_{11}(z) &= \frac{v_y^2(z) + u_y^2(z)}{J_f(z)}, \\ a_{12}(z) &= a_{21}(z) = -\frac{v_x(z)v_y(z) + u_x(z)u_y(z)}{J_f(z)} \\ a_{22}(z) &= \frac{v_x^2(z) + u_x^2(z)}{J_f(z)} \end{aligned}$$

for $z \in R_f = \{z \in \Omega : f \text{ is differentiable at } z \text{ and } J_f(z) > 0\}$, while

$$a_{ij}(z) = \delta_{ij}$$
 if $z \in \Omega \setminus R_f$.

By a direct computation if $z \in R_f$.

If $J_f(z) = 0$ then |Df(z)| = 0 by Theorem 1 therefore the system (7) is clearly satisfied.

Remark 6:

Conversely if there exists a non-trivial degenerate elliptic system (7) such that u, v represents a solution, then

$$C_u = C_v.$$

In fact if $\nabla v(z_0) = 0$ then

$$0 = A(z_0) \nabla u(z_0) = \begin{pmatrix} a_{11}(z_0)u_x(z_0) + a_{12}(z_0)u_y(z_0) \\ \\ a_{12}(z_0)u_x(z_0) + a_{22}(z_0)u_y(z_0) \end{pmatrix}$$

since det $A(z_0) = 1$, we deduce $\nabla u(z_0) = 0$.

Remark 7: Actually we have

$$A(z) = \left[G_f^*(z)
ight]^{-1}$$
 a.e. $z \in \Omega$.

Moreover u and v have finite energy:

$$\begin{split} \int_{\Omega} \langle A(z) \nabla u(z), \nabla u(z) \rangle \, dz &= \int_{\Omega} \langle A(z) \nabla v(z), \nabla v(z) \rangle \, dz \\ &= \int_{\Omega} J_f(z) \, dz \leq |f(\Omega)|. \end{split}$$

Corollary

Let $f: \Omega \subset \mathbb{R}^2 \xrightarrow{onto} \Omega' \subset \mathbb{R}^2$ be a homeomorphism. Then

f = (u, v) bi-ACL homeomorphism

$$\label{eq:product} \begin{tabular}{ll} \label{eq:product} \label{eq:product} \end{tabular} \\ \star \nabla v = A(z) \nabla u \mbox{ in } \Omega, \mbox{ where } \end{tabular}$$

(*)
$$\begin{cases} \frac{1}{K(z)} \leq A(z) = {}^{t}A(z) \leq K(z) \\ \det A(z) = 1 \text{ a.e.} \\ 1 \leq K(z) < \infty \text{ a.e. Borel} \end{cases}$$

Remark 8:

Hence condition (*) is inherited by the inverse $f^{-1} = (s, t)$ with $H(w) = K(f^{-1}(w))$ and $B(w) = A(f^{-1}(w))$.

The regularity of the deformation quotients $K_f(z)$ and $K_{f^{-1}}(w)$ is strictly related with the $W^{1,p}$ bi-Sobolev regularity of f.

Namely

$$K_f$$
 and $K_{f^{-1}}$ belong to L^1

if and only if

f is $W^{1,2}$ bisobolev.

Moreover (Hencl, Moscariello, Passarelli, S. (2009))

$$\int_{\Omega} \left| Df(z) \right|^2 \, dz = \int_{\Omega'} K_{f^{-1}}(w) \, dw$$

and

$$\int_{\Omega'} \left| Df^{-1}(w) \right|^2 \, dw = \int_{\Omega} K_f(z) \, dz.$$

A different matter is the $\underline{existence}$ problem of homeomorphic solutions to the elliptic system

$$\star \nabla v = A(x) \nabla u$$

The assumption $K \in L^1$ or even stronger $K \in L^p$ for p > 1 is not sufficient.

in Ryazanov-Srebro-Yakubov (2001))

The assumption $K \in EXP$ is the right one. (Iwaniec, S. Ann. Inst. H. Poincaré, (2001) The "continuity" of the operator

$$f \longrightarrow A_f = [G_f]^{-1}$$

has been studied by Capozzoli, Carozza (2008).

The "right" topology on coefficient matrices is the Γ - convergence.

Bisobolev mappings (in plane) are simply homeomorphisms $f: \Omega \to \Omega'$ $(\Omega, \Omega' \subset \mathbb{R}^2$ domains) such that

i)
$$f$$
 belongs to Sobolev class $W^{1,1}_{
m loc}(\Omega,\mathbb{R}^2)$

and

ii) f = (u, v) satisfies the Beltrami system

$$D^t f(z) D f(z) = J_f(z) G_f(z)$$
 a.e. $z \in \Omega$

where the measurable symmetric matrix field G_f satisfies:

• det
$$G_f(z) = 1$$
,
• $\forall \xi \in \mathbb{R}^2$, $\frac{|\xi|^2}{K_f(z)} \leq \langle G_f(z)\xi, \xi \rangle \leq K_f(z)|\xi|^2$
and

•
$$K_f: \Omega \to [1,\infty[$$
 is Borel.

Theorem

$$\mathcal{A}_{f} = {G_{f}}^{-1} \qquad f = (u, v) \qquad \Longrightarrow \quad \begin{cases} \operatorname{div} \mathcal{A}_{f} \nabla u = 0 \\ \operatorname{div} \mathcal{A}_{f} \nabla v = 0 \end{cases}$$

Theorem 0 (Fusco, Moscariello, S., (2008))

$$\begin{array}{l} f_{j}: \Omega \xrightarrow{onto} \Omega' \text{ bisobolev} \\ f_{j} \xrightarrow{W^{1,1}} f \in W^{1,1}_{\text{loc}} \cap \textit{Hom} \\ K_{f_{j}} \xrightarrow{} K \quad \sigma(L^{1}, L^{\infty}) \end{array} \end{array} \right) \Longrightarrow \qquad \left(\begin{array}{c} f \text{ bisobolev} \\ K_{f}(z) \leq K(z) \\ \int_{\Omega} K_{f} \leq \liminf_{j} \int_{\Omega} K_{f_{j}} \end{array} \right)$$

Moreover:

$$\begin{array}{c} f_{j} \stackrel{C^{0}}{\longrightarrow} f \\ K_{f_{j}}^{*}(z) \leq K(z) \end{array} \right) \qquad \Longrightarrow \qquad \left(\begin{array}{c} f_{j}^{-1} \stackrel{W^{1,1}}{\longrightarrow} f^{-1} \\ f_{j}^{-1} \stackrel{C^{0}}{\longrightarrow} f^{-1} \end{array} \right)$$

SHARP: EXAMPLE (D'Onofrio, Schiattarella, to appear)

Theorem 1

Let be $f_j \in W^{1,2} \cap$ Hom such that $\{f_j\}$ converges weakly in $W^{1,1}$ and c-uniformly to a map $f \in W^{1,1}$. Then f admits a.e. a right inverse $h \in BV$, that is f(h(w)) = w a.e. and

$$\|h\|_{\mathrm{BV}} \leq C \int_{\Omega} |Df|$$

The Jacobians of $f_j = (u_j, v_j)$ bisobolev

 $J_f \in L^1(\Omega)$

(weak continuity)

Theorem 2 (Dal Maso, S. (1994))

$$f_j, f \in W^{1,2}(\Omega); f_j \stackrel{W^{1,1}}{\rightharpoonup} f \implies J_{f_j} \stackrel{\rightharpoonup}{\rightharpoonup} J_f \text{ weakly in } L^1_{loc}(\Omega).$$

Theorem 3 (Iwaniec, Martin)

$$P(t) = t^2 \log^{-1}(e+t), \quad f_j, f \in W^{1,P}(\Omega)$$

$$f_j \stackrel{W^{1,p}}{\rightharpoonup} f \implies J_{f_j} \rightharpoonup J_f \text{ weakly in } L^1_{\mathrm{loc}}(\Omega).$$

EXAMPLE: $z = (x, y) \in (0, 1)^2$

$$h_j(x) = \int_0^x \varphi_j(s) \, ds \qquad k_j(y) = \int_0^y \psi_j(s) \, ds$$

h, k strictly increasing;

$$rac{1}{arphi_j}
ightarrow rac{1}{arphi_-}; \quad arphi_j
ightarrow arphi_+; \quad rac{1}{\psi_j}
ightarrow rac{1}{\psi_-}; \quad \psi_j
ightarrow \psi_+ \qquad \sigma(\mathcal{L}^1, \mathcal{L}^\infty).$$

 $f_j(x,y) \stackrel{\text{def}}{=} (h_j(x), k_j(y))$

$$Df_j(z) = \begin{pmatrix} \varphi_j(x) & 0 \\ 0 & \psi_j(y) \end{pmatrix} \stackrel{L^1}{\rightharpoonup} \begin{pmatrix} \varphi_+(x) & 0 \\ 0 & \psi_+(y) \end{pmatrix} = Df(z)$$

$$f(x,y) = \left(\int_0^x \varphi_+, \int_0^y \psi_+\right)$$

$$J_{f_j}(z) = \varphi_j(x)\psi_j(y) \rightharpoonup J_f = \varphi_+(x)\psi_+(y)$$

Notice:

$$arphi_-(s) \leq arphi_+(s) \ \psi_-(t) \leq \psi_+(t)$$

The Beltrami matrix of $f_j = (u_j, v_j)$

$$\mathcal{A}_{f_j} = \begin{cases} \left[\frac{D^t f_j(z) D f_j(z)}{J_{f_j}(z)}\right]^{-1} & \text{if } J_{f_j}(z) > 0\\ I, & \text{if } J_{f_j}(z) = 0 \end{cases}$$

satisfies

$${}^t\mathcal{A}_{f_j} = \mathcal{A}_{f_j}$$
 $\det \mathcal{A}_{f_j} = 1$ a.e.
 $rac{|\xi|^2}{K_j(z)} \leq \langle \mathcal{A}_{f_j}\xi, \xi
angle \leq K_j(z) |\xi|^2$
 $\left\{ egin{array}{l} \operatorname{div} \left(\mathcal{A}_{f_j}
abla u_j
ight) = 0 \\ \operatorname{div} \left(\mathcal{A}_{f_j}
abla v_j
ight) = 0 \end{array}
ight.$

So u_i , v_i are distributional solutions with finite energy:

$$\int_{\Omega} \langle \mathcal{A}_{f_j} \nabla u_j, \nabla u_j \rangle = \int_{\Omega} J_{f_j} = \int_{\Omega} \langle \mathcal{A}_{f_j} \nabla v_j, \nabla v_j \rangle$$

Actually, adopting the notation

$$f_j = \left(f_j^{(1)}, f_j^{(2)}\right)$$

we have

$$\langle \mathcal{A}_{f_j}(z)
abla f_j^{(r)},
abla f_j^{(s)}
angle = J_{f_j}(z) \delta_{rs}$$

For the example

$$f_j(z) = \left(\int_0^x \varphi_j, \int_0^y \psi_j\right)$$

under the assumptions

$$arphi_j
ightarrow arphi_+ \qquad rac{1}{arphi_j}
ightarrow rac{1}{arphi_-}$$
 $\psi_j
ightarrow \psi_+ \qquad rac{1}{\psi_i}
ightarrow rac{1}{\psi_-}$

in $\sigma(L^1, L^\infty)$ we have

$$\mathcal{A}_{f_j}(z) = \begin{pmatrix} \frac{\psi_j(y)}{\varphi_j(x)} & 0\\ 0 & \frac{\varphi_j(x)}{\psi_j(y)} \end{pmatrix} \rightharpoonup \begin{pmatrix} \frac{\psi_+(y)}{\varphi_-(x)} & 0\\ 0 & \frac{\varphi_+(x)}{\psi_-(y)} \end{pmatrix} = \mathcal{A}_f^+(z)$$
(weakly in $\mathcal{L}^1_{\mathrm{loc}}$)
$$f(x, y) = \left(\int_0^x \varphi_+, \int_0^y \psi_+\right)$$

$$\det \mathcal{A}_f^+(z) = rac{\psi_+(y)}{arphi_-(x)} rac{arphi_+(x)}{\psi_-(y)} > 1$$

Sequences of bisobolev mappings

Definition of *G*-convergence

Let $A_j(z)$ and A(z), $j \in \mathbb{N}$ be symmetric matrices satisfying <u>uniform</u> ellipticity

(8)
$$\frac{|\xi|^2}{K} \leq \langle A_j(z)\xi,\xi\rangle \leq K|\xi|^2$$

(9)
$$\frac{|\xi|^2}{K} \leq \langle A(z)\xi,\xi\rangle \leq K|\xi|^2$$

a.e. $z \in \Omega \subset \mathbb{R}^2$, bounded simply connected domain, $\forall \xi \in \mathbb{R}^2$.

We say that

(10)
$$A_j \stackrel{G}{\longrightarrow} A$$

iff for any $\xi \in \mathbb{R}^2$, the unique solutions $u_j \in W_0^{1,2}(\Omega) + \langle \xi, z \rangle$ of the Dirichlet problems

(11)
$$\begin{cases} \operatorname{div}(A_j(z)\nabla u_j) = 0 & \text{in } \Omega\\ u_j(z) = \langle \xi, z \rangle & \text{on } \partial \Omega \end{cases}$$

converge weakly in $W^{1,2}$ to the (unique) solution $u \in W_0^{1,2}(\Omega) + \langle \xi, z \rangle$ of the Dirichlet problem

(12)
$$\begin{cases} \operatorname{div}(A(z)\nabla u) = 0 & \text{in } \Omega\\ u(z) = \langle \xi, z \rangle & \text{on } \partial \Omega \end{cases}$$

Theorem 4 (S.Spagnolo (1967))

Any sequence A_j satisfying (8) contains a subsequence A_{j_r} G-converging to a symmetric matrix A satisfying (9).

Definitions and main properties of planar bisobolev mappings Sequences of bisobolev mappings Composition of bisobolev maps

Sequences of bisobolev mappings

Definition of Beltrami matrices

For $f: \Omega \to \Omega'$ bisobolev, its <u>Beltrami matrix</u> is

(13)
$$\mathcal{A}_{f}(z) = \begin{cases} \left[\frac{D^{t}f(z)Df(z)}{J_{f}(z)}\right]^{-1} & \text{if } J_{f}(z) > 0\\ I & \text{otherwise} \end{cases}$$

$$\det \mathcal{A}_f = 1$$
 ${}^t \mathcal{A}_f = \mathcal{A}_f$

Definition of **Γ**-convergence

Let $A_j(z)$ and A(z), $j \in \mathbb{N}$ be symmetric matrices satisfying a.e. $z \in \Omega$;

- $0 \leq \langle A_j(z)\xi,\xi
 angle \leq K_j(z)|\xi|^2 \qquad orall \xi \in \mathbb{R}^2$
- $0 \leq \langle A(z)\xi,\xi
 angle \leq K(z)|\xi|^2 \qquad orall \xi \in \mathbb{R}^2$

for K_j , $K \in L^1(\Omega)$. We say that

$$A_j \stackrel{\Gamma}{\longrightarrow} A$$

iff the two conditions (i), (ii) are satisfied:

(i)
$$u_j, u \in W^{1,\infty}(\Omega)$$
 and $u_j \stackrel{L^1(\Omega)}{\longrightarrow} u \Rightarrow$
$$\int_{\Omega} \langle A \nabla u, \nabla u \rangle \leq \lim_j \int_{\Omega} \langle A_j \nabla u_j, \nabla u_j \rangle$$

(ii) $\forall u \in W^{1,\infty}(\Omega) \exists w_j \in W^{1,\infty}(\Omega) : w_j \stackrel{L^1(\Omega)}{\longrightarrow} u$ and
$$\int_{\Omega} \langle A \nabla u, \nabla u \rangle = \lim_j \int_{\Omega} \langle A_j \nabla w_j, \nabla w_j \rangle$$

Theorem 5 (Marcellini, S., J.Math. Pures Appl., (1977))

If $K_j
ightarrow K_0$ in $\sigma(L^1, L^\infty)$ then there exists a subsequence A_{j_r} such that

$$A_{j_r} \xrightarrow{\Gamma} A$$

for A satisfying $0 \le \langle A(z)\xi,\xi \rangle \le K_0(z)|\xi|^2$

<u>Remark 1:</u> If $1 \le K_j(z) \le K_0$ are equibounded, then

$$A_j \stackrel{G}{\longrightarrow} A \quad \Leftrightarrow \quad A_j \stackrel{\Gamma}{\longrightarrow} A$$

On the other hand, in general, <u>no relation</u> with convergence of solutions to Dirichlet problems.

<u>Remark 2:</u> If $||K_j||_{L^1} \leq C_0 \ \forall j \in \mathbb{N}$ the Γ -compactness result of Marcellini, S. fails.

$$F_j(u) = \int_{\Omega} K_j(z) |\nabla u|^2 dz$$

for $u \in C^1(\Omega) : x \to u(x, 1)$ and $x \to u(x, -1)$ are constant near zero and u(0, y) = my + q.

Definition of Γ_Q –convergence

For sequences $A_j(z)$ satisfying

$$\begin{split} &\frac{|\xi|^2}{K_j(z)} \leq \langle A_j(z)\xi,\xi\rangle \leq K_j(z)|\xi|^2\\ &\int_\Omega e^{\frac{K_j(z)}{\lambda_0}}\,dz \leq C_0 \quad \text{ for } 0<\lambda_0<1/2 \text{ and } C_0\geq 1\\ &\text{let } P(t)=t^2\log^{-1}(e+t), \ Q(t)=t\log(e+t). \end{split}$$

We say that

$$A_j \xrightarrow{\Gamma_Q} A$$

iff

$$\begin{array}{l} (i_{Q}) \quad u_{j}, u \in W^{1,Q}(\Omega), \ u_{j} \stackrel{L^{Q}(\Omega)}{\longrightarrow} u \Rightarrow \int_{\Omega} \langle A \nabla u, \nabla u \rangle \leq \lim_{j} \int_{\Omega} \langle A_{j} \nabla u_{j}, \nabla u_{j} \rangle \\ (ii_{Q}) \quad \forall u \in W^{1,Q}(\Omega) \quad \exists w_{j} \in W^{1,Q}(\Omega) \ : w_{j} \stackrel{L^{Q}(\Omega)}{\longrightarrow} u \text{ and} \\ \int_{\Omega} \langle A \nabla u, \nabla u \rangle = \lim_{j} \int_{\Omega} \langle A_{j} \nabla w_{j}, \nabla w_{j} \rangle \end{array}$$

Theorem 6 (Capozzoli, Carozza, Ric. Mat. (2009))

Let
$$f_j, f \in W^{1,1}(\Omega; \mathbb{R}^2) \cap \text{Hom satisfy}$$

(i) $|Df_j(z)|^2 \leq K_j(z)J_{f_j}(z)$ a.e. $z \in \Omega$
(ii) $\exists \ 0 < \lambda < 1/2, \ \exists \ C_0 \geq 1$:

$$\int_{\Omega} e^{rac{\kappa_j(z)}{\lambda}} \, dz \leq C_0 \qquad orall j \in \mathbb{N}$$

(iii) $f_j
ightarrow f$ weakly in $W_{loc}^{1,1}$ Then f is bisobolev and we have

$$\int_{\Omega} e^{\frac{K_f(z)}{\lambda}} \, dz \leq C_0$$

 $\mathcal{A}_{f_i} \xrightarrow{\Gamma} \mathcal{A}_f$

and

Under previous EXP assumptions we have, for $v \in W^{1,Q}(\Omega) \subset W^{1,P}(\Omega)$

$$egin{aligned} & c \int_{\Omega} |
abla v|^2 \log^{-1} \left(e + rac{|
abla v|}{|
abla v|_{\Omega}}
ight) & \leq \int_{\Omega} \langle A_j
abla v,
abla v
angle \ & \leq C \int_{\Omega} |
abla v|^2 \log \left(e + rac{|
abla v|}{|
abla v|_{\Omega}}
ight) \end{aligned}$$

We need the regularity results Astala-Gill-Rohde-Saksman (2009)

Theorem 7

 $f:\Omega \to \Omega'$ bisobolev, if $\exists \ 0 < \lambda_0 < 1/2$ such that $\int_{\Omega} e^{rac{K_f(z)}{\lambda_0}} dz \le C_0$, then:

$$\int_{B} |Df|^2 \log\left(e + rac{|Df|}{|Df|_{\Omega}}
ight) \leq \int_{2B} J_f$$

for all concentric disks $B \subset \subset 2B \subset \Omega$.

Theorem 8 (Moscariello (1994))

 $f: \Omega \to \Omega'$ bisobolev, $|Df| \in L^2 \log^{-1} L(\Omega)$; then $J_f \in L \log \log_{loc}(\Omega)$ and

$$\int_{B} J_{f} \log \log(e + J_{f}) dz \leq c \left[\int_{2B} |Df|^{2} \log^{-1}(e + |Df|^{2}) + 1
ight]$$

Proof of Theorem 6

STEP 1: By Theorem 5 we know that there exists a subsequence

$$A_{f_{j_r}} \stackrel{\mathsf{\Gamma}}{\longrightarrow} A$$
 on $W^{1,\infty}$

where $A = {}^{t}A$ satisfies

$$0 \leq \langle A(z)\xi,\xi \rangle \leq K(z)|\xi|^2.$$

If we prove

$$A(z) = \left[rac{D^t f(z) D f(z)}{J_f(z)}
ight]^{-1}$$
 a.e.

this will imply better bound

$$\frac{|\xi|^2}{K(z)} \leq \langle A(z)\xi,\xi\rangle$$

and that the entire sequence will Γ -converge to A:

$$A_j \xrightarrow{I} A.$$

Since $\forall \ \Omega_1 \subset \Omega$

$$egin{aligned} &\int_{\Omega_1} \langle A_j
abla u,
abla u
angle &\leq \int_{\Omega_1} K_j(z) |
abla u|^2 \ &\leq 2 \|K_j\|_{ ext{EXP}} \|
abla u\|_{L^Q(\Omega_1)}^2 \ &\leq c \|
abla u\|_{L^Q(\Omega_1)}^2 \end{aligned}$$

the functionals

$$u o \left(\int_{\Omega} \langle A_j \nabla u, \nabla u \rangle \right)^{1/2}$$

are equilipschitz in $W^{1,Q}_{\rm loc};$ a legitimate reason for passing from $\Gamma\text{-convergence}$ to the stronger

$$A_j \xrightarrow{\Gamma_Q} A$$
 on $W^{1,Q}$

(by an abstract result on Γ - convergence)

<u>STEP 2:</u> Let us show that, for any $\Omega_1 \subset \subset \Omega$, if $f_{j_r} = (u_r, v_r)$, f = (u, v), then $\int_{\Omega_1} \langle A(z) \nabla u, \nabla u \rangle = \lim_r \int_{\Omega_1} \langle A_{j_r}(z) \nabla u_r, \nabla u_r \rangle$

$$\int_{\Omega_1} \langle A(z) \nabla v, \nabla v \rangle = \lim_r \int_{\Omega_1} \langle A_{j_r}(z) \nabla v_r, \nabla v_r \rangle$$

By Theorem 7 $u_r \stackrel{L^Q(\Omega_1)}{\longrightarrow} u$. Let w_r be a sequence in $W^{1,Q}(\Omega_1)$ such that $w_r \stackrel{L^Q(\Omega)}{\longrightarrow} u$ and

$$\int_{\Omega_1} \langle A(z) \nabla u, \nabla u \rangle = \lim_r \int_{\Omega_1} \langle A_{j_r}(z) \nabla v_r, \nabla v_r \rangle.$$

Fix $S\subset\subset\Omega_1$ and $arphi\in C^1_0(\Omega_1)$ cut-off (arphi=1 on S), $t\in(0,1)$ yields

$$egin{aligned} &\int_{\Omega_1} \langle A_{j_r}(z)
abla w_r,
abla w_r
angle \geq \int_{\Omega_1} \langle A_{j_r}(z)
abla u_r,
abla u_r
angle (arphi(z)-1) \ &- rac{1-t}{t} c \|
abla arphi \|_\infty^2 \| w_r - u_r \|_{L^Q(\Omega_1)}^2 \end{aligned}$$

as $r \to \infty$, $t \to 0$

$$egin{aligned} &\int_{\Omega_1} \langle A(z)
abla u,
abla u
angle \geq \lim_r' \int_{\Omega_1} \langle A_{j_r}(z)
abla u_r,
abla u_r
angle \ &\geq \lim_r' \int_S \langle A_{j_r}(z)
abla u_r,
abla u_r
angle \ &\geq \int_S \langle A(z)
abla u,
abla u
angle \end{aligned}$$

<u>STEP 3:</u>

<u>Technical</u>: use $K_f \in EXP(\Omega)$,

 $|Df| \in L^2 \log^{-1} L(\Omega) \implies J_f \in L \log \log L_{\mathrm{loc}}(\Omega)$

Corollary $\forall \varphi = \sum_{i=1}^{n} \mu_i \chi_{B_i}$

$$\left|\Omega_1\setminus\left(\bigcup_{i=1}^n B_i\right)\right|=0\qquad \mu_i\geq 0$$

$$\lim_{r} {}^{\prime} \int_{\Omega_{1}} \langle A_{r} \nabla u_{j_{r}}, \nabla u_{j_{r}} \rangle \varphi \geq \int_{\Omega_{1}} \langle A \nabla u, \nabla u \rangle \varphi$$

We already know that $K_f \in EXP(\Omega)$ and hence $J_f > 0$ a.e. in Ω . Moreover, $\forall S \subset \Omega$

$$\int_{\mathcal{S}} |Df_j|^2 \log^{-1}(\quad) \leq 2\lambda_0 \left[\int_{\mathcal{S}} \left(J_{f_j} + e^{\mathcal{K}_{f_j}/\lambda_0} - 1
ight)
ight]$$

and (Moscariello) hence

$$\|J_{f_j}\log\log()\|_{L^1_{\mathrm{loc}}}\leq C_1$$

Since

$$J_{f_j}(z) = \langle A_{f_j}(z) \nabla u_j, \nabla u_j \rangle$$

we deduce $\exists F \in L^1(\Omega_1)$:

$$\int_{\Omega_1} \langle A_r(z) \nabla u_{j_r}, \nabla u_{j_r} \rangle \varphi \longrightarrow \int_{\Omega_1} F \varphi \qquad \forall \varphi \in C^0(\overline{\Omega_1})$$

and by Corollary

$$\int_{\Omega_1} \langle A \nabla u, \nabla u \rangle \varphi \leq \int_{\Omega_1} F \varphi$$

It is easy to arrive finally to

$$\begin{split} F(z) &= \langle A(z) \nabla u, \nabla u \rangle \qquad \text{a.e. in } \Omega_1 \\ \text{and } \forall \in C^0(\overline{\Omega_1}) \\ (*) & \int_{\Omega_1} \langle A_{f_j}(z) \nabla u_j, \nabla u_j \rangle \varphi \longrightarrow \int_{\Omega_1} \langle A(z) \nabla u, \nabla u \rangle \varphi \end{split}$$

and similarly for v_j and v.

Now recall that (by definition of A_{f_i})

$$\langle A_{f_j}(z)
abla f_j^{(r)},
abla f_j^{(s)}
angle = J_{f_j}(z) \delta_{rs}$$

and use the weak continuity of Jacobian for $f_j \rightarrow f$ in $W^{1,P}$ (generalization of Reshetnjak Theorem), (Iwaniec, Martin Theorem 8.4.2) we get for the limit $f = (f^{(1)}, f^{(2)}) = (u, v)$

$$\langle A(z)\nabla f^{(r)}, \nabla f^{(s)} \rangle = J_f(z)\delta_{rs}$$

and consequently

$$A(z)=A_f(z)$$

since $J_f(z) > 0$ a.e.

1) Classical results on change of variables:

Let $f: \Omega \subset \mathbb{R}^2 \to \Omega' \subset \mathbb{R}^2$ be a homeomorphism

Theorem 1

f biLipschitz, $p \ge 1$,

$$w \in W^{1,p}_{\mathrm{loc}}(\Omega') \implies w \circ f \in W^{1,p}_{\mathrm{loc}}(\Omega)$$

Theorem 2 (Reimann)

f K-quasiconformal,

$$w \in W^{1,2}_{loc}(\Omega') \implies w \circ f \in W^{1,2}_{loc}(\Omega)$$

 $w \in BMO(\Omega') \implies w \circ f \in BMO(\Omega)$

Actually the composition operator $T_f(w) = w \circ f$ maps $W^{1,2}$ into $W^{1,2}$ continuously

Theorem 3 (Farroni-Giova, Studia Math. (2011))

f K-quasiconformal,

$$w \in \mathrm{EXP}(\mathbb{D}) \implies w \circ f \in \mathrm{EXP}(\mathbb{D})$$

and

$$\frac{1}{1 + K \log K} \leq \frac{\|w \circ f\|_{\mathrm{EXP}(\mathbb{D})}}{\|w\|_{\mathrm{EXP}(\mathbb{D})}} \leq 1 + K \log K$$

SHARP using Astala's Theorem

$$w \in \mathrm{EXP}(\Omega) \Longleftrightarrow \exists \lambda > 0 \colon \int_{\Omega} e^{\frac{w(x)}{\lambda}} dx < \infty$$

Theorem 4 (Lehto-Virtanen, Ziemer)

f $W^{1,2}$ -bisobolev,

$$w \in W^{1,2}(\Omega') \implies w \circ f \in W^{1,1}(\Omega).$$

2) Composing bisobolev maps:

Theorem 5 (Hencl, Koskela (2008)) $f: \Omega \to \Omega'$ bisobolev, $g: \Omega' \to \Omega''$ bisobolev, $f^{-1} \in W^{1,2}$ $g \in W^{1,2}$ \Longrightarrow $g \circ f$ bisobolev g^{-1} satisfies the (N)-condition of Lusin

Remark 1:

The assumption g^{-1} satisfies (N) is not necessary (see Schiattarella (2010))

Theorem 6 (Greco, S., Schiattarella, Proc. Royal Soc. Edinburgh (2011)) $f: \Omega \to \Omega'$ bisobolev, $g: \Omega' \to \Omega''$ biSobolev, $|Df^{-1}| \in L^2 \log^{\alpha} L$ $\Rightarrow g \circ f$ biSobolev $|Dg| \in L^2 \log^{-\alpha} L$ and $K_{g \circ f}(z) \leq K_g(f(z))K_f(z)$ a.e. $z \in \Omega$. We have always that f^{-1} satisfies the (N)- condition

Proposition (Greco, S., Schiattarella)

 $f: \Omega \to \Omega', g: \Omega' \to \Omega''$ measurable

 f^{-1} satisfies the (N)- condition

To compare with classical facts:

f, g Borel \implies $g \circ f$ Borel f measurable, g Borel \implies $g \circ f$ measurable

 \implies $g \circ f$ measurable

Proof of Proposition

$$g \circ f : \Omega \longrightarrow \Omega''$$

We have to prove that:

 $(g \circ f)^{-1}(E'') = f^{-1}(g^{-1}(E''))$ is measurable for all $E'' \subset \Omega''$ open.

g is a measurable mapping $\implies g^{-1}(E'')$ is measurable. Then $\exists B'$ Borel $\supset g^{-1}(E'')$ such that $|B' \setminus g^{-1}(E'')| = 0$. f^{-1} verifies the (N)- condition $\implies |f^{-1}(B' \setminus g^{-1}(E''))| = 0$ and the set

$$f^{-1}\left(g^{-1}(\mathcal{E}'')\right) = f^{-1}(\mathcal{B}'') \setminus f^{-1}\left(\mathcal{B}' \setminus g^{-1}(\mathcal{E}'')\right)$$

is measurable.

Definitions and main properties of planar bisobolev mappings Sequences of bisobolev mappings Composition of bisobolev maps

Composition of bisobolev maps

Distortion of the composition

Theorem 7 (Greco, S., Schiattarella)

$$\begin{array}{ll} f:\Omega \to \Omega', \ g:\Omega' \to \Omega'' \ \textit{bisobolev} \\ \textit{Let} \\ (i) & \mathcal{K}_g \in \mathrm{EXP}_{\mathrm{loc}}(\Omega') \\ & \mathcal{K}_f \in L^2_{\mathrm{loc}}(\Omega) \end{array} \right) \Longrightarrow \qquad \left(\begin{array}{c} g \circ f \ \textit{bisobolev} \\ (j) & \mathcal{K}_{g \circ f} \in L^1_{\mathrm{loc}}(\Omega) \end{array} \right)$$

SHARP:

(i) cannot be dropped

(j) is optimal

$$\exists f(x) = \frac{x}{|x|} \rho_1(|x|), \qquad g(x) = \frac{x}{|x|} \rho_2(|x|)$$

The inequality

$$\frac{|D(g\circ f)(z)|^2}{J_{g\circ f}(z)} \leq \frac{|Dg(f(z))|^2}{J_g(f(z))} \frac{|Df(z)|^2}{J_f(z)} \text{ for a.e. } z\in \Omega$$

does not require $J_g(w)>0$ a.e. $w\in\Omega$ but it is sufficient that, for a.e. $z\in\Omega$

$$J_g(f(z)) = 0 \implies |Dg(f(z))| = 0$$

and this is true, thanks to

$$g \text{ bisobolev and } f^{-1} \text{ verifies (N) condition}$$

$$\implies |\{z \in \Omega : |Dg(f(z))| = 0\} \setminus \{z \in \Omega : J_g(f(z)) = 0\}|$$

$$= |\{f^{-1}(w \in \Omega' : |Dg(w)| = 0\} \setminus \{w \in \Omega' : J_g(w) = 0\})| = 0.$$

Recall that $K \in EXP(\Omega)$ if there exists $\lambda > 0$ such that

$$\int_{\Omega} e^{\frac{K(z)}{\lambda}} dz < \infty.$$

Then, for many reason it comes out that the space

$$W^{1,P}_{loc}(\Omega), \qquad P(t)=t^2\log^{-1}(e+t)$$

is a good starting point for the existence and regularity theory. We have the following:

Theorem 8

Let ${}^{t}A(z) = A(z)$ be a measurable matrix field such that

$$\begin{cases} \det A(z) = 1 & a.e. \ z \in \mathbb{D} \\ \frac{|\xi|^2}{K(z)} \leqslant \langle A(z)\xi, \xi \rangle \leqslant K(z) |\xi|^2 \end{cases}$$

for $K \in EXP(\mathbb{D})$; K(z) = 1 for |z| > 1. Then, there exists a unique bisobolev map $f = (u, v) \in W^{1,P}(\mathbb{R}^2)$ solving the system

$$\left[\frac{{}^{t}Df \ Df}{J_{f}}\right]^{-1} = A(z)$$

such that $J_f > 0$ a.e.

Remark 2:

$$\frac{|Df|^2}{\log(e+|Df|)} \leqslant 2\lambda (J_f + e^{\frac{K}{\lambda}} - 1).$$

Remark 3: The condition

$$\det A(z) = 1$$

in some regularity problems can be removed because of the following algebraic lemma (Capone, Iwaniec-S.) (Mal y)

Lemma

Given a vector $\underline{E} = (E_1, E_2)$ and a symmetric matrix $B \in \mathbb{R}^{2 \times 2}$ such that

$$rac{|\underline{X}|^2}{K} \leqslant \langle B \underline{X}, \underline{X}
angle \leqslant K |\underline{X}|^2$$

for a $K \ge 1$; $\forall \underline{X} \in \mathbb{R}^2$. Then, there exists a symmetric matrix $\mathcal{A} \in \mathbb{R}^{2 \times 2}$ such that

$$\det \mathcal{A} = 1 \qquad \qquad \mathcal{A}\underline{E} = B\underline{E}$$

$$\frac{|\underline{X}|^2}{K} \leqslant \langle \mathcal{A}\underline{X}, \underline{X} \rangle \leqslant K |\underline{X}|^2$$

Definitions and main properties of planar bisobolev mappings Sequences of bisobolev mappings Composition of bisobolev maps

Composition of bisobolev maps

W_A -solutions to $\operatorname{div}(A\nabla) = 0$

Definition:

 $K \in \text{EXP}(\Omega)$. The function u

$$u \in W_{\mathcal{A}}(\Omega) = \left\{ \varphi \in W^{1,1}(\Omega) : \int_{\Omega} \langle \mathcal{A}(x) \nabla \varphi, \nabla \varphi \rangle < \infty
ight\}$$

is a W_A -solution if

$$\int_\Omega \left\langle A
abla u,
abla arphi
ight
angle = 0 \qquad orall arphi \in W_{\!\mathcal{A}}(\Omega), \quad ext{ supp } arphi \subset \Omega.$$

Theorem 9 (Ricciardi, Zecca Potential Anal., to appear)

Every W_A-solution u to

$$\operatorname{div} A \nabla u = 0$$

satisfies

$$|u(z) - u(z')|^{2} \leqslant \frac{4\pi}{\lambda \left[\log \log \left(\frac{\mathcal{K}}{2\pi r^{2}}\right) - \log \log \left(\frac{\mathcal{K}e^{3}}{2\pi \bar{r}^{2}}\right)\right]} \int_{B_{\bar{r}}} \langle A \nabla u, \nabla u \rangle$$

$$v, z' \in B(z_{0}, r), \ r < \bar{r}e^{-3} \ \text{where} \ B_{\bar{r}} = B(z_{0}, \bar{r}) \subset \subset \Omega.$$

Theorem 10 (Ricciardi, Zecca)

If moreover $\det A = 1$ a.e., then

$$\begin{split} |u(z) - u(z')|^2 &\leqslant \frac{C}{\left(\log\log\frac{\mathcal{K}}{2\pi r^2}\right)\log^{\lambda}\left(\frac{\mathcal{K}}{2\pi r^2}\right)} \int_{B_{\bar{r}}} \langle A\nabla u, \nabla u \rangle \, dz \\ z, z' &\in B(z_0, r), \, r < \bar{r}e^{-6}, \, C = C(\lambda, \bar{r}, \mathcal{K}). \end{split}$$

In the spirit of mappings f = (u, v), the W_A -condition means

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

in a stranger sense then in the distributional one.

To compare with Koskela-Onninen, Onninen-Zhong, Campbell-Hencl.