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A simple sequential procedure is proposed for detection of a change in distribution for dependent observations
when a training sample with no change is available. Its properties under both null and alternative hypothesis are
studied. Theoretical results are accompanied by a simulation study.

Introduction
We assume that the observations X1, . . . , Xn, . . . are ar-
riving sequentially, Xi has the continuous d.f. Fi and
the first m observations have the same distribution func-
tion, i.e., F1 = . . . = Fm = F0, where F0 is unknown.
X1, . . . , Xm are usually called training data. We are inter-
ested in testing the null hypothesis

H0 : Fi = F0, ∀i ≥ m,

against the alternative

HA : ∃k∗ such that Fi = F0, 1 ≤ i ≤ m + k∗,

Fi = F 0, m + k∗ < i <∞, F0 6= F 0.

Usually such testing problems concern only a change of fi-
nite dimensional parameter (see [2]). Preceding hypotheses
were considered by e.g. [3] or [4], they use however rather
strict assumptions. On the other hand we assume only the
continuity of the distribution functions Fi in case of in-
dependent observations, in case of dependent ones certain
type of dependency is assumed.

Our test procedure is described by the stopping rule:

τm,N = inf{1 ≤ k ≤ N : |Q(m, k)| ≥ c qγ(k/m)}
with standard understanding inf ∅ := +∞ and either
N =∞ or N = N(m) and limm→∞N(m)/m =∞.

The detector is choosen as

Q(m, k) =
1

σ̂m
√
m

m+k∑
i=m+1

(F̂m(Xi)− 1/2), k ≥ 1,

where F̂m is an empirical distribution function based on
X1, . . . , Xm and σ̂m is a suitable standardization based on
X1, . . . , Xm.
We use the boundary function

qγ(t) = (1 + t)(t/(1 + t))γ, t ∈ (0,∞), γ ∈ [0, 1/2),

with γ being a tuning parameter.
A positive constant c is chosen such that for fixed α ∈
(0, 1) under H0

lim
m→∞

P
(
τm,N <∞

)
= α, (1)

We also require that under HA

lim
m→∞

P
(
τm,N <∞

)
= 1. (2)

These requests mean that the test has asymptotically level
α and asymptotical power one.

Main results

Here we formulate assertions on limit distribution of our
test procedure under both null hypothesis as well under
some alternative.

Under the null hypothesis we consider two sets of assump-
tions:

(H1) {Xi}i are i.i.d. random variables with continuous dis-
tribution function F0, i = 1, 2, . . . .

(H2) Xi = µ + κei, i = 1, 2, . . ., where µ ∈ R1, κ > 0
and {ei}i form a linear process: ei =

∑∞
j=0 ajεi−j,

where {aj}j is a sequence of real numbers such that
|aj| ≤ Cdj, j = 0, 1, . . . , for some positive C and
d ∈ (0, 1) and {εi}∞i=−∞ are i.i.d. random variables
with zero mean, unit variance and E|εi|4 <∞.

Next is the assertion on limit behavior of the functional of
Q(m, k) under the null hypothesis.

Theorem
(I) Let the sequence {Xi}i fulfill the assumption (H1)
and put σ̂2

m = 1/12. Then

lim
m→∞

P

(
sup

1≤k<∞

|Q(m, k)|
qγ(k/m)

≤ x

)
= P

(
sup

0≤t≤1

|W (t)|
tγ

≤ x

)
(3)

for all x, where {W (t); 0 ≤ t ≤ 1} is a Wiener process.

(II) Let the sequence {Xi}i fulfill the assumption (H2)

and let, as m→∞, σ̂2
m − σ2 = oP (1), where

σ2 =
1

12
+ 2

∞∑
j=1

cov{F0(X1), F0(Xj+1)}. (4)

Then (3) holds true.

Theorem provides approximation for the critical value c so
that the test procedure fulfills (1) under the null hypoth-
esis (H1 or H2), i.e., c is the solution of the equation

P

(
sup

0≤t≤1

|W (t)|
tγ

≤ c

)
= 1− α. (5)

For the alternative hypothesis we require that∫
F0(x)dF 0(x) 6= 1/2. Then it can be shown that

sup
1≤k<∞

|Q(k,m)|
qγ(k/m)

P→∞, as m→∞.

This ensures that the requirement (2) is met.

Proofs of both assertions can be found in [1]. Here
we just sketch a basic idea of the proof of Theo-
rem. We need to show that the limit distribution of
{Vm(t), t > 0}, where Vm(t) = 1√

m

∑m+bmtc
i=m+1 (F̂m(Xi) −

1/2) is the same as of {Zm(t), t > 0}, where Zm(t) =
1√
m

(∑m+bmtc
i=m+1 (F0(Xi)− 1/2)− k

m

∑m
j=1(F0(Xj)− 1/2)

)
.

Moreover a process { 1√
m

∑m+bmtc
i=m+1 (F0(Xi)− 1/2), t > 0}

converges to a Gaussian process in a certain sense as
m→∞ and 1√

m

∑m
j=1(F0(Xj)− 1/2) converges in distri-

bution to N(0, σ2), where σ2 is the same as in (4).

As Theorem indicates, in case of dependent observations
we need a consistent estimator of σ2. We use

σ̂2
m = R̂(0) + 2

Λm∑
k=1

w(k/Λm)R̂m(k), where (6)

R̂m(k) =
1

n

n−k∑
i=1

(F̂m(Xi)− 1/2)(F̂m(Xi+k)− 1/2) and

w(t) = 1I{0 ≤ t ≤ 1/2} + 2(1− t){1/2 < t ≤ 1}
is a weight function. Under suitable assumptions on Λm

this estimator is consistent.

Simulations

Here we report selected results of a simulation study that
was performed in order to check the finite sample per-
formance of the monitoring procedure. All results are for
the level α = 5%. The asymptotic critical values, i.e. the
values obtained from (5), were used.

The parameters chosen:

• Length of training data: m = 50, 100, 500
• Observations: independent or AR(1) process with ρ =

0.2, 0.4
• Distribution of innovations: t4 and demeaned LN(0,1)
• Change point: k∗ = 0 i.e. the start of the monitoring
• Tuning constant: γ = 0, 0.25, 049

Since the procedure make use of an empirical distribution
function it is convenient also for distributions with heavier
tails. Therefore we do not report results for e.g. normal dis-
tribution, even though they are better than the reported

ones. The estimate σ̂2
m is set to 1/12 for independent ob-

servations and is calculated according to (6) for dependent
ones.

The empirical sizes of the procedure under the null hy-
potheses are reported in the table. We can see that
for independent
observations the
level is kept and
the prolongation
of the training pe-
riod has no signifi-
cant effect. This is
not the case when
for estimating σ2

the formula (6) is
used, since there

t4 LN

ρ m \ γ 0 0.25 0.49 0 0.25 0.49

50 4.4 4.3 1.7 4.3 4.1 1.7

0 100 4.7 4.3 2.0 4.7 4.3 2.0

500 4.2 4.4 2.8 4.4 4.5 3.0

50 8.6 8.7 4.6 9.0 8.8 4.6

0.2 100 6.6 6.4 3.8 7.5 7.5 3.9

500 5.0 5.3 3.5 5.2 5.6 3.8

50 10.3 10.4 5.2 11.0 10.9 5.4

0.4 100 9.0 9.3 4.8 8.9 8.8 4.2

500 6.7 7.2 4.9 7.2 7.4 5.0

we need more data to estimate it precisely enough and
therefore the prolongation will bring the empirical size
closer to the required level. Similar holds for dependent
observations. Since we will later examine an early change,
we are mostly interested in γ close to 1/2. For γ = 0.49,
the results are satisfactory even for the dependent obser-
vations.

Now we focus on alternatives. Since k∗ = 0, the stopping
time equals the detection delay. The table presents a sum-
mary of stopping times for a unit change in mean.

ρ = 0 ρ = 0.2 ρ = 0.4

\m 50 100 500 50 100 500 50 100 500

1st Qu. 8 9 10 37 34 32 56 47 42

Median 11 13 13 63 50 42 141 78 60

t4 Mean 12 15 14 120 61 45 234 125 66

3rd Qu. 15 18 17 123 71 56 500 140 83

Max. 52 54 46 500 500 168 500 500 365

1st Qu. 9 10 10 19 19 19 38 33 32

Median 14 13 13 34 27 24 113 58 45

LN Mean 23 15 13 90 38 26 230 116 51

3rd Qu. 23 18 16 76 41 31 500 122 62

Max. 500 75 30 500 500 67 500 500 324

For independent observations the prolongation of the
training period leads mainly to reducing extremes of the
delay (more clearly visible for smaller amount of change),
whereas for dependent ones the impact of increased m is
overall significant. With a growing dependence amongst
the data, the performance of the procedure is worsening.
However the results for m = 500 are satisfactory even with
an autoregressive coefficient ρ = 0.4. For shorter training
period, the change was not detected in some replications
(stopping time equals 500 then).

We performed also tests for change in variance and type of
distribution. The detection delays there are longer, how-
ever the procedure is still able to detect the change. For
more details see [1].
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