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SUMMARY
The poster aims at optimal consumption and portfolio choice under jump-diffusion models. Firstly, we argue that continuous models are not satisfactory
for modelling high-frequency data and as an alternative we present jump-diffusion models. We propose a practical approach for modelling such a data and
calibrate two jump-diffusion models. The main part of the poster deals with optimal control. Formulas for optimal consumption and portofolio choice are
presented. An alternative expression for the optimals is proposed and the influence of skewness and kurtosis on optimals is discussed.

MOTIVATION

Empirical facts of financial time series
Long ago statisticians noticed that returns respectively relative re-
turns of financial prices are not necessarily normally distributed. In
1963 a french mathematician Benòıt B. Mandelbrot noticed that the
increments of cotton prices showed heavy tails. The common prop-
erty of processes having heavy-tailed increments is càdlàg trajectory,
i.e. path is no longer continuous.
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Brownian Motion increments
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In the left picture 6 seconds shots of future price returns (in ticks), in the right one Brownian motion with the same

mean and volatility.

Possible solutions
1.One can repair classical diffusion models by adding stochastic

volatility term, however, this term becomes unrealistically large
as the process jumps.

2.Much more plausible way is to allow jumps in the model. Note that
it is obviously a generic property for any jump model to exhibit
sudden large movements and heavy tails.

Volatility clustering

We assume that clusters are essentially caused by variable activity at
markets. We change the time so that the series is constantly active
with respect to the new transformed time. If the activity is high, we
slower the time and vice versa.

Lévy Process
Definition
Let

(

Ω,ℱ , {ℱt}t≥0 , P
)

be a filtered probability space. A
predictable process Lt is called a Lévy process if it is contin-
uous in probability and has stationary, independent increments.

Decomposition
Let Lt be a Lévy process. Then Lt has the decomposition

Lt = bt+�Wt+

∫

∣z∣≤1
zÑ(t, dz)+

∫

∣z∣>1
zN(t, dz), 0 ≤ t < ∞.

where b ∈ ℝ, � ≥ 0, (Ñ)N is a (compensated) Poisson random
measure with a Lévy measure �.

MODELLING

We proceed in three steps
1.Make the series stationary

∙ we assume that the non-stationarity is caused by variable inten-
sity of trading,

∙ overcome by appropriate time change.

2. Select a model that satisfies the empirical facts (moments, varia-
tion, tail behavior),

3. Calibrate the parameters of the model.

∙MLE method used (analytical density assumed).

How to measure volatility?
Let L be a Lévy process, Δn

t = {t0, . . . , tn} a partition of [0, t]. Then

∑

Δn
t

(

Lti − Lti−1

)2 P
→ �2t +

∑

s∈[0,t]

[Δ(Ls)]
2 , ∥Δn

t ∥ → 0.

Consistent estimator of �2 is truncated Quadratic Variation [Mancini,
2001]

∑

Δn
t

(

Lti − Lti−1

)2
I[
∣Lti

−Lti−1
∣<�(Δti

)!̄
], with 0 < !̄ < 1/2.

Transformed time
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Transformed time by truncated quadratic variation.

Proposed Models
Merton Jump-Diffusion [Merton, 1976]

Lt = �t + �Wt +

Nt
∑

i=1

Yi, t ≥ 0,

and Normal Inverse Gaussian [Barndorff-Nielsen, 1998]
Let Lt = �t + B(Tt), where

Tt = inf {s > 0; �Ws + �s = �t} ,

and Bt is a Brownian motion with drift � and volatility �.
The objective is to minimize usual likelihood function L(Θ∣(Z, T̄ )),
where (Z, T̄ ) are observed data (increment of size z over time pe-
riod Δt̄). Let us remark, that estimated models are far superior to
classical continuous model. They also show satisfactory fit across the
whole spectrum of transformed time intervals Δt̄.

?
Having the estimated model we can quantify the addi-
tional risk due to jumps. How much should we change
our capital invested in stocks if we allow jumps in the
model?

OPTIMAL CONTROL

Model set-up
An investor invests in two assets

∙A riskfree bond that pays interest rate r,

∙A risky asset with dynamics

dSt = S(t−)

(

�dt + �dWt +

∫ ∞

−1
zÑ(dt, dz)

)

.

An investor controls the number of stocks Δt in his portfolio and

consumption Ct ≥ 0 for t ≥ 0. We further denote �t =
ΔtSt−

Xt−
the

proportion of capital invested in risky asset at time t and ct =
Ct
Xt−

the consumption proportion. Then it is easy to see that the portfolio
follows stochastic differential equation

dXt = Xt−�t

(

�dt + �dWt +

∫ ∞

−1
zÑ(dt, dz)

)

+rXtdt−ctXt−dt.

with X(0) = x, �t ∈ ℱt−, ct ∈ ℱt.

U(x) =
x1−p

1− p
, where

0 < p < 1 for aggressive in-
vestor, p > 1 for conserva-
tive one.

The objective of an investor
is to maximize the disctounted
utility of consumption, we call
it the value function v and de-

fine as

sup
(Δt,Ct)∈A(x)

∫ ∞

0
e−�tEU(Ct)dt,

whereA(x) is the set of admis-
sible strategies, � is a discount
factor.
The following theorem gives

the formulas for optimals.
The theorem was presented in
[Framstad et al., 1998] for ag-
gressive investor and for pro-
cesses with finite activity.

Theorem (Optimal Consumption and Port-
folio Choice)
Assume the model set-up and the objective

�∗p = argmax
�p

ℎ(�p) for 0 < p < 1,

= argmin
�p

ℎ(�p) for p > 1,

where

ℎ(�p) =

{

(�− r)�p(1− p)−
1

2
�2�2pp(1− p) +

∫ ∞

−1

(

(1 + �pz)
1−p − 1− �pz(1− p)

)

�(dz)

}

.

If � − r(1 − p) − ℎ(�∗p) > 0 (finiteness of the value function)

then �∗p is the optimal proportion, c∗ = (K(1− p))−1/p is the

optimal consumption and v(z) = Kz1−p is the value function,

where K = 1
1−p

(

�−r(1−p)−ℎ(�∗p)
p

)−p

.

To see explicitely the influence of skewness and kurtosis on the opti-
mal proportion, the previous theorem can be rewritten.

Proposition(Optimal portfolio as a function
of cumulants)
Let

∫ ∞

−1

∞
∑

k=2

∣

∣

∣

∣

(

1− p

k

)

�kpz
k
∣

∣

∣

∣

dz < ∞.

Then for p > 0

�∗p = argmax
�p

{

(�− r)�p(1− p) +

(

1− p

2

)

�2

J�
2

p +

∞
∑

k=3

(

1− p

k

)

�kp�k

}

, p < 1,

= argmin
�p

{

(�− r)�p(1− p) +

(

1− p

2

)

�2

J�
2

p +

∞
∑

k=3

(

1− p

k

)

�kp�k

}

, p > 1,

where

�2J = �2 +

∫ ∞

−1
z2�(dz),

�2 is the volatility of the diffusion part, and �k is the k-th cu-
mulant.

We conclude that for both conservative and aggressive investors as
skewness grows optimal proportion �∗p ascends. While as kurtosis
grows �∗p descends. To sum up, an agent should not only be aware of
heavy-tails but also of skewness. This fact becomes important when
investing into stocks, whose skewness is observed to be negative. We
may ask if it is possible to construct a jump process (heavy-tailed
distribution) with positive skewness so that the optimal investment
proportion is greater than the Merton proportion �∗p > �∗Mp . Note
that it is not obvious, since greater skewness also implies greater kur-
tosis?

Example
Consider the following game:
∙ win N

2N−2 with probability 2
N+1,

∙ lose 1
2N−2 with probability N−1

N+1.
It holds that

EGame = varGame =
1

2N − 2
,

i.e. �∗Mp = 1
p.

�∗p N = 3 N = 10 N = 100 N = 1000 �∗Mp
p = 4 0.293 0.355 0.376 0.378 0.250
p = 10 0.113 0.135 0.143 0.144 0.100
p = 40 0.028 0.033 0.035 0.035 0.025
p = 70 0.016 0.019 0.020 0.020 0.014

skewness 0.000 1.650 6.893 22.305

CONCLUSION

Financial series exhibit heavy tailed distribution, and these can be
naturally modelled by jump processes. Jumps have a nontrivial ef-
fect on the undertaking risk. Using alternative expression for optimal
proportion we conclude that

∙ positive skewness motivates the investor to invest more,

∙ large kurtosis forces the investor to behave more conservatively.

It is not necessarily true that heavy-tails escalate the risk, see the
example.
In this work we have presented the theoretical influence of skewness
and kurtosis on the optimal proportion, however, numerical study
still remains to be performed.
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