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SUMMARY
The poster presents an approach for estimating the proportion of false positives - rejection of the null hypotheses in multiple testing
procedure when they are true. Under independence assumptions, the explicit form the estimator of ratio of the false hypotheses to
number of all hypotheses is given. Some of properties of the estimator is discussed and the given results are illustrated by simulation.

INTRODUCTION
The usual approach in multiple testing problems is to control the

family-wise error rate (FWER), the probability of committing one or
more false rejection [5]. There are many alternatives to FWER (for
example, Bonferroni method). In [6] is proposed a step-down mul-
tiple testing procedure (MTP) that has more power than Bonferroni
method, but still controls FWER at the same level. In [16] is designed
a step-down resampling algorithm to control FWER, where to gain
more power the dependence of test statistics is utilized. Once the num-
ber of hypotheses is huge, rejection of the individual hypothesis have
little chance to be detected, therefore, in [9] it is suggested to replace
FWER by so-called k-FWER.

In this sequel a new concept, proposed in [2], was false discovery
rate (FDR), defined as the expected value of false discovery proportion
(FDP), which is the number of false rejections, divided by the total
number of rejections. A modification of FDR, so-called positive false
discovery rate (pFDR) was introduced in [13] as conditional expected
value of FDP on the event that positive findings have occurred. In-
troduced in [1] so-called sequential goodness of fit (SGoF) metatest,
where given α, assuming all n nulls are true, it compares the observed
number k to the expected number of rejections n×α. As SGoF test is
used exact binomial and for n ≥ 100 its approximation by chi-squared
distribution with one degree of freedom. Rejection occurs if k ≥ kα:
given α, kα, SGoF concludes that k−kα+1 hypotheses are false. FDR
rejects all hypotheses with pi ≤ αi/n (cf. [3]) while the SGoF test does
not decide which hypotheses are erroneously rejected. Although under
SGoF method the test power does not decrease once the number of hy-
potheses increases, it can not be precise on the number of rejections as
it only informs about false rejections relative to the expected number of
rejections. Based on the empirical distribution function of the p-values
the lower bound λ of the proportion of false hypotheses with the prop-
erty P(λ̂ ≤ λ) ≥ 1− α was constructed ([10]- [11]), asserting that the
proportion of false null hypotheses is at least λ̂. Closely related to the
last by using different approach we focus on estimating the number of
false hypotheses.

Let for i = 1, . . . , n we test n null hypotheses Hi
0 : Fi(x) = Gi(x)

against Hi
A : Fi(x) 6= Gi(x) with independent test statistics Ti and

let as a result of n independent comparisons we obtain a sample
Z1, Z2, . . . , Zn of size n, where Zi = pi ∈ [0, 1], i = 1, 2, . . . , n
and pi be corresponding to i-th hypotheses p-value. Now taking n p-
values as an independent random variables, we test the hypothesis H0:
sample Z1, Z2, . . . , Zn has a df F (x) against HA: it has a df G(x). Let
k denotes the number of p-values from HA. We are interested to know
k in testing n hypotheses. Clearly, some Zkj, 1 ≤ kj ≤ n correspond

to df G(x) and others to F (x). If H0 is true then k = 0 and if HA is
true then k = n. Therefore, we focus on cases when 0 < k < n.

Although there are approaches ([3], [14]-[15]) where control of multi-
variate analog of the univariate type I error are proposed under certain
dependence assumptions and applications with strongly dependent data
(for instance, gene expression data [7]-[8]), we assume independence.
Dependent data could be reduced to weakly dependent or almost inde-
pendent ([12], [7]).

MOTIVATION AND DESCRIPTION
OF THE METHOD

Let us have n points from the interval [0, 1]. Then the ratio of the
average number of points less than x to the number of all points will
approximately be equal to x, that is, one can suggest that this number
is distributed as U(0, 1). Take n points (random numbers) from [0, 1].
Assume that n − k of them ∼ U[0, 1] and remaining k ∼ U[0, 1 − δ]
(δ > 0). Now we take x ∈ [0, 1] and would like to test a hypothesis:
x ∼ U[0, 1] against x ∼ U[0, 1− δ]. Then the share of points from the
null hypothesis which are greater than x would approximately be equal
to 1−x, this is, (number of points > x)/(n−k) ≈ 1−x and the share
of points from the null hypothesis which are less than x would approx-
imately be equal to x, this is, (number of points < x)/(n − k) ≈ x.
Then the total number of points which are less then x approximately
equals to x(n− k) + k. Thus, we have the distribution of the rv x on
the whole interval [0, 1].

Now we take a random number x from the interval [0, 1] and would
like to test a hypothesis H0 : x ∼ F (x) against HA : x ∼ G(x) (not
only uniform as before). Let Z1, Z2, . . . , Zn be n random numbers on
[0, 1]; n − k of them produce sample X = (X1, X2, . . . , Xn−k) and
the remaining k sample Y = (Y1, Y2, . . . , Yk). Let TnZ(x) denotes
the “average number” of points greater than x ∈ [0, 1], TnX(x) be the
“average number” of points greater than x corresponding to the null
hypothesis and TnY (x) the “average number” of points greater than x
corresponding to the alternative. Then, clearly,

TnZ(x) = TnX(x) + TnY (x), (1)

where TnZ(x) =
∑n
j=1 I{Zj>x}; I{Zj>x} is the indicator function of

the event {Zj > x}.
Denote TZ(x) = E[TnZ(x)]. Since TnX(x) and TnY (x) are the

“average number of points”then their expected value give the “exact”
number of points: E[TnX(x)] = (n − k)(1 − F (x)) and E[TnY (x)] =
k(1−G(x)). From (1) we get

TZ(x) = (n− k) (1− F (x)) + k (1−G(x)) . (2)

We cannot estimate k in such settings, therefore we assume that

(A1) G(x) > F (x), ∀x ∈ [0, 1]

(A2) suppG(x) ⊂ [0, 1− δ], for some δ > 0.

By virtue of (A2) from equation (2) for the estimator of the ratio k/n
we obtain

p∗(x) = 1− TZ(x)

n(1− F (x))
. (3)

So, we take p∗(x) as an estimator of the ratio k/n = p. Now if we
look back into the equation (2), we get

Hp(x) = (1− p) (1− F (x)) + p (1−G(x)) , (4)

where Hp(x) = TZ(x)/n. Thus, the problem of estimating the number
k of false hypothesis leads to the problem of estimating the parameter p
from the distribution of Hp(x), as a contamination of F (x) and G(x).

P ∗(X) AND ITS PROPERTIES

Lemma 1 . If (A1) holds, then

E[p∗(x)] = p

[
1− 1−G(x)

1− F (x)

]
, (5)

where p = k/n.

Corollary 1 For x ∈ (1− δ, 1] p∗(x) is an unbiased estimator
of p.

Corollary 2 If in addition to (A1)

F ′(x)

1− F (x)
≤ G′(x)

1−G(x)
, (6)

then the expected value of p∗(x) is a monotonic nondecreasing
on the interval [0, 1] function. Moreover, since

0 ≤ 1− 1−G(x)

1− F (x)
≤ 1,

then 0 ≤ E[p∗(x)] ≤ p ∀x ∈ [0, 1].

Theorem 1 If random vectors X and Y are independent, then
standard deviation of the estimator p∗(x) has the form

σ2
p∗(x) =

(1− p)F (x)

n(1− F (x))
+
pG(x)(1−G(x))

n(1− F (x))2
, (7)

Corollary 3 If condition (A2)holds then

σ2
p∗(x) =

(1− p)F (x)

n(1− F (x))
, if 1− δ < x ≤ 1 (8)

and

σ2
p∗(x) =

(1− p)F (x)

n(1− F (x))
+
pG(x)(1−G(x))

n(1− F (x))2
, if 0 ≤ x ≤ 1− δ.

(9)

Theorem 2 Let conditions (A1) and (A2) satisfied. Then
σ2
p∗(x)

is a monotonic nondecreasing function of x ∀x ∈ [0, 1].

SIMULATION STUDY
We simulated data from different distributions on the interval [0, 1].
Almost in all cases both expected value and the standard deviation of
p∗(x) were increasing with x (Corollary 1 and Theorem 2). The case of
uniform distribution is the most suitable to our theoretical explanation.
With other distributions we observe some deviation from the uniform
case but in general behavior of p∗(x) is very close to the uniform case: it
expected value increases with x in the interval [0, 1−δ] and “stabilizes”
once x reaches the right border of the support. Standard deviation is

always increasing and started from the right border of the support of
the alternative distribution it increases more rapidly. If in the uniform
case expected value of p∗(x) remains constant above the support of
distribution function G(x), in other cases its behaves as a function of
bounded variation. So, the right border of the support of G(x) can
serve as a lower bound for the estimator p. Since we want to choose our
estimator as close as possible to 1, we can choose p greater than 1− δ
with a minimal standard deviation.

Figure 1: E[p∗(x)] and σ2
p∗(x)

for X ∼ U(0, 1) and Y ∼ U(0, 0.7).

In Figure 1 distribution under the null hypothesis is U(0, 1) and un-
der the alternative U(0, 0.7). Here we generated n-dimensional random
vector Z with n = 7500, 10000 and 12500, and corresponding k = 1500,
2000 and 2500, such that in all cases p = 0.2. The number of simula-
tions is M = 10000 (n = 7500 and n = 12500 is not shown here).

Figure 2: E[p∗(x)] and the σ2
p∗(x)

for X ∼ U(0, 1) and Y ∼ 1− e−λx.

In Figure 2 the null distribution is again U(0, 1) and under the alter-
native we took G(x) = 1− e−λx with λ = 8 and suppG(x) = [0, 0.7].
As before we generated n-dimensional random vector Z with n = 7500,
10000 and 12500, and corresponding k = 1500, 2000 and 2500, such
that in all cases p = 0.2. The number of simulations is M = 15000
(n = 7500 and n = 12500 is not shown here).
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