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Motivation, I

The extreme value theory (EVT) provided an excellent framework for
the analysis of climatic hazard: it's elegant, simple, and provides useful
and understandable results in terms of magnitude / frequency curves.

The stationarity assumption, though, is an important limitation of the
EVT.

Recent extensions of the EVT allow for non-stationary analysis (Coles,
2001), and an increasing number of authors are exploring their
possibilities for the analysis of climatic hazard.
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Motivation, II

Most studies up to now focused on identifying temporal trends in the
occurrence of extreme events, i.e. making time a covariate.

In the last few years other covariates with an expected in�uence on
the occurrence of extreme events are being used, too �> high
relevance for the statistical downscaling of reanalysis or model data,
which typically cannot be used for local impact studio.
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Summary

In this talk I will present ongoing research on the relationship between
extreme precipitation and teleconnection indices in Spain, using
non-stationary EVT techniques. The talk is organized as follows:

A review of non-stationary Peaks Over Threshold analysis

Case study: relationship between teleconnection indices and extreme
rainfall events in Spain

Conclusions and future work
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Short review of NSPOT analysis, I
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Peaks-over-threshold (POT) sampling: take only exccedances over a threshold, X > x0
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Short review of NSPOT analysis, II
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Short review of NSPOT analysis, III

Stationary POT: assuming independent inter-arrival times, the POT data
follows a Generalized-Pareto distribution.

Probability of exceedance:

P (X > x |X > x0) = 1− λ
(
1+ κ

x − x0
α

)−1/κ

(1)

Quantile corresponding to a return period T :

XT = x0 +
α

κ

[
1−

(
1

λT

)κ]
(2)

(beware of alternative conventions: x0 = u, α = σ, κ = ξ)
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Short review of NSPOT analysis, IV

Approaches for assessing non-stationarity in POT modeling:

Split-sample approach (Li et al., 2005)

Moving kernel (Hall and Tajvidi, 2000)

Non-stationary POT (NSPOT) modeling
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Short review of NSPOT analysis, V
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Split-sample approach: independent models for positive and negative phases of NAO (Angulo et al., 2011).
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Short review of NSPOT analysis, VI2110 S. BEGUERÍA et al.
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Figure 6. Model uncertainty: time variation of the 10-year return period event intensity standard error (mm d−1) by a nonparametric NSPOT
model (dots), a linear NSPOT model (solid line), a high order polynomial NSPOT model (short-dashed line) and a stationary POT model

(long-dashed line) in four stations. Location of the stations is shown in Figure 1.

by more than 50% (e.g. series X164). The time evolution
of q10 depended on the evolution of both α (scale) and
κ (shape), although the effect of the latter parameter was
much stronger. The amplitude of the confidence band
was also well correlated to the value of κ , with a negative
relationship. It is noteworthy that, although a linear model
was used for both parameters, their combined effect can
lead to a curvilinear relationship between q10 and time,
although the highest/lowest values of q10 always occurred
at the beginning/end of the time period.

Comparison of the nonparametric and the parametric
approaches to NSPOT modelling (dots and lines in
Figures 4 and 5) shows the main advantages of the latter
approach: (1) to provide estimates of extreme events at
the beginning and the end of the time series, which
are lost in the nonparametric model due to the moving
window necessary to obtain sub-samples and (2) to offer
robustness against the occurrence of very extreme events,
which have a major impact on the nonparametric model
due to the shorter time span of the sub-samples. This
is clearly shown by the magnitude of the standard error
of q10, which was much higher for the nonparametric
model (Figure 6). The standard error of the parametric
NSPOT model was, in average, equivalent to that of the
(parametric) stationary POT model, illustrating one of the
principal advantages of the parametric NSPOT approach.

High order polynomial NSPOT models were also fitted
to the data (Figure 7). Models of increasing complexity
were tested for significance against the stationary model,

and the most parsimonious (i.e. with the lowest polyno-
mial order) was chosen. Following this approach, statis-
tical significance was found in 45 (70.3%) models for
intensity and 42 (65.5%) for magnitude. The models had
orders between 5 and 9 for both α and κ , which reflects
quite a high complexity. It is evident that high order poly-
nomials are more flexible for fitting complex data, but
that comes at the expense of reduced reliability. In fact,
the models have the same drawbacks as the nonpara-
metric approach: (1) excessive impact of outlier observa-
tions resulting in over-fitting and (2) non-reliability at the
beginning and the end of the study period, as shown by
the large increase in the uncertainty bands in many cases
(e.g. series X9198 in Figure 7 and short-dashed lines in
Figure 6).

With respect to the time series of q10, differences
were occasionally found between adjacent observatories,
reflecting the influence of single, very localized extreme
events. Maps of q10 were produced to visualize the spatial
distribution of the q10 difference at the beginning and the
end of the period of study, and to check the regional
coherence of the stations for which a linear NSPOT
model was significant (Figures 8 and 9). Differences in
q10 were not very high for both the event intensity and
magnitude at the annual level (ranging between −10 and
+30% in most cases), and the spatial distribution of the
few significant series was random, suggesting that no
trends exist in the study area.

Copyright  2010 Royal Meteorological Society Int. J. Climatol. 31: 2102–2114 (2011)

Moving kernel approach: time variability in the P10 quantile, based on a moving window of the previous 20 years of
data (Beguería et al., 2011).
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Short review of NSPOT analysis, VII

Stationary POT:

P (X > x |X > x0) = 1− λ
(
1+ κ

x − x0
α

)−1/κ

Non-stationary POT:

P (X > x |X > x0,C ) = 1− λ(c)
(
1+ κ(c)

x − x0(c)
α(c)

)−1/κ(c)

(3)
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Short review of NSPOT analysis, VIII

Some examples of NSPOT analysis of climatic variables:

Time dependence of T and P (Smith, 1999)

Nogaj et al. (2006) time trends of T extremes over the NA region

Laurent and Parey (2007), Parey et al. (2007), T extremes in France

Méndez et al. (2006), trends and seasonality of POT wave height

Yiou et al. (2006) trends of POT discharge in the Czech Republic

Abaurrea et al. (2007) trends of POT T in the IP

Acero et al. (2011), Beguería et al. (2011), trends in POT P, IP

Friederichs (2010), Kallache et al. (2011), downscaling of POT P based on
reanalysis / GCM data

Tramblay et al. (2012), covariation between POT P extremes and

atmospheric covariates, SE France
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Teleconnections a�ecting precipitation in the IP, I

The North Atlantic Oscillation (NAO).
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Teleconnections a�ecting precipitation in the IP, II

The North Atlantic Oscillation (NAO).
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Teleconnections a�ecting precipitation in the IP, III

The Mediterranean Oscillation (MO, Palutikof 2003).
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Teleconnections a�ecting precipitation in the IP, IV

The Mediterranean Oscillation (MO, Palutikof 2003).
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Teleconnections a�ecting precipitation in the IP, V

The Western Mediterranean Oscillation (WEMO, Martín-Vide and López-Bustins 2006).
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Teleconnections a�ecting precipitation in the IP, VI

The Western Mediterranean Oscillation (WEMO, Martín-Vide and López-Bustins 2006).
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Dataset, II

Teleconnection indices (Reykjavik, Padova, Lod and Gibraltar). Sources: http://www.cru.uea.ac.uk,
http://www.ub.es.
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Teleconnections a�ecting precipitation in the IP, VII
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Dataset, I
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Stations network

106 stations, 58 daily precipitation series reconstructed for the period 1950-2009 (source: AEMET).
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Dataset, III
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Dataset, IV
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Dataset, V
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Dataset, VI

0 20 40 60 80

−
2

−
1

0
1

N
A

O
i

0 20 40 60 80

0
5

10
15

Time (days since 01/11/2001)

P
 (

m
m

/d
ay

)

0 20 40 60 80

−
2

−
1

0
1

2

W
E

M
O

i

0 20 40 60 80

0
5

10
15

Time (days since 01/11/2001)

P
 (

m
m

/d
ay

)

Declustering: intensity and magnitude series and associated teleconnection indices.

(santiago.begueria@csic.es) NSPOT with covariates Nemcicky, 09/09/2012 25 / 52



Analysis, I

M0: P (X > x |X > x0) = 1− λ
(
1+ κ x−x0

α

)−1/κ

M1: P (X > x |X > x0,C ) = 1− λ
(
1+ κ x−x0(c)

α(c)

)−1/κ

x0 = β0 + βic (4)

α = γ0γ
c
i (5)

κ = δ (6)

λ = ε (7)

Likelihood ratio test:

D = − 2 (`1(M1)− `0(M0)) (8)

distributed according to χ2
k
(with d.f. k = 4).
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Analysis, II

R, package ismev (Stuart Coles, ported to R by Alec Stephenson).

...
m0 <� gpd.�t(xdat=dat, threshold=u, npy=rate)
...
uu <� predict(lm(v∼cdat))
m1 <� gpd.�t(xdat=dat, threshold=uu, npy=rate, ydat=cdat,
sigl=1, siglink=exp)
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Analysis, III

Histogram of tel$naoi
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Example: Valencia, I
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Example: Valencia, II
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Example: Valencia, III
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Example: Valencia, IV
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Example: Valencia, V
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Example: Valencia, VI
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Example: Valencia, VII
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Example: Valencia, VIII
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Results: event's magnitude, I
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Results: event's magnitude, II
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Results: event's magnitude, III
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Results: event's intensity
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Results: event's magnitude, winter
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Results: threshold independence, I
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Results: threshold independence, II

−2 −1 0 1 2

NAOi (AIC=2695*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

 20 

 30 

 40 

 50  60 

 70  80 

 90 
 100 

 110 
 120 

 130 

 140 
 150 

 160 
 170 

 180 

−2 −1 0 1 2

WEMOi (AIC=2476*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

Intensity, non−stationary model

 20 

 30 

 40 

 50 

 60 

 70 

 80 

 90  100 
 110 

 120 
 130 

 140 
 150 

 160 
 170  180 
 190 

 200 
 210 

−2 −1 0 1 2

MOi (AIC=2609*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

 20 

 30 

 40 

 50  60 

 70  80 

 90 
 100 

 110 
 120 

 130 

 140 

 150 

 160 

 170 
 180 

−2 −1 0 1 2

NAOi (AIC=1817*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

 30 

 40 

 50 

 60 
 70 

 80 

 90 

 100 

 110 

 120 

 130 

 140 

 150 
 160 

 170  180 
 190 

 200 

−2 −1 0 1 2

WEMOi (AIC=1569*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

Intensity, non−stationary model

 30 
 40 

 50 

 60 
 70 

 80  90 
 100 

 110 
 120 

 130 

 140 
 150 

 160 
 170 

 180 
 190 

 200 
 210 

−2 −1 0 1 2

MOi (AIC=1831*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

 30 

 40 

 50 
 60 

 70 

 80 
 90 

 100 

 110 
 120 

 130 
 140 

 150  160 
 170  180 

 190 
 200 

−2 −1 0 1 2

NAOi (AIC=1033)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

 40 

 50 

 60  70 

 80 

 90 

 100 

 110 

 120 

 130 

 140 

 150 

 160 

 170 
 180 

 190 
 200 

 210 
 220 

 230  240 
 250 

−2 −1 0 1 2

WEMOi (AIC=953*)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

Intensity, non−stationary model

 40 

 60 

 80 

 100 

 120 

 140 

 160 
 180 

 200  220 
 240 

 260 
 280 

 300 

−2 −1 0 1 2

MOi (AIC=1046)

R
et

ur
n 

pe
rio

d 
(y

ea
rs

)

1
2

5
10

25
50

10
0

 40 

 50 

 60  70 

 80 

 90 

 100 

 110 
 120 

 130 

 140 
 150 

 160 

 170 
 180 

 190 
 200  210 

 220 
 230  240 

Quantile plots for rainfall intensity in Valencia, thresholds at u=q85, u=q90 and u=q95

(santiago.begueria@csic.es) NSPOT with covariates Nemcicky, 09/09/2012 43 / 52



Results: threshold independence, III
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Projected evolution of NAOi, MOi and WEMOi
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Conclusions and future work I

NSPOT analysis is good at capturing the relationship between
extreme precipitation processes and atmospheric circulation indices.

The results are promising for a variety of applications, including
short-term warning systems and the statistical downscaling of
GCM/RCM outputs.
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Conclusions and future work II

Clustering methods based on the series of covariates (and not on P).

Other covariates: synoptic scale air�ow parameters (direction,
strength, vorticity), speci�c humidity, etc.

Multi-covariate analysis.

Spatial model: take advantage of spatial dependence to reduce
uncertainty.
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Thank you!

santiago.begueria@csic.es
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