Covariate-dependent modeling of extreme events by non-stationary Peaks Over Threshold analysis A review and a case study

> Santiago Beguería santiago.begueria@csic.es

Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain

Nemcicky, September 9th 2012

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012

Motivation, I

- The extreme value theory (EVT) provided an excellent framework for the analysis of climatic hazard: it's elegant, simple, and provides useful and understandable results in terms of magnitude / frequency curves.
- The stationarity assumption, though, is an important limitation of the EVT.
- Recent extensions of the EVT allow for non-stationary analysis (Coles, 2001), and an increasing number of authors are exploring their possibilities for the analysis of climatic hazard.

Motivation, I

- The extreme value theory (EVT) provided an excellent framework for the analysis of climatic hazard: it's elegant, simple, and provides useful and understandable results in terms of magnitude / frequency curves.
- The stationarity assumption, though, is an important limitation of the EVT.
- Recent extensions of the EVT allow for non-stationary analysis (Coles, 2001), and an increasing number of authors are exploring their possibilities for the analysis of climatic hazard.

Motivation, I

- The extreme value theory (EVT) provided an excellent framework for the analysis of climatic hazard: it's elegant, simple, and provides useful and understandable results in terms of magnitude / frequency curves.
- The stationarity assumption, though, is an important limitation of the EVT.
- Recent extensions of the EVT allow for non-stationary analysis (Coles, 2001), and an increasing number of authors are exploring their possibilities for the analysis of climatic hazard.

Motivation, II

- Most studies up to now focused on identifying temporal trends in the occurrence of extreme events, i.e. making time a covariate.
- In the last few years other covariates with an expected influence on the occurrence of extreme events are being used, too -> high relevance for the statistical downscaling of reanalysis or model data, which typically cannot be used for local impact studio.

Motivation, II

- Most studies up to now focused on identifying temporal trends in the occurrence of extreme events, i.e. making time a covariate.
- In the last few years other covariates with an expected influence on the occurrence of extreme events are being used, too -> high relevance for the statistical downscaling of reanalysis or model data, which typically cannot be used for local impact studio.

In this talk I will present ongoing research on the relationship between extreme precipitation and teleconnection indices in Spain, using non-stationary EVT techniques. The talk is organized as follows:

- A review of non-stationary Peaks Over Threshold analysis
- Case study: relationship between teleconnection indices and extreme rainfall events in Spain
- Conclusions and future work

In this talk I will present ongoing research on the relationship between extreme precipitation and teleconnection indices in Spain, using non-stationary EVT techniques. The talk is organized as follows:

- A review of non-stationary Peaks Over Threshold analysis
- Case study: relationship between teleconnection indices and extreme rainfall events in Spain
- Conclusions and future work

In this talk I will present ongoing research on the relationship between extreme precipitation and teleconnection indices in Spain, using non-stationary EVT techniques. The talk is organized as follows:

- A review of non-stationary Peaks Over Threshold analysis
- Case study: relationship between teleconnection indices and extreme rainfall events in Spain
- Conclusions and future work

In this talk I will present ongoing research on the relationship between extreme precipitation and teleconnection indices in Spain, using non-stationary EVT techniques. The talk is organized as follows:

- A review of non-stationary Peaks Over Threshold analysis
- Case study: relationship between teleconnection indices and extreme rainfall events in Spain
- Conclusions and future work

Short review of NSPOT analysis, I

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 5 / 52

Short review of NSPOT analysis, II

Peaks-over-threshold (POT) sampling: take only exceedances over a threshold, $X > x_0$

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 6 / 52

Short review of NSPOT analysis, III

Stationary POT: assuming independent inter-arrival times, the POT data follows a Generalized-Pareto distribution.

Probability of exceedance:

$$P(X > x | X > x_0) = 1 - \lambda \left(1 + \kappa \frac{x - x_0}{\alpha}\right)^{-1/\kappa}$$
(1)

Quantile corresponding to a return period T:

$$X_{T} = x_{0} + \frac{\alpha}{\kappa} \left[1 - \left(\frac{1}{\lambda T} \right)^{\kappa} \right]$$
(2)

(beware of alternative conventions: $x_0 = u$, $\alpha = \sigma$, $\kappa = \xi$)

Short review of NSPOT analysis, IV

Approaches for assessing non-stationarity in POT modeling:

- Split-sample approach (Li et al., 2005)
- Moving kernel (Hall and Tajvidi, 2000)
- Non-stationary POT (NSPOT) modeling

Short review of NSPOT analysis, V

Split-sample approach: independent models for positive and negative phases of NAO (Angulo et al., 2011).

Short review of NSPOT analysis, VI

Moving kernel approach: time variability in the P10 quantile, based on a moving window of the previous 20 years of data (Beguería et al., 2011).

(santiago.begueria@csic.es)

Nemcicky, 09/09/2012 10 / 52

Short review of NSPOT analysis, VII

Stationary POT:

$$P(X > x | X > x_0) = 1 - \lambda \left(1 + \kappa \frac{x - x_0}{\alpha}\right)^{-1/\kappa}$$

Non-stationary POT:

$$P(X > x | X > x_0, C) = 1 - \lambda(c) \left(1 + \kappa(c) \frac{x - x_0(c)}{\alpha(c)}\right)^{-1/\kappa(c)}$$
(3)

Short review of NSPOT analysis, VIII

Some examples of NSPOT analysis of climatic variables:

- Time dependence of T and P (Smith, 1999)
- Nogaj et al. (2006) time trends of T extremes over the NA region
- Laurent and Parey (2007), Parey et al. (2007), T extremes in France
- Méndez et al. (2006), trends and seasonality of POT wave height
- Yiou et al. (2006) trends of POT discharge in the Czech Republic
- Abaurrea et al. (2007) trends of POT T in the IP
- Acero et al. (2011), Beguería et al. (2011), trends in POT P, IP
- Friederichs (2010), Kallache et al. (2011), downscaling of POT P based on reanalysis / GCM data
- Tramblay et al. (2012), covariation between POT P extremes and atmospheric covariates, SE France

< 口 > < 同

Teleconnections affecting precipitation in the IP, I

The North Atlantic Oscillation (NAO).

Teleconnections affecting precipitation in the IP, II

The North Atlantic Oscillation (NAO).

(santiago.begueria@csic.es

< ∃ > <

Teleconnections affecting precipitation in the IP, III

The Mediterranean Oscillation (MO, Palutikof 2003).

(santiago.begueria	@csic.es)
--------------------	-----------

Teleconnections affecting precipitation in the IP, IV

The Mediterranean Oscillation (MO, Palutikof 2003).

Nemcicky, 09/09/2012 16 / 52

э

(日) (同) (三) (三)

Teleconnections affecting precipitation in the IP, V

The Western Mediterranean Oscillation (WEMO, Martín-Vide and López-Bustins 2006).

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 17 / 52

Teleconnections affecting precipitation in the IP, VI

The Western Mediterranean Oscillation (WEMO, Martín-Vide and López-Bustins 2006).

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 18 / 52

э

< 日 > < 同 > < 回 > < 回 > < 回 > <

Dataset, II

Teleconnection indices (Reykjavik, Padova, Lod and Gibraltar). Sources: http://www.cru.uea.ac.uk, http://www.ub.es.

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 21 / 52

э

Teleconnections affecting precipitation in the IP, VII

Correlations between teleconnection indices.

Nemcicky, 09/09/2012 19 / 52

Dataset, I

106 stations, 58 daily precipitation series reconstructed for the period 1950-2009 (source: AEMET).

Dataset, III

Declustering: intensity and magnitude series and associated teleconnection indices.

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 22 / 52

Dataset, IV

Declustering: intensity and magnitude series and associated teleconnection indices.

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 23 / 52

Dataset, V

Declustering: intensity and magnitude series and associated teleconnection indices.

(santiago.begueria@csic.es)

< 口 > < 同

Dataset, VI

Declustering: intensity and magnitude series and associated teleconnection indices.

э

< □ > < 同 >

Analysis, I

M0:
$$P(X > x | X > x_0) = 1 - \lambda \left(1 + \kappa \frac{x - x_0}{\alpha}\right)^{-1/\kappa}$$

M1: $P(X > x | X > x_0, C) = 1 - \lambda \left(1 + \kappa \frac{x - x_0(c)}{\alpha(c)}\right)^{-1/\kappa}$
 $x_0 = \beta_0 + \beta_i c$ (4)
 $\alpha = \gamma_0 \gamma_i^c$ (5)
 $\kappa = \delta$ (6)
 $\lambda = \varepsilon$ (7)

$$\lambda = \varepsilon$$
 (

Likelihood ratio test:

$$D = -2 \left(\ell_1(M_1) - \ell_0(M_0) \right)$$
(8)

distributed according to χ_k^2 (with d.f. k = 4).

Analysis, II

R, package ismev (Stuart Coles, ported to R by Alec Stephenson).

Analysis, III

Covariates: NAOi and pnorm(NAOi)

Nemcicky, 09/09/2012 28 / 52

Example: Valencia, I

Spatial location

3. 3

Example: Valencia, II

Stationary model: fixed threshold

Nemcicky, 09/09/2012

Example: Valencia, III

Stationary model: quantile plot

Nemcicky, 09/09/2012

Example: Valencia, IV

Non-stationary model: threshold model

Nemcicky, 09/09/2012 32 / 52

Example: Valencia, V

Non-stationary model: scale parameter model

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012

< 口 > < 同

33 / 52

Example: Valencia, VI

Non-stationary model: quantile plot

Nemcicky, 09/09/2012

э

Example: Valencia, VII

WEMOi

Non-stationary model: quantile plot

æ

Example: Valencia, VIII

Non-stationary model: NAO (left), MO (center), WEMO (right)

Results: event's magnitude, l

Effect of NAO on the 100-years return period event:

э

< ∃ >

Results: event's magnitude, II

Effect of MO on the 100-years return period event

(*) *) *) *)

< 口 > < 同

Results: event's magnitude, III

Effect of WEMO on the 100-years return period event

• • = • • = •

< 口 > < 同

Э

Results: event's intensity

Effect of NAO, MO and WEMO on the 100-years return period event

Results: event's magnitude, winter

Effect of NAO, MO and WEMO on the 100-years return period event

Results: threshold independence, I

Quantile plots for rainfall intensity in Valencia, thresholds at u=q85, u=q90 and u=q95

Results: threshold independence, II

Quantile plots for rainfall intensity in Valencia, thresholds at u=q85, u=q90 and u=q95

Results: threshold independence, III

Effect of WEMO in rainfall magnitude, thresholds at u=q85, u=q90 and u=q95

Projected evolution of NAOi, MOi and WEMOi

Time variation of NAOi, MOi and WEMOi in the 21th Century, INMCM3.0 model output, 48-months convolution

(envelope of SRES A1b, A2 and B1 scenarios)

(santiago.begueria@csic.es)

NSPOT with covariates

Nemcicky, 09/09/2012 45 / 52

Conclusions and future work I

- NSPOT analysis is good at capturing the relationship between extreme precipitation processes and atmospheric circulation indices.
- The results are promising for a variety of applications, including short-term warning systems and the statistical downscaling of GCM/RCM outputs.

Conclusions and future work II

- Clustering methods based on the series of covariates (and not on P).
- Other covariates: synoptic scale airflow parameters (direction, strength, vorticity), specific humidity, etc.
- Multi-covariate analysis.
- Spatial model: take advantage of spatial dependence to reduce uncertainty.

References |

- Smith RL. Extreme value analysis of environmental time series: an application to trend detection in ground-level ozone. Statistical Science 4: 367–393 (1989).
- Katz RW. Extreme value theory for precipitation: sensitivity analysis for climate change. Adv. Water Resour. 23: 133-139 (1999).
- Smith RL. Trends in rainfall extremes. Unpublished paper, available at http://www.stat.unc.edu/ (1999).
- Hall P, Tajvidi N. Non-parametric analysis of temporal trend when fitting parametric models to extreme-value data. Stat. Science 15: 153-167 (2000).
- Coles S. An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag: London (2001).
- Palutikof J.P. Analysis of Mediterranean climate data: measured and modelled. In: Bolle H.J. (ed): Mediterranean climate: Variability and trends. Springer-Verlag, Berlin (2003)
- Li Y, Cai W, Campbell EP. Statistical modeling of extreme rainfall in southwest Western Australia. J. Clim. 18: 852-863 (2005).
- Martín-Vide J., López-Bustins J.-A. The Western Mediterranean Oscillation and rainfall in the Iberian Peninsula. Int. J. Climatol. 26: 1455-1475 (2006).
- Nogaj M, Yioui P, Parey S, Malek F, Naveau P. Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys. Res. Lett. 33: L10801 (2006).
- Laurent C, Parey S. Estimation of 100-year return-period temperatures in France in a non-stationary climate: results from observations and IPCC scenarios. Global and Planetary Change 57: 177-188 (2007).
- Parey S, Malek F, Laurent C, Dacunha-Castelle D. Trends and climate evolution: statistical approach for very high temperatures in France. Climatic Change 81: 331–352 (2007).
- Méndez FJ, Menéndez M, Luceño A, Losada IJ. Estimation of the long-term variability of extreme significant wave height using a time-dependent Peak Over Threshold (POT) model. Journal of Geophysical Research C: Oceans 111: C07024 (2006).
- Yiou P, Ribereau P, Naveau P, Nogaj M, Brazdil R. Statistical analysis of floods in Bohemia (Czech Republic) since 1825. Hydrological Sciences Journal 51: 930-945 (2006).

< ロ > < 同 > < 回 > < 回 >

References II

- Abaurrea J, Asín J, Cebrián AC, Centelles A. Modeling and forecasting extreme hot events in the central Ebro valley, a continental-Mediterranean area. Global and Planetary Change 57: 43–58 (2007).
- Angulo et al. (2011)
- Beguería S, Angulo-Martínez M, Vicente-Serrano S, López-Moreno JI, El-Kenawy A. Assessing trends in extreme precipitation events intensity and magnitude using non-stationary peaks-over-threshold analysis: a case study in northeast Spain from 1930 to 2006. International Journal of Climatology 31: 2102-2114 (2011).
- Acero FJ, García JA, Gallego MC. Peaks-over-Threshold Study of Trends in Extreme Rainfall over the Iberian Peninsula. Journal of Climate 24: 1089-1105 (2011).
- Friederichs P. Statistical downscaling of extreme precipitation events using extreme value theory. Extremes 13: 109–132 (2010).
- Kallache M, Vrac M, Naveau P, Michelangeli P-A. Non-stationary probabilistic downscaling of extreme precipitation. Journal of Geophysical Research 116, D05113 (2011).
- Tramblay Y, Neppel L, Carreau J, Sánchez-Gómez E. Extreme value modelling of daily areal rainfall over Mediterranean catchments in a changing climate. Hydrological Processes, DOI: 10.1002/hyp.8417 (2012).

イロト イポト イヨト イヨト

Thank you!

santiago.begueria@csic.es

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 一型