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Dataset of Calcium content vs. pH in soil in Condroz region in Belgium.
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Dataset of Calcium content vs. pH in soil in Condroz region in Belgium.
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See Goegebeur et al. (2005), Vandewalle, Beirlant, Hubert (2006),

Beirlant et al. (2004).
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Have E; i.i.d. random variables. We say

E: € D(G,), Gy = exp (= (1+52) /")

i.e. there exists a,, >0and b, € R

P (X < anz +by) = G4 ().
forall z € R.



Have E; i.i.d. random variables. We say

E: € D(G,), Gy = exp (= (1+52) /")

i.e. there exists a,, >0and b, € R

P (X < anz +by) = G4 ().
for all x € R.
We are chiefly interested in the heavy-tailed errors (v > 0), i.e.
F~1(1 — ) is regularly varying at zero (RV.).
F~1(1—tx
Jn ﬁ =
...and as usual (to get more precise asymptotic), suppose we have a

constant signed A(t) and the second order approximation with some
p ERT

-

F_l(lfta:) _
. iamy —* _y 1—2a”
lim ———~——— =2 .
£\ 0 A(t) p

=: Ky ().



Suppose that F;, i = 1,...,n are i.i.d. random variables fulfilling the
second order condition for some ~, p > 0 and k = k(n) is an
intermediate sequence. Then we can define a sequence of Wiener
processes W, (t),t € [0, 1] such that for £ > 0 sufficiently small

sup t’y+1/2+5
0<t<1

En—k n _ o~y
E1/2 <7F1 (1[ iﬁ) ¢ V> AW ()

—kY24 E t—vl —t
n P

P
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wide range of applications — consider functional T'(E,,_jx4,,,) With
T being location and scale invariant smooth functional

a more complicated version for v € R exists
Q: can something similar be established for linear models?



Yn><1 = andﬁdxl + En><1
X, xa known covariate matrix
E, 1 i.i.d. errors
E, € D(G,), G, =exp (— (1+ vx)fl/ﬂy)

i.e. there exists a,, > 0 and b,, € R

forall z € R.
v > 0.



regression quantiles for o € (0,1) and loss p,(u) = u(a — I(u < 0))
are defined

B,(a) =8, (0| Y,X) := i o (Yi —x;b).
Bu(a) =B, (a] Y, X) arg;lelﬁ{g;p( x;b)



the largest regression quantile

B.(1)=28 (1Y,X):= i Y; — x;b)"
B.(1) =B, (1]Y,X) argbrgﬁ{g;( xib)"

cf. Smith (1994), Portnoy and JureCkova (1999), Jureckova (2000), Knight (2002).
o) — 1 with a given order

regression quantiles (1 — a)n — k > 0, n — oo,
regression quantiles (1 — a)n — oo, a — 0,

cf. Chernozhukov (2005).

Example: asymptotic for intermediate regression quantiles by Chernozhukov (2005)

& A a) — a D
px (B(a) — B(ma)) (5( ) — B )) =2 N(0,2(y))

where ux = Ex, B(a) = (81 + F~1(a), B2,...,Ba), m < 1.



the tail quantile function

kt
Qui(t) :=F, " <1 — z) =En_k,qm, te€[0,1].

the sample quantile process

(@) =n?(F7(a) = F X)), 0<a<l.

the tails of regression quantiles

Qult) = B, (1 - ﬁ) L tep,

n

the process of regression quantiles

dn(@) == nt f(F~Y(a)) (,@n(a) - B(a)) . O<a<l,
where B(a) := (81 + F~Y(a), B2, .- ., Ba)-



the tail quantile function

kt

ka(t) = Fn_l <1 — E) = Enf[knt]:na t e [O, 1].

the sample quantile process
() =n?(F7Ya) — FHa)), 0<a<l.

the tails of reparametrized regression quantiles

Qi) :=X'8, (1 . %) . telo,1],

the process of reparametrized regression quantiles

Gn(a) == n? f(F1(a))xT (Bn(a) . 5@)) . O<a<l,

where B(a) = (B1 + F~1(a), B2,...,Ba) and X := L 377 | x;.



Approximate g, («), on [, 1 — o], af — 0.
Approximate g, (a) on [1 — o, 1 —1/n].
Approximate Q,, (t) in the same way as Q,, (1),
cf. Drees (1998).

Describe estimators of y as functionals of @, x(t).

The functionals have same properties on Q,, (t).



Under suitable conditions it holds

sup
oz <as< 1=aj

05 (B, (a] V) = B(a))| = Op(n~"/2(loglogn)?),

and

n'/2071 (B, (a Y. X) - B(a) =

n (a1l - ) "V?Dt Y xi (o — I[E; — F~Y(a) < 0]) + op(1)

=1

where o, := (a(l — a))V/?/f(F~'(a)) and o, = (1log”*° n) for any
0>0

cf. Gutenbrunner et al. (1993) and Juretkova (1999), where o, = n~11¢ is used.



Distribution function

F'is absolutely continuous with the positive density on (z., z*).
There exists f’, the derivative of density f.

There exists some 0 < K., < oo such that

s P Fe) | B <k
lim sup w =—1—~"

ot f3(z)
for some v* > —1/2 (lower tail index ~. similarly).
Covariance matrix
ri =1 1=1,...,n.
lim,, 0o D,, = D, where D,, = n~'X[X,, and D is a positive
definite (d x d) matrix.
nty |xm'|4 = 0(1) as n — oo.
max; <;<y [Xni| = O((loglogn)'/?) as n — oo.



Prove that sup {|rn(t, )| : afy <a < 1—af,[t] < (loglogn)l/2} =op(1),

n

ra(t, @) i= (a(l — @)~ V26 1 Z [pa (Ew — n_l/Qaax;rt) — Pa (Em)]
i=1

07 3a(1 = )T S xita(Bia) - 5t Dat
i=1 2

and Ejq :=E; — F71(a),i=1,...,n, 0<a<l, Ya(u):=a—I(u<0).

approximate the mean of r,, (t, «) for any suitable « and t.
Bernstein inequality gives a probabilistic bound for any « and t.
Chaining arguments give the uniform bound.

n'/2651(B,, (o) — B()) minimizes the convex function

Gra (t) = (a(l — a))_l/chgl Z [pa(Em - n_l/Qaaxth) — Pa (Eza)]
i=1

use the properties of 7, (, t) to calculate the solution for ||t|| < (loglogn)!/2.
convexity of G (t) implies that the minimum cannot be attained elsewhere.



Suppose that v* > 0. Then

2 f (P (@) X7 (B(e) - B(a))

sup |ian(o¢)| = sup
1—aj <a<nt l-aj<a<iot

= Op(n~"?(logn)*TIIVI)) = op(1).

and if v, > 0 is the tail index of the lower tail it holds also

s [KTan(@)| = swp [n2f (F7 (@)X (B, (0) - Bla))|
1/n<a<a 1/n<a<a

= Op(n 2 (logn)*FIIV1)) = op(1),




iTﬂn(al) < XT,Bn(OLQ) iff a1 < ag,
similarly as in Portnoy and Jureckova (1999) get

PB <Zx ) > TLt> S P(Enn 2 t)7

assuming v = ~v* > 0 it follows

Enn D _1
P|—— — 11— ¢ 7,
(a2 2¢) Zut-ew(-c79)
use von Mises condition and Lemma 4.5.2. of Csorg6 and Révész (1977) for
transition from f(F~1(1 — kt/n)) to f(F~Y(1 — k/n)).



Assume
model with i.i.d. errors fulfilling the second order condition,
Y. p >0,
k = k(n) — oo, k/n — 0 and VEA(k/n) =
k> logA(lv'V)(n), A >4+ 26.
[2]l5.e == supseo 1) ‘t1/2+7+5z(t)|, z € D[0,1].

There are Wiener processes W, (t), W, (t), and W (¢) such that for
any ¢ > 0.

s (ET (,@n (1-%) - ﬁ) B tv) e

_k1/24 i fvl —t
n p

v,€

<[y x™DTWE) L+ Hyt—VWn(t)}

+op(1),
~¥,€



sup trt1/2+e

0<t<1 F-1(1- %

—_k/24 i tfvl —
n p
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combination of the previous results on approximations of regression quantiles,

von Mises condition and Lemma 4.5.2. of Csorg6 and Révész (1981) used for
transition from f(F~1(1 — kt/n)) to f(F~ (1 — k/n)),

direct procedure — just a rough approximation.



Have v € R and a functional T : span(H, 1) — R satisfying

H . IS Semimetric space, where the tail quantile function and its
relatives live
T(az +b) =T(2), forall z € Hy, 0> 0,0 €R,

_ -1y
T(z,) = T(22=L) = 4
T3, s Hadamard differentiable tangentially to suitable
continuous Ca C Hum, at z, with a derivative 77, i.e. for some
signed measure vt , it holds for all 0 < ¢, — 0 and all y,, € H uq
such that i, =y € Cum

T(zy —enyn) =T !
lim (27— €ntin) () :T,’Y(y) :/ ydur .
0

en—0 En

Then T'(Q,.x) — ~ and for intermediate sequence k,, with the rate
parameter A = func.(v, p, k) it holds

LUn*(T(Qur) = 7)) = N(Arqpy 074),s

c.f. Drees (1998).



Provided that vkA(k/n) — X it holds

T(Qn,k) -
L (T(Qn) = 7)) = N(Avry p, 07,5, Where

1
1=t
HTyy,p = /t B dvry
0 p

or, = Var ( / 1t_7_1W(t)duTﬁ(t))

0

/o1 /ol(sw_1 min(s, t)d vr,y(s) dvr, (1)



Suppose that T fulfills the given assumptions. For T(Qn,k(t)) it
follows:

consitency:

follows immediately from continuity of 7" and approximations given
previously.

asymptotic normality:
requires Hadamard differentiability,
as we have an extra random remainder (with zero mean),
asymptotic variance can be only roughly estimated,
asymptotic bias is the same one as in the i.i.d. case.



Examples:
Pickands estimator

2(1/4) — 2(1/2)\ . [2(1/4) — 2(1/2)
2(1/2) — =(1) ) ! { EYDEE O} |

Probability weighted moments estimator

1
Trick(2) := Tog 2 log (

S — 2(1)(1 — 4t)dt
S8 = 2(1)(1 — 2t)dt

Maximum likelihood estimator — generated by an implicitly given
functional, see Drees (1998).

Tewm(z) :=

I [/Ol(z(t) (1)1 = 20)dt > o] |



T(X Qup) = T(X' B, (1 th/n),c0.1) are consistent and
asymptotically normal estimators of ~.
ML-estimator of v based on the k largest unique estimates of
x'8,(r), 7¢€(0,1),i.e. the estimator fits generalized Pareto
distribution (GPD) on the exceedances of {X' 3,,(7j)}j=m—_k....m
over XT,@n(Tm_k—l).
Probability weighted moments estimator (PWM)

Ly (45 = 3) X Bulrn-in)

~RQPWM _
% . ——
%2(7:1 (2%+1 - 1) XTﬁn(Tm—iH)

m,k

Pickands estimator

ARQ];P _ 1 10g iTB']/’\L(Tm—[k/Al]) - KTBT(Tm—[k/Q])
m log 2 X' B, (Tm—(k/2) — X' Bp(Tm—t)

Where 71, ..., T are such that BnTi,i =1,---,m are m unique solution of
minimazation problem arg miny cpa > 7 pa (Yi — x;b) for o € [0,1].




Have

Ti1 = 1,

1 n
Tij = xi,j_ﬁg Li,js J=2,...,p.
i=1

Hence, after reparametrization X = (1,0, ...,0).



T(ka) = T(Bm(l —tk/n)c(0,1)) are consistent and asymptotically
normal estimators of .

ML-estimator of v based on the & largest unique estimates of
Brna(T), 7 €(0,1),i.e. the estimator fits generalized Pareto
distribution (GPD) on the exceedances of {Bnyl(Tj)}j:m,ka
over Bn,l(Tm—k—l)-

Probability weighted moments estimator (PWM)

% 25:1 (41@%1 - 3) 67171(7'm—i+1)
k - A
%ijl (21@#“ - 1) Bra(Tm—it1)

~RQ,PWM __
m,k -

Pickands estimator

~RQP _ 1 lo <Bn,l(7—m—[k/4]) - Bn,l(ﬂn—[k/Q]))
log 2

ke Bn71(7-m7[k/2]) — Bt (Tm—r)

Where 7, ..., 7, are such that Bn,l(n),i =1,---,m are m unique
intercepts of regression quantiles in reparametrized model.



Achievements:

improvements of older approximations of regression quantiles
wider interval [a;;, 1 — o]
at least a rough approximation for [1 — a;,, 1 — 1/n]
general approximation methodology of v based on regression
guantiles

Open questions:

further improvements of approximations

use Hungarian construction instead of Bahadur representation
improve approximation of regression quantile process in
[1—&271— 1/”]

dependency of errors



Step 1: i.e. invert the rank
statistics in Hodges-Lehmann manner. Have

R,.;(Y — Xb) be the rank of Y; — x, b among
(Yy —x{b,...,Y, —x/b),b e RP
vo=a—Iz<0,zeR
x; be the i-th row of the X,, x4

Minimize the Jaeckel's measure of rank dispersion.

. ) - Rni(Y — XDb)
B,r = argming cp, ;(Yl — X/b)pa (T)

Step 2: Bno =Y: —x Brr(a)
= (37107 /énR(a))



Ek:n = ({Yl - x?ﬂnRv cey Y — X;Lr/BnR})kn

and

~ _ kn A
Qn,k(t) =F, ! (l - ?t) = Enf[knt]:nv te [07 1]7

Have again model with F; ~ F, with F* satisfying the second order condition for some
~v € R and p < 0. Then under suitable conditions on F' and X we can define a
sequence of Wiener processes {Wn(t)},~ such that for suitable chosen functions A
and a and each ¢ > 0, B

G =P (1= %) =5
a(k/n)

1
sup t7T2te

te(0,1]

— (a0 — kB OO0

(B o) ’ — op (K712 + |A(k/m))

n — oo, provided k = k(n) — oo, k/n — 0 and VEA(k/n) = O(1) and
2y (t) = MT‘l cf. Picek and Dienstbier (2010).



under suitable condition, the method of proof can be used for any
convergent estimate of 3 and its ordered residuals



under suitable condition, the method of proof can be used for any
convergent estimate of 3 and its ordered residuals

however, is not “suitable condition” = “neglecting real data
structures”?



Example: Y; = 1 + 5z; + e;, where z; ~ U(0, 1), e; have Burr distribution with shape
v=20.5
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Example: Y; = 1 + 5z; + e;, where z; ~ U(0, 1), e; have Burr distribution with shape
v=20.5
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Example: Y; = 1 + 5z; + e;, where z; ~ U(0, 1), e; have Burr distribution with shape
v=20.5

Estimate of EVI




Example: Condroz dataset again
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Condroz

Example: Condroz dataset again, estimator plots
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Condroz

Example: Condroz dataset again, estimator plots
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Condroz
Example: Condroz dataset again, estimator plots 6.6 < pH < 7.5
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Example: Condroz dataset again, estimator plots 6.6 < pH < 7.3
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theory shows that if “thinks goes well” estimates based on
guantile regression works

i.e. if the model is same (or simpler) as we suppose
one additional interpretation of Condroz data (hurray!)



theory shows that if “thinks goes well” estimates based on
guantile regression works

i.e. if the model is same (or simpler) as we suppose
one additional interpretation of Condroz data (hurray!)

Something structural?
extremes in predictors matters

we often do not have the same number of observations for
different predictors

problem, if nice model for all responses desired
get a nice model = root out enough data as outliers!

linear models tend not to be linear
at least, if we want to work with all responses

other possible problems. ..



cf.

in EVT linear models, the choice of model matters, not the data

which model is better than others depends strictly on the exact
data settings and not the theory

EVT can be a dangerous drug (do not abuse)

n. One who, professing virtues that he does not
respect, secures the advantage of seeming to be what
he despises.

n. A narrative, commonly untrue.
n. The most acceptable hypocrisy.

— Ambrose Bierce, Devil's Dictionary
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