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INTRODUCTION

I Work iniciated within the ENSEMBLES project - WP5.4
Evaluation of extreme events in observational and RCM
data

I Questions:
- are the precipitation extremes properly represented in the

RCM simulations?
- what are the projected changes in precipitation extremes?
- how large is the uncertainty associated with the estimation

of precipitation extremes and their changes in the climate
model data?

I statistical model developed to answer these questions



CASE STUDIES

Statistical model applied to assess
I 1-day summer and 5-day winter precipitation extremes in

the Rhine basin

I 1-day and 1-hour annual precipitation extremes in the
Netherlands

I 1-, 3-, 5-, 7-, 10-, 15-, 20- and 30-day precipitation
extremes for all seasons in the Czech Republic

I Observed sub-daily precipitation extremes (summer half
year) in the Czech Republic
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DATA

RCM DATA
model acronym source period

— ECHAM5 driven —
RACMO RACMO_EH5 KNMI 1950-2100
REMO REMO_EH5 MPI 1951-2100
RCA RCA_EH5 SMHI 1951-2100
RegCM RegCM_EH5 ICTP 1951-2100
HIRHAM HIR_EH5 DMI 1951-2100

— HadCM3Q0, HadCM3Q3, HadCM3Q16 driven —
HadRM HadRM_Q0 Hadley Centre 1951-2099
CLM CLM_Q0 ETHZ 1951-2099
HadRM HadRM_Q3 Hadley Centre 1951-2099
RCA RCA_Q3 SMHI 1951-2099
HadRM HadRM_Q16 Hadley Centre 1951-2099
RCA RCA_Q16 C4I 1951-2099

— ARPEGE driven —
HIRHAM HIR_ARP DMI 1951-2100
CNRM-RM CNRM_ARP CNRM 1951-2100
ALADIN-CLIMATE/CZ ALA_ARP CHMI 1961-2100

— BCM driven —
RCA RCA_BCM SMHI 1961-2100

OBSERVATIONAL DATA (≈ 25 km x 25 km)
acronym source period
CHMI_OBS CHMI 1950-2007
E_OBS KNMI 1950-present

RCM simulations
I ≈ 25 km × 25 km
I SRES A1B
I transient simulations

Definition of maxima
I block maxima, i.e. the

largest precipitation
amount in a
year/season

I various aggregations of
data (e.g. 1-day, 5-day
...)



GEV DISTRIBUTION FUNCTION
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I ξ ... location parameter

I α ... scale parameter
I κ ... shape parameter

The GEV parameters can
I vary over the region (spatial heterogeneity)
I vary with time (climate change)
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STATISTICAL MODEL

I Index flood method assumes that precipitation maxima over a
region are identically distributed after scaling with a site-specific
factor

SPATIAL HETEROGENEITY

I ξ varies over the region

I κ, γ = α
ξ are constant over the region

γ is the dispersion coefficient analogous to the coefficient of variation

I T -year quantile at any site s can be represented as

QT (s) = µ(s) · qT , qT = 1 − γ ·
1 −

[
− log

(
1 − 1

T

)]−κ
κ

where qT is a common dimensionless quantile function (growth curve) and µ(s)
is a site-specific scaling factor ("index flood")

I it is convenient to set µ(s) = ξ(s)



STATISTICAL MODEL

NON-STATIONARITY

I location parameter varies over the region, but with common
trend

ξ(s, t) = ξ0(s) · exp [ξ1 · I(t)]

where I(t) is the time indicator

I dispersion coefficient and shape parameter are constant over
the region, but vary with time

γ(t) = exp [γ0 + γ1 · I(t)]

κ(t) = κ0 + κ1 · I(t)

UNCERTAINTY

I assessed by a bootstrap procedure (1000 samples for each
RCM simulation, season and duration)



RELATIVE CHANGES

I T -year quantile in time t and location s:

QT (s, t) = ξ(s, t) · qT (t)

I Relative change between t2 and t1 (t2 > t1) is:

QT (s, t2)
QT (s, t1)

=
ξ(s, t2)
ξ(s, t1)

·
qT (t2)
qT (t1)

ξ(s, t) = ξ0(s) · exp [ξ1 · I(t)]⇒
ξ(s, t2)
ξ(s, t1)

= exp
{
ξ1 · [I(t2) − I(t1)]

}
⇒ the relative change in quantiles can be written as

QT (s, t2)
QT (s, t1)

= exp
{
ξ1 · [I(t2) − I(t1)]

}
·

qT (t2)
qT (t1)

which does not depend on s.



TIME INDICATOR

Various choices for I(t) are possible:

I year t
e.g., I(t) = t , but more complicated functions
are needed

I temperature/ temperature anomaly

We use:

I seasonal global temperature
anomaly of the driving GCM

CHANGE IN PRECIPITATION
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IDENTIFICATION OF HOMOGENEOUS REGIONS

For each RCM simulation and season we assessed
I the grid box estimates of the GEV parameters for the period

1961-1990 and 2070-2099

I their changes between these two periods

I focus mainly on the dispersion coefficient and changes in
location parameter and dispersion coefficient

I formation of homogeneous regions common for all RCM
simulations and seasons is challenging
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IDENTIFICATION OF HOMOGENEOUS REGIONS

I obviously it is not possible to identify strictly homogeneous
regions common for all RCM simulations and seasons

- however, regional frequency analysis is more accurate than
the at-site analysis even in not strictly homogeneous
regions

- allowing more heterogeneity of precipitation maxima in the
statistical model improves goodness-of-fit, however, the
estimated changes are not much different when compared
to the standard model

I it turned out that the regions could be acceptably based on the
areas of the eight river basin districts in the Czech Republic

I different groupings of the river basin districts were examined
with respect to the lack-of-fit of the statistical model



EVALUATION FOR CONTROL CLIMATE

Relative bias in quantiles
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CHANGES BETWEEN 1961-1990 AND 2070-2099

Relative changes in quantiles
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CHANGES IN 1-DAY SUMMER AND 5-DAY WINTER PRECIP EXTREMES,
RHINE BASIN



MODEL DIAGNOSTICS

For each grid box we calculate the residuals:
I we transform the seasonal maxima Xt to:

X̃t =
1

ξ̂(t)
· log

[
1 +

ξ̂(t)
γ̂(t)

·

(
Xt

µ̂(t)
− 1

)]
,

which should have a standard Gumbel distribution;

Pr{X̃t ≤ x} = exp [−exp(−x)]

if the model is true.
I these residuals can be inspected visually and/or e.g. by the

Anderson-Darling statistics:

A2 = N
∫
∞

−∞

[FN(x) − F(x)]2

F(x)[1 − F(x)]
dF(x),

where FN(x) is the empirical distribution function of X̃t and F(x)
standard Gumbel distribution function.

I critical values can be derived using simulation
I bootstrap procedure based on resampling of standard Gumbel

residuals



MODEL DIAGNOSTICS
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SUB-DAILY PRECIPITATION EXTREMES FOR THE CZECH REPUBLIC

DATA

I 54 stations, combination of pluviographic (10-min) and
automatic (30-min) rain gages, max 7 years overlap

I from 1921-1991 to 2011, May-September
I 33 years on average, in total 1807 station-years



SUB-DAILY PRECIPITATION EXTREMES FOR THE CZECH REPUBLIC

QUALITY CHECK
for both data sources available control daily total - checked against
aggregated amount from pluviograph/automatic station
I records for days with difference > 1.5 mm (for totals < 15 mm) or > 10 %

marked unreliable
I only years with < 10 % of unreliable data considered

I sources combined
I automatic rain gages on average 5 % underestimation, pluviograph 1 %

underestimation
I no correction considered (yet?)
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SUB-DAILY PRECIPITATION EXTREMES FOR THE CZECH REPUBLIC

I assessment of 0.5, 1, 2, 3, 6, 12, (24, 48, 72, 120, 240)
hour precipitation extremes

I stationary at-site model
I non-stationary index-flood model
I stationary at-site model across aggregations



STATIONARY AT-SITE MODEL
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NON-STATIONARY INDEX-FLOOD MODEL

assumed constant shape parameter, location parameter and dispersion
coefficient dependent on NH temperature anomaly



STATIONARY AT-SITE MODEL ACROSS AGGREGATIONS

θ = a + b ln Dc ,

with θ the GEV parameter, D aggregation and a,b , c parameters.
For the shape parameter assumed constant value for all aggregations.
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CONCLUSIONS

I Regional GEV modelling provides an informative summary of
changes in parameters and various quantiles (rather than a
single quantile only).

I Taking ξ and γ constant over a region strongly reduces standard
errors.

I Consistent parameters across aggregations can be obtained by
modification of the model.



Thank you for attention


