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Goals

I Estimate site specific quantiles / return levels

I Assess the temporal trends in these quantiles

I Reduce the estimation uncertainty by spatial pooling

Inspired by the work of M. Hanel, A. Buishand and C. Ferro (2009)
for block maxima data.



Data

I Daily, gridded precipitation data (E-OBS v. 5.0)

I Netherlands (high station density)

I Winter (DJF) data from 1950 - 2010

Mean winter maxima Event on December 3, 1960
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GEV and GPD

Generalized Extreme Value distribution (GEV)
for block maxima (BM)

P(M ≤ x) = Hξ∗,σ∗,µ∗(x)

=

exp

{
−
[

1 + ξ∗
(
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σ∗

)]−1/ξ∗
}

, ξ∗ 6= 0,

exp
[
− exp(− x−µ∗

σ∗ )
]

, ξ∗ = 0,

Generalized Pareto distribution (GPD) for excesses

P(Y ≤ y |Y ≥ 0) = Gξ, σ(y)

=

1−
(

1 + ξy
σ

)−1/ξ
, ξ 6= 0,

1− exp
(
− y

σ

)
, ξ = 0,



GEV/GPD relation

If, for a threshold u, the excesses follow a GPD
distribution with shape ξ and scale σ (denoted by Gξ,σ)
and the exceedance times follow a Poisson process with intensity
λ, then we have that the maxima above u are GEV distributed
with the following parameters:

µ∗ =

{
u − σ

ξ (1− λξ), ξ 6= 0,

u + σ ln(λ), ξ = 0,

σ∗ = σλξ ,

ξ∗ = ξ,

(1)



Index flood for POT I

The index flood method assumes that all site specific
distributions are identical apart from a site specific scaling
factor, the index variable1. For exceedances this means, that

P

(
Xs

ηs
≤ x |Xs ≥ us

)
= ψ(x) ∀s ∈ S , (2)

where Xs is a random variable representing the site-specific daily
precipitation, us is the site specific threshold, ηs is the index
variable and ψ does not depend on site s.

1Hosking and Wallis (1997)
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Index flood for POT II

Index variable equals threshold

ψ(us/ηs) = P (Xs ≤ us |Xs ≥ us) = 0, ∀s ∈ S .

⇒ us/ηs = c .

Without loss of generality we can set ηs = us .

Index flood also for the excesses

P

(
Ys

ηs
≤ y |Ys ≥ 0

)
= ψ̃(y) ∀s ∈ S , (3)

where ψ̃(y) := ψ(y + 1) is independent of site s.



Index flood for POT III

Site specific threshold

The τ-th quantile (τ >> 0.9) of the daily precipitation
amounts is a natural choice for a site specific threshold.
⇒ λs will be approximately constant over the region.

Restriction on the GPD parameters

The distribution of the scaled excesses has the following form:

P

(
Ys

ηs
≤ y |Ys ≥ 0

)
= Gξs , σs

us
(y) ≡ ψ̃(y). (4)

Therefore we have:

σs
us
≡ γ, ξs ≡ ξ ∀s ∈ S . (5)

We refer to γ as the dispersion coefficient.



Index flood for block maxima

Assuming constant λ, γ and ξ gives for the GEV parameters:

ξ∗s ≡ ξ

γ∗s :=
σ∗s
µ∗s

=

{
λξ

γ−1− 1
ξ (1−λξ )

, ξ 6= 0

1
γ−1+ln(λ)

, ξ = 0.

}
≡ γ∗

Therefore the parameters ξ∗ and γ∗ fulfill the IF assumption for
BM data2. This does not apply for the IF model for POT data
proposed by Madsen and Rosbjerg (1997).

2Hanel, Buishand and Ferro (2009)



Nonstationary Threshold

The threshold is determined as the 0.96 linear
regression quantile3:

Mean of the threshold for the 1950–2010
period in mm.

Trend in the threshold for the 1950–2010
period in mm per decade.

3Koenker (2005)



Nonstationary Version of the IF Model

IF restrictions on the GPD parameters

ξs(t) ≡ ξ(t),
σs(t)

us(t)
≡ γ(t).

Quantile estimates

qα(s, t) = us(t) + G−1
ξ(t),σs (t)

(
1− α

λ

)
=

{
us(t) ·

(
1− γ(t)

ξ(t)
[1− ( α

λ )
−ξ(t)]

)
, ξ(t) 6= 0,

us(t) ·
(
1 + γ(t) ln(λ/α)

)
, ξ(t) = 0.

Note the factorization into a time and site dependent index
variable and a quantile function, which depends on time only.
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Independence Likelihood

I Maximum likelihood estimation (MLE) popular method

I Since late 1980s used for regional estimation approaches

I Difficult dependence structure was neglected using an artificial
independence assumption (independence likelihood)

I Dependence influences mainly the uncertainty

I Smith (1990) studies the uncertainty in an extended manner

I Special case of composite likelihood4, which is a class of
simplified (not true) likelihoods (e.g. also pairwise likelihood)

4Varin, Reid and Firth (2011)
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Composite Likelihood

I Allows to assess for spatial dependence

I Specify a certain structure for the parameters, e.g.

γ(t) = γ1 + γ2 · (t − t̄), ξ(t) = ξ1.

I Maximize:

`I (θ) =
S

∑
s=1

T

∑
t=1

ys (t)≥0

ln
(
fγ(t)us(t)︸ ︷︷ ︸

σs (t)

,ξ(t)
(ys(t))

)
,

where fσ,ξ(y) is the density of the GPD distribution.



Asymptotic Normality

θ̂I is asymptotically normal with mean θ and
covariance matrix G−1(θ)

Godambe (sandwich) information

G (θ) = H(θ)J−1(θ)H(θ)

I H(θ) is the expected negative Hessian of `I (θ,Y)
Fisher information or sensitivity matrix

I J(θ) is the covariance matrix of the score Oθ`I (θ,Y)
referred to as variability matrix

I In the independent case we have

J(θ) = H(θ)⇒ G (θ) = H(θ)



Simulation

I Marginal parameters:
u ∼ N (10, 1), ξ = 0.1 and γ = 0.5

I Dependence model: Normal copula with auto-regressive
correlation structure governed by one parameter rho

I Dimension: 10 sites and 100 (common) excesses and 2500
samples

Mean confidence interval (shape parameter)

Coverage probability
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Composite Information Criteria

Composite likelihood adaptations of the
Akaike information criterion (AIC) and the
Bayesian information criterion (BIC)

AIC = −2`I (θ̂I ,Y ) + 2 dim(θ),

BIC = −2`I (θ̂I ,Y ) + ln(n) dim(θ),

where dim(θ) is an effective number of parameters:

dim(θ) = tr
(
Ĥ(θ)Ĝ (θ)−1

)
,



Composite Likelihood Ratio Test

Adaptation of the likelihood ratio test

W = 2
[
`I
(
θ̂M1 ; y

)
− `I

(
θ̂M0 ; y

)]
.

The asymptotic distribution of W is given by a linear combination
of independent χ2 variables, and can be determined using the
Godambe information.

Bootstrap

I Transform excesses to standard exponentials using the full
model M1

I Sample monthly blocks of the whole region

I Transform the sampled data back using the nested model M0
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Models and Information Criteria

IF models used

Model dispersion γ shape ξ

no trend γ1 ξ1

trend in dispersion γ1 + γ2 ∗ (t − t̄) ξ1

trend in shape γ1 ξ1 + ξ2 ∗ (t − t̄)

Information criteria for the IF models

Model AIC BIC

no trend 78387.28 78715.59
trend in dispersion 78435.60 78880.41

trend in shape 78333.28 78748.95
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Shape

Shape parameter for different models (dotted – constant, dashed – linear
trend, solid red – 20 year moving window estimates)



Significance Tests

Trend in the GPD parameters

p-values of the test for trend in the GPD parameters

Model asymptotic bootstrap

trend in dispersion 82.9% 81.3%
trend in shape 26.7% 12.2%

Index flood assumption

We compare the composite likelihoods of an IF model without
trend in the parameters with that of a model with site specific
dispersion coefficient and common shape parameter using the
bootstrap method. We obtain a p-value of 0.103, i.e. the IF
assumption is not rejected.
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Uncertainty I - Excess distribution

Estimated return levels of the excesses (solid lines) with 95% pointwise
confidence bands (dashed lines) for the year 1980 at the grid box around
De Bilt (black – site-specific, red – IF, blue – no correction of the
standard error for spatial dependence)



Uncertainty II - Threshold and Return Level

Estimated threshold with 95% pointwise confidence band (black) and
25-year return level based on the at-site estimation (blue) and the IF
approach (red), together with pointwise confidence bands, for the grid
box around De Bilt.



Spatial Dependence I

I Transform observed peaks to standard exponentials

I Consider the maximum Ms,j for each site s and winter season
j . This maximum is approximately Gumbel distributed with
location parameter ln(λ) and scale parameter 1

I Determine the spatial mean Gumbel plot of these maxima

I Determine Gumbel plot of maxs Ms,j over the grid. For
independent observations this should be Gumbel distributed
with location parameter ln(λ ∗ S) and scale parameter 15

5Reed and Stewart (1994)



Spatial Dependence II

Spatial mean Gumbel plot (blue), Gumbel plot of the maxima over the
grid (red) and theoretical distributions for the maximum of a different
number of Gumbel variables (black)



Conclusions and Further Research

I Positive trends in the threshold are observed,
which are significant in the coastal region

I No trend in the dispersion coefficient, i.e. proportional
increase of the GPD scale parameter

I Negative trend in the shape parameter not significant

I Uncertainty is substantially reduced by regional modeling

I Application to climate model data

I Validity of the bootstrap needs to be explored
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