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Compositional data analysis

Compositional data (CoDa) = quantitative descriptions of parts of
some whole, thus as data carring only relative information.
Simplex with the Aitchison geometry= the sample space of CoDa,
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= Aitchison geometry forms a vector space structure of the
simplex.

ILR transformation= isometric mapping from S° to RP-1.

= Adventage: Using ilr transformation we obtain orthonormal
coordinates on the RP—1,
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Compositional data analysis

Compositional variation array=tool for exploratory compositional

data analysis,
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Properties:
= Log-ratio variances satisfy the symmetric property, i.e.,
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= For the log-ratio means the triangular equality holds, i.e.,
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Calibration problem for CoDa

Task: For D-part composition we split the calibration problem into
w partial calibration problems.
= This means that we will calibrate each of the 2-part
subcompositions of the given composition.

Consideration: We have n different objects that have D properties
which are measured on two different measuring devices A and B, that
measure with the same imprecision.

Data matrices: IIr transformed 2-part subcompositions (x;, Xs)’ resp.
(¥r, ¥s)’ corresponding to the measurement results from A resp. B,
multiplied by /2 create the data matrices,
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Calibration problem for CoDa

Linear model with type-Il constraints:

z; I _ 2
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e zj, i = A, Bis n-dimensional random vector created by
realization of the data Z),, i = A, B,

@ py = (ks -5 tink)'s vk = (Vik, - - -, Vnk)' are an errorless
recordings of z and z2 resp.,

@ vy = Bix1n + Bakpy, is the calibration line,

— p, and vy are realized independently with an error o > 0.

@ (1x and [Box are unknown coefficients that specify the intercept

and the slope of the calibration line.
=y, Vk, B1k and Bk need to be estimated in an iterative manner.

= Bk and Bok converge to the orthogonal least squares estimates.



Calibration problem for CoDa

= The unbiased estimator of the unknown variance o2 is
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Matrices of the predicted averages MV), j = 1, 2:
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Calibration problem for CoDa
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with type Il constraint
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= MY, j = 1,2 are asymmetric matrices and for their elements the
triangular equality holds.



Calibration problem for CoDa

Matrix of residual variances T:
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° fos r,s=1,...,Dis the estimate of the residual variance in the

model (1)-(2) corresponding to the log-ratios of the parts (x;, xs)’,
calculated according to (3).

= T is symmetric matrix.



llustrative example

We consider the White Blood Cells data set [1] of 30 samples
obtained by two different methods: microscopic inspection and image
analysis.

Consists of three parts:
@ granulocytes (= part xy),
@ lymphocytes (= part x»),
@ monocytes (= part x3).

= Calibration lines are estimated by the iterative algorithm
described in [2], and they are determined with a high precision.

K calibration line iterations
standard errors of (B1x, Bak)

1] 209 = 01719 +1.02322("? 9
(0.0532, 0.0334)

2 [ 29 = 0.0647 + 0.99722("%) 7
(0.0606, 0.0210)

3 | 289 = —0.1332 + 0.99712%9 7
(0.0458, 0.0228)




llustrative example

Testing hypothesis (for given r,s) [3]:

@ Both methods measure with the same precision of 0.2,
(prescribed precision of devices), i.e.,
Ho: 0% = 0.22 v.s. Ha: 02 # 0.22.
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= In our example, on the significance level 0.05 we accept the Hy,
i.e., the both instruments measure with the same precision 0.2.

@ The results obtained from the both methods do not differ, i.e.,
Ho: pirs = v1s V.8. Hal pirs # vys.
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— 2 x, and s? ,, are sample variances.
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e UnderHp: T =

= Again we did not reject the Hy on the significance level 0.05,
which means that the both methods give us the same results.
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