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Compositional data analysis

Compositional data (CoDa) = quantitative descriptions of parts of
some whole, thus as data carring only relative information.
Simplex with the Aitchison geometry= the sample space of CoDa,

SD = {x = (x1, . . . , xD)
′, xi > 0,

D∑
i=1

xi = κ}.

⇒ Aitchison geometry forms a vector space structure of the
simplex.

ILR transformation= isometric mapping from SD to RD−1.
⇒ Adventage: Using ilr transformation we obtain orthonormal

coordinates on the RD−1,

ilr(x) = z = (z1, . . . , zD−1)
′, zi =

√
i

i + 1
ln

i
√∏i

j=1 xj

xi+1
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Compositional data analysis

Compositional variation array=tool for exploratory compositional
data analysis,
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Properties:
⇒ Log-ratio variances satisfy the symmetric property, i.e.,
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.

⇒ For the log-ratio means the triangular equality holds, i.e.,
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Calibration problem for CoDa

Task: For D-part composition we split the calibration problem into
D(D−1)

2 partial calibration problems.

⇒ This means that we will calibrate each of the 2-part
subcompositions of the given composition.

Consideration: We have n different objects that have D properties
which are measured on two different measuring devices A and B, that
measure with the same imprecision.

Data matrices: Ilr transformed 2-part subcompositions (xr , xs)
′ resp.

(yr , ys)
′ corresponding to the measurement results from A resp. B,

multiplied by
√

2 create the data matrices,
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Calibration problem for CoDa

Linear model with type-II constraints:(
zA

k
zB

k

)
=

(
µk
νk

)
+ ε, var(ε) = σ2I, (1)

νk = β1k 1n + β2kµk , (2)

k = 1, . . . ,
D(D − 1)

2

zi
k , i = A,B is n-dimensional random vector created by

realization of the data Zi
k , i = A,B,

µk = (µ1k , . . . , µnk )
′, νk = (ν1k , . . . , νnk )

′ are an errorless
recordings of zA

k and zB
k resp.,

νk = β1k 1n + β2kµk , is the calibration line,
→ µk and νk are realized independently with an error σ > 0.
β1k and β2k are unknown coefficients that specify the intercept
and the slope of the calibration line.

⇒ µk , νk , β1k and β2k need to be estimated in an iterative manner.
⇒ β̂1k and β̂2k converge to the orthogonal least squares estimates.



Calibration problem for CoDa

⇒ The unbiased estimator of the unknown variance σ2 is

σ̂2 =

(
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k − µ̂k
)′ (zA
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)
+
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Matrices of the predicted averages M(j), j = 1,2:
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Calibration problem for CoDa

M(2) =
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with type II constraint(
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⇒ M(j), j = 1, 2 are asymmetric matrices and for their elements the
triangular equality holds.



Calibration problem for CoDa

Matrix of residual variances T:

T =


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σ̂2
rs r , s = 1, . . . ,D is the estimate of the residual variance in the

model (1)-(2) corresponding to the log-ratios of the parts (xr , xs)
′,

calculated according to (3).

⇒ T is symmetric matrix.



Ilustrative example

We consider the White Blood Cells data set [1] of 30 samples
obtained by two different methods: microscopic inspection and image
analysis.

Consists of three parts:
granulocytes (= part x1),
lymphocytes (= part x2),
monocytes (= part x3).

⇒ Calibration lines are estimated by the iterative algorithm
described in [2], and they are determined with a high precision.

k
calibration line

standard errors of (β̂1k , β̂2k )
iterations

1 z(1,2)2 = 0.1719 + 1.0232z(1,2)1 9
(0.0532, 0.0334)

2 z(1,3)2 = 0.0647 + 0.9972z(1,3)1 7
(0.0606, 0.0210)

3 z(2,3)2 = −0.1332 + 0.9971z(2,3)1 7
( 0.0458, 0.0228)



Ilustrative example

Testing hypothesis (for given r,s) [3]:
Both methods measure with the same precision of 0.2,
(prescribed precision of devices), i.e.,

H0: σ2
rs = 0.22 v.s. HA: σ2

rs 6= 0.22.

Under H0: σ̂2
rs

n − 2
σ2

rs
∼ χ2

n−2.

⇒ In our example, on the significance level 0.05 we accept the H0,
i.e., the both instruments measure with the same precision 0.2.

The results obtained from the both methods do not differ, i.e.,
H0: µrs = νrs v.s. HA: µrs 6= νrs.

Under H0: T =
ln xr

xr
− ln yr

ys
− (µrs − νrs)√

(n − 1)s2
ln xr

xs
+ (n − 1)s2

ln yr
ys

√
n(n − 1) ∼ t2(n−1),

→ s2
ln xr

xs
and s2

ln yr
ys

are sample variances.

⇒ Again we did not reject the H0 on the significance level 0.05,
which means that the both methods give us the same results.
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