Prevádzať p-hodnotu na Bayesov faktor? [To translate p-value into Bayes factor?]

marian.grendar@savba.sk¹

Robust 2012, Němčičky, Sep 9 - 14

¹KM FPV UMB, BB; ÚM SAV BA; MÚ SAV BA. Supported by VEGA 2/0038/12.

- ロ > - 4 日 > - 4 日 > - 4 日 > - 9 へ ()

Outline

- Statistical evidence
- Sellke, Bayarri and Berger: p-value overstates evidence against point H_0

- p-value is not consistent measure of evidence
- SBB trafo of p-value into Bayes Factor
- Transform p-value into BF?

Intro

- Frequentist decision making: Neyman Pearson Wald
- Bayesian belief revision
- Evidence: what is the extent of support in data for a hypothesis H_0 relative to H_1

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● ● ●

Setup, measure of evidence

r.v. $X \in \mathbb{R}^{K}$ with pmf/pdf $f_{X}(x \mid \theta)$, where $\theta \in \Theta \subseteq \mathbb{R}^{L}$. partition of Θ : Θ_{0}, Θ_{1} associate Θ_{j} with the hypothesis $H_{j}, j = 0, 1$. $X_{1}^{n} \triangleq X_{1}, \dots, X_{n} \sim f_{X}(x \mid \theta)$ random sample from $f_{X}(x \mid \theta)$.

Measure of evidence $\epsilon(H_0, H_1, X_1^n)$,

- in data X_1^n ,
- for the hypothesis $H_0: X_1^n \sim f_X(x \mid \theta)$ where $\theta \in \Theta_0$,
- relative to $H_1: X_1^n \sim f_X(x \mid \theta)$ where $\theta \in \Theta_1$,

is a mapping $\epsilon(H_0, H_1, X_1^n) : \Theta_0 \times \Theta_1 \times (\mathbb{R}^K)^n \to \mathbb{R}$.

Measure of evidence against H_0 , relative to H_1 denoted $\epsilon(\neg H_0, H_1, X_1^n)$.

Calibration. The partition of R that corr. to the extreme values of evidence that corr. to the strongest evidence is denoted S.

Measures of evidence

- Fisherian: p-value
- Likelihood-wallahs': ratio of likelihoods, extended ratio of likelihoods, ...
- Bayesian: Bayes factor, posterior odds, ratio of posterior modes, ...

Measures of evidence: Fisherian

The p-value $\pi(\neg H_0, \cdot, X_1^n) = \inf\{\alpha : T(X_1^n) \in R_\alpha\}$, where $T(\cdot)$ is a test statistic, α is the size of the test with the rejection region R_α for H_0 .

Measures evidence in a data X_1^n , against a hypothesis H_0 . The smaller the p-value, the stronger the evidence against H_0 in the data.

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

The p-value in (0.01, 0.05) suggests strong, and smaller than 0.01 very strong evidence against H_0 ; i.e., S = (0, 0.01)

Measures of evidence: likelihood-wallahs'

The ratio of likelihoods $r_{01}(H_0, H_1, X_1^n) = f(X_1^n | H_0) / f(X_1^n | H_1).$

Measures evidence in a data for a simple hypothesis H_0 , rel. to a simple hypothesis H_1 .

 r_{01} > app.30 suggests a very strong evidence for H_0 rel. to H_1 ; i.e., $S = [30, \infty)$.

Measures of evidence: Bayesian

Bayesian? The Bayes Factor

$$BF_{01} = \int_{H_0} f(X_1^n | \theta) q(\theta) d\theta / \int_{H_1} f(X_1^n | \theta) q(\theta) d\theta,$$

・ロト ・ 中 ・ エ ト ・ エ ・ うらぐ

where $q(\cdot)$ is the prior.

 $BF_{01} > 150$, very strong evidence for H_0 rel. to H_1 .

Sellke, Bayarri, Berger: hierarchical sampling

Sellke, Bayarri, Berger, '01

Ex.: yield (per hectare) of corn of sort D_l , l = 1, 2, ... Θ_0 corr. to 'mean yield is uninteresting', Θ_1 corr. to 'mean yield is interesting'. Experiment with corn D_l gives a random sample X_1^n . Some sorts of corn give interesting mean yield, some give the uninteresting one.

i.e., some experimental data X_1^n come from H_0 , other data sets are from H_1 .

Interest in: $P(H_0 | e(\neg H_0, H_1, X_1^n)$ supports $H_1)$.

SBB: MC study of $P(H_0 | p \text{-val} \approx 0.05)$

Setup: $X_1^n \sim n(\theta = 0, 1)$. Point $H_0: \theta = 0$, point $H_1: \theta = a, a > 0$. π_0 , proportion of data sets generated under H_0 . p-val = $1 - \Phi(\sqrt{n}\overline{x})$. P($H_0 | p$ -val ≈ 0.05); prob. that if p-val testifies strongly against H_0 , then the data come from H_0 .

а	n	π_0	$P(H_0 p-val \in (0.04, 0.05))$
0.5	20	1/3	0.12
		0.5	0.25
		2/3	0.30

"... *p*-value near 0.05 provides at best weak evidence against H_0 "

< ロ > (伊 > (三 > (三 >)))) (○

SBB setup: what about BF?

In the point-vs-point setting BF = likelihood ratio. P($H_0 | BF_{10} > 150$), analytically. Prob. that if BF testifies very strongly against H_0 , then the data come from H_0 .

а	n	π_0	$P(H_0 BF_{10} > 150)$
0.5	10	1/3	0.0015
		0.5	0.003
		2/3	0.006
		0.95	0.054
		0.99	0.23

Also BF can overstate evidence against H_0 , though in more extreme case than p-val.

Consistency criterion

Data-sampling scheme:

- 1. First, θ is drawn from a pdf (or pmf) $p(\theta)$.
- 2. Given θ , a random sample X_1^n is drawn from $f_X(x \mid \theta)$.

We say that a measure of evidence $e(\neg H_0, H_1, X_1^n)$ against H_0 , relative to H_1 , is *consistent*, if

$$\lim_{n\to\infty} \Pr(H_0 \,|\, \epsilon(\neg H_0, H_1, X_1^n) \in S) = 0.$$

The probability that θ is in Θ_0 , given that the measure of evidence $\epsilon(\neg H_0, H_1, X_1^n)$ very strongly testifies against H_0 , relative to H_1 , should go to zero, as the sample size *n* goes beyond any limit.

p-val is not consistent, BF and LR are.

SBB: translation of p-val into BF

Under H_0 , p-val is uniform. For a good test, under H_1 density f(p) of p-val p should be decreasing in p. Take $H_1: p \sim Beta(\xi, 1)$. Then, the lowest value \underline{BF}_{01} of BF_{01} over all priors $\pi(\xi)$ is:

$$\underline{\mathsf{BF}}_{01}(p) = -e\,p\,\log p.$$

The SBB trafo is meaningful for p < 1/e, where <u>BF₀₁(p)</u> is increasing.

Ex. p-val p = 0.05 translates into $\underline{BF}_{01}(p) = 0.407$, ie., almost none evidence against H_0 .

SBB translation of p-val into BF: yes or no?

1) Since p-val is inconsistent and SBB translation does not depend on the sample size, the SBB-translated BF(p) is inconsistent as well.

2) SBB trafo becomes asymptotically useless.

Ex. Take $n = 10^{12}$, and p = 0.05. SBB will translate it into $BF_{01} \ge 0.407$, whereas the true BF_{01} will with high probability give either very strong evidence for H_0 (if $X_1^n \sim f_0$), or for H_1 (if $X_1^n \sim f_1$).

< ロ > (伊 > (三 > (三 >)))) (○

3) The probab. that p > 1/e converges to $(1-1/e)\pi_0$ as $n \to \infty$. Ex. for $\pi_0 = 0.5$ it is 0.32.

Good's translation of p-val into BF: yes or no?

Good: $BF_{01}^G(p) = \sqrt{n} p$.

Pros: Unlike SBB's, $BF_{01}^G(p)$ is consistent. Cons: Good's BF cannot be greater than \sqrt{n} . Odd.

<ロト < @ ト < 差 ト < 差 ト 差 の < @</p>

Summary

SBB demonstrate that p-val overstates evidence against H_0 ; and Bayes Factor does not. They propose a translation of p-val into BF.

BF can also overstate evidence against H_0 . Unlike to p-val, however, to BF this happens asymptotically with zero probability. BF is consistent, p-val is not.

- ロ > - 4 日 > - 4 日 > - 4 日 > - 9 へ ()

SBB translation of p-val into BF does not depend on *n*; the resulting measure of evidence is not consistent, and becomes asymptotically useless.

References

- Good, I. J. (1992). The Bayes/Non-Bayes compromise: a brief review. JASA, 87(419):597-606.
- g (2012). Is the p-value a good measure of evidence? Asymptotic consistency criteria, Stat. & Probab. Lett., 82, 1116-1119.
- Sellke, T., Bayarri, M. J., and Berger, J. O. (2001).
 Calibration of p values for testing precise null hypotheses.
 Amer. Statist., 55(1):62-71.
- Shafer, G., Shen, A., Vereschagin, N., and Vovk, V. (2011). Test martingales, Bayes Factors and p-values. *Stat. Sci.*, 26(1):84-101.