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Life expectancies of males and females

CIA World Factbook contains various
demographic and economic characteris-
tics of countries.

We are interested in the relationship of
the life expectancies of males (Y1) and
females (Y2) across countries.

Question: How does this relationship
change when GDP per capita (X) is
taken into consideration?
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Measures of dependence (concordance)

Pearson correlation coefficient – ρ(Y1,Y2) = cov (Y1,Y2)√
var (Y1)

√
var (Y2)

.

Kendall’s tau –

τ(Y1,Y2) = 2P
[
(Y1 − Y ′1)(Y2 − Y ′2) > 0

]
− 1,

where (Y ′1,Y
′
2) is an independent copy of (Y1,Y2).

Other measures - Spearman’s rho,
Blomqvist beta

β = P
[(

Y1 − F−1
1 (0.5)

)(
Y2 − F−1

2 (0.5)
)
> 0
]

− P
[(

Y1 − F−1
1 (0.5)

)(
Y2 − F−1

2 (0.5)
)
< 0
]
,

. . .
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Life expectancies vs. GDP
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Partial vs. conditional correlation coefficients

Partial correlation coefficient measures correlation of Y1 and Y2
after removal of any part of the variation due to the influence of X
(Cramér, Mathematical Methods of Statistics, 1946).

Pearson partial correlation coefficient
Estimation: First compute ‘the residuals’

ε̂1i = Y1i − â1 − b̂1 Xi, ε̂2i = Y2i − â2 − b̂2 Xi

where (â1, b̂1) are the LS estimates of the parameters of the linear
model Y1 = a1 + b1 X + ε1 and similarly for (â2, b̂2).

Then
ρ̂
(
(Y1,Y2) |X

)
:= ρ̂(ε̂1, ε̂2).
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Population version of Pearson partial cor-
relation coefficient may be also computed
as

ρ((Y1,Y2)|X) =
ρ(Y1,Y2)− ρ(Y1,X) ρ(Y2,X)√
1− ρ2(Y1,X)

√
1− ρ2(Y2,X)

.

Kendall’s partial tau

τ((Y1,Y2)|X) =
τ(Y1,Y2)− τ(Y1,X) τ(Y2,X)√
1− τ 2(Y1,X)

√
1− τ 2(Y2,X)

.

Kendall, M. G. (1942). Partial rank correlation.

Biometrika, 32:277–283.
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Conditional correlation coefficients

Partial correlation coefficients are measures of ‘global dependence’
when adjusted for X.

Conditional correlation coefficient measures correlation of Y1
and Y2 when X = x.

If the conditional dependence structure of (Y1,Y2) given X = x does
not change with x, then the concepts of partial and conditional
dependence coincide.
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Estimating conditional measures of dependence

We observe independent triples {(Y1i,Y2i,Xi)}n
i=1.

Rough: Take only the pairs (Y1i,Y2i) with Xi ‘close’ to a fixed x.

Refinement: The pair (Y1i,Y2i) is given a weight

wni(x, hn) =
K
(

Xi−x
hn

)
∑n

j=1 K
(

Xj−x
hn

) , i = 1, . . . , n,

where K is a given kernel, e.g. the Epanechnikov kernel

K(x) = 3
4 (1− x2) I{|x| ≤ 1},

and hn is the width of a ‘smoothing window’.
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Conditional Kendall’s tau

(Standard) Kendall’s tau

τ̂(Y1,Y2) =
4

n(n− 1)

n∑
i=1

n∑
j=1,j6=i

I{Y1i < Y1j,Y2i < Y2j} − 1.

Conditional Kendall’s tau: τ̂(x) := τ̂((Y1,Y2)|X = x)

τ̂(x) =
4

An(x, h)

n∑
i=1

n∑
j=1

wni(x, hn) wnj(x, hn) I{Y1i < Y1j,Y2i < Y2j}− 1,

where An(x, h) = 1−
∑n

i=1 w2
ni(x, hn).
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Which quantity are we estimating and where do copulas
come in?
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What is a copula?

Suppose we observe a bivariate vector (Y1,Y2) coming from a joint
distribution function H with marginal distribution functions F1
and F2.

According to Sklar’s theorem (see e.g. Nelsen (2006)) there exists a
bivariate function C such that

P(Y1 ≤ y1,Y2 ≤ y2) = H(y1, y2) = C(F1(y1),F2(y2)).

The function C is called a copula and it completely describes the
dependence of (Y1,Y2). It is in itself a joint cumulative distribution
function on [0, 1]2 with uniform marginals.
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Conditional copula

Suppose that in fact we observe a three-dimensional vector (Y1,Y2,X)
and we are interested in the conditional dependence structure
of (Y1,Y2) for a given value of X = x.

Let
Hx(y1, y2) = P(Y1 ≤ y1,Y2 ≤ y2 |X = x)

be the conditional joint distribution function with F1x and F2x being
the corresponding marginals of Hx.

Then according to Sklar’s theorem there exists a function Cx such that

Hx(y1, y2) = Cx(F1x(y1),F2x(y2)).

The function Cx is called the conditional copula function (Patton,
2006).

Patton, J. A. (2006). Modeling asymmetric exchange rate dependence. International

Economic Review, 47(2):527–556.
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Partial copula

A partial copula describes dependence structure of Y1 and Y2 after
removing of any part of the variation due to the influence of X.

Put
U1 = F1X(Y1), U2 = F2X(Y2).

We suggest that the partial copula function is called the copula
corresponding to (U1,U2), i.e.

C̄(u1, u2) = P(U1 ≤ u1,U2 ≤ u2)

=

∫
P(U1 ≤ u1, U2 ≤ u2 |X = x) fX(x) dx

=

∫
Cx(u1, u2) fX(x) dx.

That is why some researchers call C̄ an average copula.
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Simplified pair-copula construction

Recall that
C̄(u1, u2) =

∫
Cx(u1, u2) fX(x) dx.

Often, it is assumed that Cx does not change with x, which implies

C̄ = Cx, ∀x ∈ supp(X).

Acar, E., Genest, C., and Nešlehová, J. (2012). Beyond simplified pair-copula
constructions. J. Multivariate Anal. Available online.

Hobæk Haff, I., Aas, K., and Frigessi, A. (2010). On the simplified pair-copula
construction–simply useful or too simplistic? J. Multivariate Anal.,
101(5):1296–1310.
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Different versions of Kendall’s tau

(Standard) Kendall’s tau of (Y1,Y2)

τ = 4
∫∫

[0,1]2
C(u1, u2) dC(u1, u2)− 1,

where C is the copula associated with (Y1,Y2).

Conditional Kendall’s tau of (Y1,Y2) given X = x

τ(x) = 4
∫∫

[0,1]2
Cx(u1, u2) dCx(u1, u2)− 1,

where Cx is the conditional copula associated with (Y1,Y2) given
X = x.
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[0,1]2
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where Cx is the conditional copula associated with (Y1,Y2) given
X = x.
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Conditional copula estimation – overview

I Parametric approach – the conditional copula Cx belongs to a
given parametric family whose parameters depend on the
covariate through a known parametric function – Patton (2006),
time-series literature, . . .

I Semiparametric approach – the conditional copula Cx belongs
to a given parametric family whose parameters depend on the
covariate in an unspecified way.

I Margins depends on the covariate in a known parametric way –
Acar et al. (2011).

I Margins depends on the covariate in an unknown way – Abegaz
et al. (2012).

I Nonparametric approach – OGV.

Acar, E. F., Craiu, R. V., and Yao, F. (2011). Dependence calibration in conditional
copulas: a nonparametric approach. Biometrics, 67:445–453.
Abegaz, F., Gijbels, I., and Veraverbeke, N. (2012). Semiparametric estimation of
conditional copulas. J. Multivariate Anal., 110:43–73.
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Conditional copula estimation

Recall that
Hx(u1, u2) = Cx (F1x(u1),F2x(u2)) .

where Hx is the conditional joint distribution of (Y1,Y2) given X = x
and F1x, F2x are the corresponding marginals.

The conditional copula Cx may be expressed as

Cx(u1, u2) = Hx

(
F−1

1x (u1),F−1
2x (u2)

)
.
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Empirical conditional copula

A straightforward estimator of the conditional copula is

Ĉx(u1, u2) = Ĥx

(
F̂−1

1x (u1), F̂−1
2x (u2)

)
,

where Ĥx is the estimate of the joint conditional distribution
function Hx given by

Ĥx(y1, y2) =

n∑
i=1

wni(x, hn) I{Y1i ≤ y1,Y2i ≤ y2}

and F̂1x and F̂2x are the corresponding marginals of Ĥx.
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Ĥx(y1, y2) =

n∑
i=1

wni(x, hn) I{Y1i ≤ y1,Y2i ≤ y2}

and F̂1x and F̂2x are the corresponding marginals of Ĥx.
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What might be a problem . . .

If Xi (GDP) is large (small), both (Y1i,Y2i) (life expectancies) are
likely to be both large (small).

=⇒ the effect of the of the covariate on the marginals may create an
artificial (confounding) dependence.

Conclusion: Before calculation of conditional measures of
dependence, first remove the effect of the covariate on the marginal
distributions.
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A general transformation of the marginals

Recall that (F1xi ,F2xi) are marginal distribution functions of (Y1i,Y2i)
conditionally on Xi = xi.

If we knew (F1xi ,F2xi), then by a (marginal probability integral)
transformation

(U1i,U2i) = (F1xi(Y1i),F2xi(Y2i)) ,

we get a vector (U1i,U2i) with the distribution given by the
conditional copula Cxi .

Given the values of the covariate x1, . . . , xn we can construct pairs
(U11,U21), . . . , (U1n,U2n) such that :

I the margins of (U1i,U2i) are uniform;
I the conditional copula is the same for original (Y1i,Y2i) and

transformed (U1i,U2i).
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A general transformation of the marginals - practice

Let us fix the values of the covariate x1, . . . , xn.

In practice we need to estimate the unknown conditional marginal
distribution functions (F1xi ,F2xi).

To be fully ‘nonparametric’ we use nonparametric estimators

F̂1xig1(y1) =
n∑

j=1

wnj(xi, g1n) I{Y1i ≤ y1},

F̂2xig2(y2) =

n∑
j=1

wnj(xi, g2n) I{Y2i ≤ y2},

with gn1, gn2 being sequences of bandwidths going to zero.
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A general transformation of the marginals - practice

Let estimate the unobserved

(U1i,U2i) = (F1xi(Y1i),F2xi(Y2i))

with
(Ũ1i, Ũ2i) =

(
F̂1xig1(Y1i), F̂2xig2(Y2i)

)
.

Under appropriate regularity assumptions

sup
u1,u2

∣∣∣√n hn

(
C̃x(u1, u2)− C̃(or)

x (u1, u2)
)∣∣∣ = oP(1)

where C̃x is the estimator of the conditional copula based on (Ũ1i, Ũ2i)

and C̃(or)
x is an ‘oracle estimator’ based on unobserved (U1i,U2i).
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Partial copula estimation

Recall that
(U1i,U2i) = (F1xi(Y1i),F2xi(Y2i)) .

Then the ‘oracle’ estimator of C̄ would be an empirical copula
estimator given by

C(or)
n (u1, u2) = Gn

(
G−1

1n (u1),G−1
2n (u2)

)
, (1)

where

Gn(u1, u2) =
1
n

n∑
i=1

I{U1i ≤ u1,U2i ≤ u2}, (2)

and G1n and G2n are its corresponding marginals.
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1n (u1),G−1
2n (u2)

)
, (1)

where

Gn(u1, u2) =
1
n

n∑
i=1

I{U1i ≤ u1,U2i ≤ u2}, (2)

and G1n and G2n are its corresponding marginals.
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Let (Ũ1i, Ũ2i) stand for (Y1i,Y2i) adjusted for the effect of Xi, e.g.

(Ũ1i, Ũ2i) =
(

F̂1xig1(Y1i), F̂2xig2(Y2i)
)
.

Let C̃n be the empirical copula estimator based on (Ũ1i, Ũ2i).

Then we aim at the the following result:

sup
u1,u2

∣∣∣√n
(

C̃n(u1, u2)− C(or)
n (u1, u2)

)∣∣∣ = oP(1).
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Life expectancies at birth

Let (Ũ1i, Ũ2i) stand for (Y1i,Y2i) adjusted for the effect of Xi.

Partial Kendall’s tau:

ˆ̄τ =
4

n(n− 1)

n∑
i=1

n∑
j=1

I{Ũ1i < Ũ1j, Ũ2i < Ũ2j} − 1.

Conditional Kendall’s tau:

τ̂(x) =
4

An(x, h)

n∑
i=1

n∑
j=1

wni(x, hn) wnj(x, hn) I{Ũ1i < Ũ1j, Ũ2i < Ũ2j}−1,

where An(x, h) = 1−
∑n

i=1 w2
ni(x, hn).
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Uranium dataset

The dataset consists of the observed log-concentrations of seven
chemicals in 655 water samples collected near Grand Junction,
Colorado. The data can be found e.g. as a data set called uranium in
the R-package copula.

Let concentrate on cobalt (Co), scandium (Sc) and titanium (Ti).
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Motivating example Theoretical background Applications Results and discussion

Results and conclusions

I Conditional/partial measures of correlation give us a deeper
insight into the dependence structure of (Y1,Y2) when a
covariate X is present.

I With the help of conditional/partial copula one can express
nonparametric conditional/partial measures of dependence
(Kendall’s tau, Spearman’s rho, Blomqvist beta, . . . ).

I We have suggested a nonparametric estimator of a conditional
copula and proved weak convergence of this estimator.

I We suggested a bootstrap method for the estimator of the
conditional copula.

I We work at this moment on asymptotic properties of the
nonparametric estimator of a partial copula.
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A more complex covariate is possible

So far we consider X to be one-dimensional covariate, i.e. X ∈ R.

Multivariate covariate – X ∈ Rd

wni(x,Hn) =
KHn(Xi − x)∑n
j=1 KHn(Xj − x)

, i = 1, . . . , n,

where K is a d-variate kernel, Hn is a bandwidth matrix with the
determinant |Hn| and KHn(y) = K(|Hn|−1/2y).

Functional covariate – X ∈ E

wni(χ, hn) =
K
(
‖Xi−χ‖

hn

)
∑n

j=1 K
(
‖Xj−χ‖

hn

) , i = 1, . . . , n,

where ‖ · ‖ stands for a norm on E and K is a given (univariate) kernel.
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Further research

I The bandwidth selection problem. Plug-in bandwidths?
Cross-validation procedure?

I Inference for the estimators of a conditional copula;
I Construction of diagnostic tests based on conditional copula

estimation.
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Děkuji za pozornost!
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