Dynamic Bayesian Estimation in Diffusion Networks

Vladimíra Sečkárová¹ Kamil Dedecius²

¹KPMS MFF UK, Sokolovská 83, Praha

²UTIA, Pod Vodárenskou věží 4, Praha

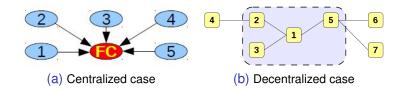
11.9.2012

MFF UK, UTIA

Sečkárová, Dedecius

Introduction

- Our aim is to solve the task of collaborative estimation of unknown environmental parameter from noisy measurements.
- We focus on fully decentralized collaborative estimation in networks allowing the nodes to communicate only with their adjacent neighbours:



Sečkárová, Dedecius

Existing algorithms for estimation in distributed networks

Bayesian methods: treating general tasks with distributed character from the decision making perspective, ranging from [Tsitsiklis and Athans(1982)] to [Aysal and Barner(2008)].

Non-Bayesian methods for fully decentralized collaborative estimation (mostly single problem oriented, e.g., on):

- least-squares estimation [Xiao, Boyd, and Lall(2006)],
- recursive least-squares (RLS, [Cattivelli, Lopes, and Saved(2008)]).
- least mean squares (LMS, [Cattivelli and Sayed(2010)]),
- Kalman filters ([Cattivelli, Lopes, and Sayed(2008)]) etc.

The dynamic Bayesian estimation in diffusion networks

Nodes collectively estimate the common parameter of interest using the same model structure. Furthermore, they satisfy the following constraint: *the nodes are able to communicate one-to-one only within their closed neighbourhood*. Tools such a:

- Bayesian decision theory,
- Kullback Leibler divergence,
- minimum cross entropy principle

yield a theoretically consistent incremental update, which is guaranteed by the principle of weighted likelihoods [Wang(2004), Wang(2006)].

Basic steps

Basic steps of the proposed dynamic Bayesian estimation are:

Incremental update – also known as the data update. The nodes propagate data within their closed neighbourhood and incorporate them into their local statistical knowledge;

Spatial update – the nodes propagate point parameter estimates (i.e. mean values) or posterior pdfs within their closed neighbourhood and correct their local estimates.

Basic formulas

Bayesian recursive estimation:

$$g(\Theta|\boldsymbol{d}(t)) \propto f(y_t|u_t, \boldsymbol{d}(t-1), \Theta)g(\Theta|\boldsymbol{d}(t-1)).$$

The incremental update:

$$egin{aligned} g_k(oldsymbol{\Theta}|\overline{oldsymbol{d}}(t)) &\propto g_k(oldsymbol{\Theta}|\overline{oldsymbol{d}}(t-1)) \ & imes \prod_{l\in\mathcal{N}_k} f_l(oldsymbol{y}_{l,t}|oldsymbol{u}_{l,t},oldsymbol{d}_l(t-1),oldsymbol{\Theta})^{c_{l,k}}, \end{aligned}$$

 $c_{l,k}$ are given weights representing the weight of *l*th node with respect to the *k*th one, $\sum_{l \in N_k} c_{l,k} = 1$.

The spatial update:

$$g_k(\Theta|\overline{\boldsymbol{d}}(t)) = \sum_{l \in \mathcal{N}_k} a_{l,k} g_l(\Theta|\overline{\boldsymbol{d}}(t)), \quad \sum_{l \in \mathcal{N}_k} a_{l,k} = 1,$$

 $0 \le a_{l,k} \le 1$ is the weight of *l*th node's estimate from *k*th node's viewpoint.

MFF UK. UTIA

Sečkárová, Dedecius

Further details and example regarding Gaussian linear regressive model can be found on the yellow poster.

MFF UK, UTIA

Sečkárová, Dedecius

L. Xiao, S. Boyd, and S. Lall.

A space-time diffusion scheme for peer-to-peer least-squares estimation.

In Proceedings of the 5th international conference on Information processing in sensor networks, pages 168–176. ACM, 2006.

MFF UK. UTIA

Diffusion recursive Least-Squares for distributed estimation over adaptive networks. *IEEE Transactions on Signal Processing*, 56(5):1865–1877, May 2008.

F. S. Cattivelli and A. H. Sayed.

Diffusion LMS strategies for distributed estimation.

IEEE Transactions on Signal Processing, 58(3):1035–1048, March 2010.

J. N. Tsitsiklis and M. Athans.

Convergence and asymptotic agreement in distributed decision problems. 21st IEEE Conference on Decision and Control 21:692–701, December 1982.

T. C. Aysal and K. E. Barner.

Constrained decentralized estimation over noisy channels for sensor networks. *Signal Processing, IEEE Transactions on,* 56(4):1398–1410, April 2008.

X. Wang.

Asymptotic properties of maximum weighted likelihood estimators. Journal of Statistical Planning and Inference, 119(1):37–54, January 2004.

X. Wang.

Approximating Bayesian inference by weighted likelihood. *Can J Statistics*, 34(2):279–298, 2006.

Sečkárová, Dedecius