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Kšaft umı́rajı́cı́ statistiky matematické

L. Breiman (1995): Reflections After Refereeing Papers for NIPS

As a result of the would-be mathematicians in statistics, it has
been dominated by useless theory and fads.

� Decision Theory
→ � Asymptotics
→ � Robustness
� Nonparametric One and Two Sample Tests

→ � One-Dimensional Density Estimation
� Etc.

Mikhail Lermontov: A Hero of Our Times
MLP: “Kritérium pravdy je prax.”
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Zložený rozhodovacı́ problém

“(Empirical) Bayes”, “Hierarchical model”,
“Random effects”, “Smoothing”

Estimate a vector µ = (µ1, · · · ,µn)
Conditionally normal sample, Yi ∼ N(µi, 1), i = 1, · · · ,n.
µi’s are assumed to be sampled iid-ly from P

So that the Yi’s have density (ϕ is the density of N(0, 1))

g(y) =

∫
ϕ(y− µ)dP(µ)

Problem: to estimate (predict) µi
The MLE is µ̂i = Yi the best we can do?
“Best”: optimal w. r. t. averaged squared error loss, (µ̂− µ)2
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Berme to športovo

An example:
Yi - known performance of individual players, typically
summarized as of successes, ki, in a number, ni, of some
repeated trials (bats, penalties)

Naı̈ve, individual MLE’s: the relative frequency, ki/ni

predicting µi - the “true” capabilities of individual players, on
probability scale

typically, data not very extensive (start of the season, say)

so that the overall mean is often better than the MLE’s

Efron and Morris (1975), Brown (2008),
Koenker and Mizera (2014?): bayesball
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Ešte jeden prı́klad, z NBA (Agresti, 2002)

player n k prop

1 Yao 13 10 0.7692

2 Frye 10 9 0.9000

3 Camby 15 10 0.6667

4 Okur 14 9 0.6429

5 Blount 6 4 0.6667

6 Mihm 10 9 0.9000 it may be better to take

7 Ilgauskas 10 6 0.6000 the overall mean!

8 Brown 4 4 1.0000

9 Curry 11 6 0.5455

10 Miller 10 9 0.9000

11 Haywood 8 4 0.5000

12 Olowokandi 9 8 0.8889

13 Mourning 9 7 0.7778

14 Wallace 8 5 0.6250

15 Ostertag 6 1 0.1667
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Technické podrobnosti

The assumption of normal distribution of Yi typically results
from an approximation of a binomial - so one can buy
somewhat artificially looking assumption of unit variances

(or one can do a binomial mixture)

(or one can do something else)

An alternative to MLE: borrowing strength→ shrinkage
“neither will be the good that good, nor the bad that bad”
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Nič jednoduchšie

µi’s are sampled iid-ly from P - prior distribution

Conditionally on µi, the distribution of Yi is N(µi, 1)

The optimal prediction is the mean of the posterior distribution:
conditional distribution of µi given Yi

For instance, P is N(0,σ2)

Homework: the best predictor is µ̂i = Yi −
1

σ2 + 1
Yi

More generally, µi can be N(µ,σ2) and Yi then N(µi,σ2
0),

And then µ̂i = Yi −
σ2

0

σ2 + σ2
0
(Yi − µ) (if σ2 = σ2

0, halfway to µ)
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“If only all of them published posthumously...”

Thomas Bayes (1701–1761)
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Takže čo?

How do we know what is σ2? Or why P is normal?

0. Estimated normal prior (parametric)
Nonparametric ouverture
1. Empirical prior (nonparametric)
2. Empirical prediction rule (nonparametric)
Simulation contests
A bit of data analysis
3. Empirical prior with unimodal mixture distribution
4. Empirical prediction rule with unimodal mixture distribution
A bit more simulations and conclusions
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There is no less Bayes than empirical Bayes

Herbert Ellis Robbins (1915–2001)
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On experience in statistical decision theory (1954)

Antonı́n Špaček (1911–1961)
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0. Odhadované normálne apriórne rozdelenie

James-Stein (JS): if P is N(0,σ2)

then the unknown part,
1

σ2 + 1
, of the prediction rule

can be estimated by
n− 2
S

, where S =
∑

i

Y2
i

For general µ in place of 0, the rule is

µ̂i = Yi −
n− 3
S

(Yi − Ȳ), with Ȳ =
1
n

∑

i

Yi and S =
∑

i

(Yi − Ȳ)
2
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JS ako empirický Bayes: Efron and Morris (1975)

Charles Stein (1920– )
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Neparametrická predohra: maximálne vierohodný
odhad hustoty

Density estimation: given the datapoints X1,X2, . . . ,Xn, solve

n∏

i=1

g(Xi)# max
g

!

or equivalently

−

n∑

i=1

logg(Xi)# min
g

!

under the side conditions

g > 0,
∫
g = 1
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Nejako to nefunguje (“Pr...r”)
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Ako zabránit’ Diracovej katastrofe?

16



Regularizácia! Cez penalty...

−

n∑

i=1

logg(Xi)# min
g

! g > 0,
∫
g = 1

J(·) - penalty (penalizing complexity, lack of smoothness etc.)
For instance, Koenker and Mizera (2006, 2007a)

J(g) =
∨

(logg) ′ =
∫
|(logg) ′′|

or also J(g) =
∨

(logg) ′′ =
∫
|(logg) ′′′|

Λ - regularization parameter (the extent of regularization)

... a tuning parameter!
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Regularizácia! Cez tvarové ohraničenia...

Monotonicity, log-concavity: (logg) ′′ 6 0
Notation: K is the cone of convex functions

−

n∑

i=1

logg(Xi)# min
g

! g > 0,
∫
g = 1

A convex problem!

Grenander (1956), Jongbloed (1998),
Groeneboom, Jongbloed, and Wellner (2001)
Eggermont and LaRiccia (2000), Walther (2000)
Rufibach and Dümbgen (2006)
Pal, Woodroofe, and Meyer (2006)

Koenker and Mizera (2007-2010): beyond log-concavity

18
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Monotonicity, log-concavity: (logg) ′′ 6 0
Notation: K is the cone of convex functions

−
1
n

n∑

i=1

h(Xi)# min
h

! − h ∈ K

∫
ehdx = 1

A convex problem!

Grenander (1956), Jongbloed (1998),
Groeneboom, Jongbloed, and Wellner (2001)
Eggermont and LaRiccia (2000), Walther (2000)
Rufibach and Dümbgen (2006)
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Monotonicity, log-concavity: (logg) ′′ 6 0
Notation: K is the cone of convex functions

−
1
n

n∑

i=1

h(Xi) +

∫
ehdx# min

h
! − h ∈ K

A convex problem!

Grenander (1956), Jongbloed (1998),
Groeneboom, Jongbloed, and Wellner (2001)
Eggermont and LaRiccia (2000), Walther (2000)
Rufibach and Dümbgen (2006)
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Nie je to až tak nepodobné

The differential operator may be the same,
only the constraint is somewhat different

∫
|(logg) ′′| 6 Λ, in the dual |(logg) ′′| 6 Λ

Shape constraints: no regularization parameter to be set...
... but of course, we need to believe in the shape.
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Odhadovanie hustôt na pokračovanie

Koenker and Mizera (2007)
Density estimation by total variation regularization
Koenker and Mizera (2006)
The alter egos of the regularized maximum likelihood density
estimators: deregularized maximum-entropy, Shannon, Rényi,
Simpson, Gini, and stretched strings
Koenker, Mizera, and Yoon (2011)
What do kernel density estimators optimize?
Koenker and Mizera (2008):
Primal and dual formulations relevant for the numerical
estimation of a probability density via regularization
Koenker and Mizera (2010)
Quasi-concave density estimation
Koenker and Mizera (2014?)
www.econ.uiuc.edu/∼roger/research/ebayes/ebayes.html
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1. Empirical prior

MLE of P: Kiefer and Wolfowitz (1956)

−
∑

i

log
(∫
ϕ(Yi − u)dP(u)

)
# min

P
!

The regularizer is the fact that it is a mixture
No tuning parameter needed (but “known” form of ϕ!)
The resulting P̂ is atomic (“empirical prior”)
However, it is an infinite-dimensional problem...
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EM nezmysel (“Nem EM”, “nEzMysel”)

Laird (1978), Jiang and Zhang (2009):
Use a grid {u1, ...um} (m = 1000)
containing the support of the observed sample
and estimate the “prior density” via EM iterations

f̂
(k+1)
j =

1
n

n∑

i=1

f̂
(k)
j ϕ(Yi − uj)

∑m
`=1 f̂

(k)
` ϕ(Yi − u`)

,

where ϕ(·) denotes the standard normal density
Sloooooow... (original versions: 55 hours for 1000 replications)
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Konvexná optimalizácia, do toho!

Koenker and Mizera (2014?): it is a convex problem!

−
∑

i

log
(∫
ϕ(Yi − u)dP(u)

)
# min

P
!

When discretized

−
∑

i

log

(∑
m

ϕ(Yi − uj)fj

)
# min

f
!

or in a more technical form

−
∑

i

logyi # min
y

! Az = y and z ∈ S

where A = (ϕ(Yi − uj)) and S = {s ∈ Rm : 1>s = 1, s > 0}.
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Duál: Allah stvoril všetko v pároch

The solution is an atomic probability measure, with not more
than n atoms. The locations, µ̂j, and the masses, f̂j, at these
locations can be found via the following dual characterization:
the solution, ν̂, of

n∑

i=1

logνi # max
µ

!
n∑

i=1

νiϕ(Yi − µ) 6 n for all µ

satisfies the extremal equations
∑

j

ϕ(Yi − µ̂j)f̂j =
1
ν̂i

,

and µ̂j are exactly those µ where the dual constraint is active.

And one can use modern convex optimization methods again...
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EM iterácie nemali konca...
The Incredible Lethargy of EM-ing
Unfortunately, EM fixed point iterations are notoriously slow and this is
especially apparent in the Kiefer and Wolfowitz setting. Solutions
approximate discrete (point mass) distributions, but EM goes ever so
slowly. (Approximation is controlled by the grid spacing of the ui’s.)
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0
2

4
6

8

x

f(x
)

GMLEBEM: m=102

GMLEBEM: m=104

GMLEBEM: m=105

Roger Koenker (UIUC) Empirical Bayes Joel Fest: 24.6.2011 17 / 26(Original version: 55 hours for 1000 replications)

25



Ale konvexná optimalizácia pı́še!Interior Point vs. EM
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GMLEBIP
GMLEBEM: m=102

GMLEBEM: m=104

GMLEBEM: m=105

Roger Koenker (UIUC) Empirical Bayes Joel Fest: 24.6.2011 19 / 26

Interior Point vs. EM

In the foregoing test problem we have n = 200 observations and m = 300
grid points. Timing and accuracy is summarized in this table.

Estimator EM1 EM2 EM3 IP
Iterations 100 10, 000 100, 000 15
Time 1 37 559 1
L(g) - 422 0.9332 1.1120 1.1204 1.1213

Comparison of EM and Interior Point Solutions: Iteration counts, log likelihoods
and CPU times (in seconds) for three EM variants and the interior point solver.

Scaling problem sizes up, the deficiency of the EM approach is even more
serious.

Roger Koenker (UIUC) Empirical Bayes Joel Fest: 24.6.2011 20 / 26

n = 200 observations,m = 300 grid points 26



Typický výsledok ked’ µi sú z U(5, 15)Koenker and Mizera 11
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Figure 2. Estimated mixture density, ĝ, and corresponding
Bayes rule, δ̂, for a simple compound decision problem. The
target Bayes rule and its mixture density are again plotted
in dashed blue. In contrast to the shape constrained estima-
tor shown in Figure 1, the Kiefer-Wolfowitz MLE employed
for this figure yields a much smoother and somewhat more
accurate Bayes rule.

experiment. Each entry in the table is a sum of squared errors over the 1000
observations, averaged over the number of replications. Johnstone and
Silverman (2004) evaluated 18 different procedures; the last row of the table
reports the best performance, from the 18, achieved in their experiment
for each column setting. The performance of the Brown and Greenshtein
(2009) kernel based rule is given in the fourth row of the table, taken from
their Table 1. Two variants of the GMLEB procedure of Jiang and Zhang
(2009) appear in the second and third rows of the table. GMLEBEM is
the original proposal as implemented by Jiang and Zhang (2009) using
100 iterations of the EM fixed point algorithm, GMLEBIP is the interior
point version iterated to convergence as determined by the Mosek defaults.
The shape constrained estimator described above, denoted δ̂ in the table,
is reported in the first row. The δ̂ and GMLEBIP results are based on
1000 replications. The GMLEB results on 100 replications, the Brown and
Greenshtein results on 50 replications, and the Johnstone and Silverman
results on 100 replications, as reported in the respective original sources.

It seems fair to say that the shape constrained estimator performs com-
petitively in all cases, but is particularly attractive relative to the kernel
rule and the Johnstone and Silverman procedures in the moderate k and

Left: mixture density (blue: target)
Right: decision rule (blue: target)
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2. Empirical prediction rule

Lawrence Brown, personal communication
Do not estimate P, but rather the prediction rule
Tweedie formula: for known (general) P, and hence known g,
the Bayes rule is

δ(y) = y+ σ2g
′(y)
g(y)

One may try to estimate g and plug it in - when knowing σ2

(=1, for instance)
Brown and Greenshtein (2009)

by an exponential family argument, δ(y) is nondecreasing in y
(van Houwelingen & Stijnen, 1983)
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Monotónny odhad bayesovského rozhodovacieho
pravidla

Maximum likelihood again (h = logg)
- but with some shape-constraint regularization,
- like log-concavity: (logg) ′′ 6 0

- but we rather want y+
g ′(y)
g(y)

= y+ (logg(y)) ′ nondecreasing

- that is, 1
2y

2 + logg(y) = 1
2y

2 + h(y) convex

−

n∑

i=1

logg(Xi)# min
g

! g > 0,
∫
g = 1

The regularizer is the monotonicity constraint
No tuning parameter, or knowledge of ϕ

- but knowing all the time that σ2 = 1
A convex problem again
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A convex problem again
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Monotónny odhad bayesovského rozhodovacieho
pravidla

Maximum likelihood again (h = logg)
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Poznámky

After reparametrization, omitting constants, etc. one can write
it as a solution of an equivalent problem

−
1
n

n∑

i=1

K(Yi) +

∫
eK(y)dΦc(y)# min

K
! K ∈ K

Compare:

−
1
n

n∑

i=1

h(Xi) +

∫
ehdx# min

h
! − h ∈ K
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Duálna formulácia

Analogous to Koenker and Mizera (2010):
The solution, K̂, exists and is piecewise linear. It admits a dual
characterization: eK̂(y) = f̂, where f̂ is the solution of

−

∫
f(y) log f(y)dΦ(y)# min

f
! f =

d(Pn −G)

dΦ
,G ∈ K−

The estimated decision rule, δ̂, is piecewise constant and has no
jumps at min Yi and max Yi.
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Typický výsledok ked’ µi sú z U(5, 15)

Koenker and Mizera 9

the monotonicity requirement and perform quite well as we shall see in
Section 5.
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Figure 1. Estimated mixture density, ĝ, and corresponding
Bayes rule, δ̂, for a simple compound decision problem.
The target Bayes rule and its mixture density are plotted
as smooth (blue) lines. The local maxima give y for which
δ̂(y) = y.

4.2. Nonparametric maximum likelihood. Let {u1, ...,um} be a fixed grid
as above. Let A be the n by m matrix, with the elements ϕ(Yi − uj) in the
i-th row and j-th column. Consider the (primal) problem,

min{−

n∑

i=1

log(gi) | Af = g, f ∈ S},

where S denotes the unit simplex in Rm, i.e. S = {s ∈ Rm|1>s = 1, s > 0}.
So fj denotes the estimated mixing density estimate f̂ evaluated at the
grid point uj, and gi denotes the estimated mixture density estimate, ĝ,
evaluated at Yi. In this case it is again somewhat more efficient to solve the
corresponding dual problem,

max{

n∑

i=1

log νi | A
>ν 6 n1m, ν > 0},

and subsequently recover the primal solutions. For the present purpose of
estimating an effective Bayes rule, a relatively fine fixed grid like that used
for the EM iterations seems entirely satisfactory.

Left: mixture density (blue: target)
Right: piecewise constant, “empirical decision rule”
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Ako to, že to funguje: metódy vnútorného bodu

(Leave optimization to experts)
Andersen, Christiansen, Conn, and Overton (2000)
We acknowledge using Mosek, a Danish optimization software
Mosek: E. D. Andersen (2010)
PDCO: Saunders (2003)
Nesterov and Nemirovskii (1994)
Boyd, Grant and Ye: Disciplined Convex Programming

Folk wisdom: “If it is convex, it will fly.”
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Simulácie - alebo ako byt’ hodne citovaný

Johnstone and Silverman (2004): empirical Bayes for sparsity

n = 1000 observations
k of which have µ all equal to one of the 4 values, 3, 4, 5, 7
the remaining n− k have µ = 0
there are three choices of k: 5, 50, 500

Criterion: sum of squared errors, averaged over replications,
and rounded

Seems like this scenario (or similar ones) became popular
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Prvý turnaj
Koenker and Mizera 7

Estimator k = 5 k = 50 k = 500
µ =3 µ =4 µ =5 µ =7 µ =3 µ =4 µ =5 µ =7 µ =3 µ =4 µ =5 µ =7

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̂GMLEBIP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂GMLEBEM 37 33 21 11 162 111 56 14 458 285 130 18

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Table 2. Risk of Shape Constrained Rule, δ̂ compared to: two ver-
sions of Jaing and Zhang’s GMLEB procedure, one using 100 EM
iterations denoted GMLEBEM and the other, GMLEBIP, using the
interior point algorithm described in the text, the kernel procedure,
δ̃1.15 of Brown and Greenshtein, and best procedure of Johnstone
and Silverman. Sum of squared errors in n = 1000 observations.
Reported entries are based on 1000, 100, 100, 50 and 100 replica-
tions, respectively.

Estimator n = 10,000 n = 100,000
k =100 k =300 k =500 k =500 k =1000 k =5000

δ̂GMLEB 268 703 1085 1365 2590 10709

δ̂ 282 736 1136 1405 2659 10930

δ̃1.05 306 748 1134 2410 3810 10400
Oracle 295 866 1430 3335 5576 16994

Table 3. Empirical Risk of a gridded version of the GMLEB rule,
the Shape Constrained Rule, δ̂, compared to kernel procedure, δ̃1.05

of Brown and Greenshtein, and an oracle hard threshholding rule
described in the text. The first two rows of the table are based on
1000 replications. The last two rows are as reported in Brown and
Greenshtein and based on 50 replications.

taken from Brown and Greenshtein (2009). The row labeled “strong oracle,” also
taken from Brown and Greenshtein (2009), is a hard-thresholding rule which takes
δ(X) to be either 0 or X depending on whether |X| > C for an optimal choice of C.
Since the shape constrained estimator is quite quick we have done 1000 replica-
tions, while the other reported values are based on 50 replications as reported in
Brown and Greenshtein (2009). As in the preceeding table the reported values are
the sum of squared errors over the n observations, averaged over the number of
replications. Again, the shape constrained estimator performs quite satisfactorily,
while circumventing difficult questions of bandwidth selection.

Given the dense form of the constraint matrix A, neither the EM or IP forms
of the GMLE methods are feasible for sample sizes like those of the experiments
reported in Table 3. Solving a single problem with n = 10, 000 requires about
one hour using the Mosek interior point algorithm. However, it is possible to bin
the observations on a fairly fine grid and employ a slight variant of the proposed
interior point approach in which the likelihood terms are weighted by the rela-
tive (multinomial) bin counts. This approach, when implemented with a equally
spaced grid of 600 points yields the results in the first row of Table 3. Not too
unexpectedly given the earlier results, this procedure performs somewhat better

• empirical prediction rule
• empirical prior, implementation via convex optimization
• empirical prior, implementation via EM
• Brown and Greenshtein (2009): 50 replications

report (best?) results for bandwith-related constant 1.15
• Johnstone and Silverman (2004): 100 replications, 18 methods

(only their winner reported here, J-S Min)
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Vyberanı́ súperi

2 3 4 5 6 7
BL 299 386 424 450 474 493
DL(1/n) 307 354 271 205 183 169
DL(1/2) 368 679 671 374 214 160
HS 268 316 267 213 193 177
EBMW 324 439 306 175 130 123
EBB 224 243 171 92 53 45
EBKM 207 223 152 79 44 37
oracle 197 214 144 71 34 27

Bhattacharya, Pati, Pillai, Dunson (2012): “Bayesian shrinkage”
BL: “Bayesian Lasso”
DL: “Dirichlet-Laplace priors” (with different strengths)

HS: Carvalho, Polson, and Scott (2009) “horseshoe priors”
EBMW: “asympt. minimax EB” of Martin and Walker (2013)

elsewhere: Castillo & van der Vaart (2012) “posterior concentration”
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Prvé závery

• both approaches typically outperform other methods
• Kiefer-Wolfowitz empirical prior typically outperforms
monotone empirical Bayes (for the examples we considered!)
• both methods adapt to general P, in particular to those with
multiple modes
• so far, Kiefer-Wolfowitz empirical prior better adapts to some
peculiarities vital in practical data analysis: unequal σi,
inclusion of covariates,...

37



Znovu NBA - detaily postupu

Brown (2008)
Data: ki successes out of ni trials
Arcsine transformation:

arcsin

√
ki + 1/4
ni + 1/2

∼ N

(
arcsin

√
pi,

1
4ni

)
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Výsledky

player n prop k ast sigma ebkw jsmm glmm lmer

1 Yao 13 0.769 10 1.058 0.139 0.724 0.735 0.724 0.729

2 Frye 10 0.900 9 1.219 0.158 0.724 0.794 0.738 0.757

3 Camby 15 0.667 10 0.950 0.129 0.724 0.682 0.716 0.697

4 Okur 14 0.643 9 0.925 0.134 0.724 0.670 0.715 0.690

5 Blount 6 0.667 4 0.942 0.204 0.721 0.689 0.719 0.705

6 Mihm 10 0.900 9 1.219 0.158 0.724 0.794 0.738 0.757

7 Ilgauskas 10 0.600 6 0.881 0.158 0.722 0.657 0.715 0.684

8 Brown 4 1.000 4 1.333 0.250 0.724 0.781 0.733 0.745

9 Curry 11 0.545 6 0.829 0.151 0.719 0.630 0.712 0.666

10 Miller 10 0.900 9 1.219 0.158 0.724 0.794 0.738 0.757

11 Haywood 8 0.500 4 0.785 0.177 0.709 0.626 0.706 0.666

12 Olowokandi 9 0.889 8 1.200 0.167 0.724 0.783 0.735 0.751

13 Mourning 9 0.778 7 1.063 0.167 0.724 0.732 0.725 0.727

14 Wallace 8 0.625 5 0.904 0.177 0.722 0.672 0.717 0.694

15 Ostertag 6 0.167 1 0.454 0.204 0.364 0.529 0.323 0.616
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Obrázok
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Zmiešavajúce rozdelenie (“empirical prior”)
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Zmiešavajúce rozdelenie pre glmm
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To je všetko?

What if P is unimodal? Cannot we do better in such a case?

And if we can, will it be (significantly) better than James-Stein?

Joint work with Mu Lin
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Dobre, tak prikážme, aby P bola unimodálna...

... or more precisely, constrain P to be log-concave (or q-convex)
(unimodality does not work well in this context)

However, the resulting problem is not convex!

Nevertheless, given that:
log-concavity of P + that of ϕ implies that of the convolution

g(y) =

∫
ϕ(y− µ)dP(µ)

one can impose log-concavity on the mixture!
(So that the resulting formulation then a convex problem is.)
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3. “Unimodálny” Kiefer-Wolfowitz

g# min
P

! g = −
∑

i

log
(∫
ϕ(Yi − u)dP(u)

)

(Works, but needs a special version of Mosek)
May be demanding for large sample sizes
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3. “Unimodálny” Kiefer-Wolfowitz

g# min
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4. “Unimodálny” monotónny empirical Bayes

1
2y

2 + h(y) convex

h(y) concave

−

n∑

i=1

h(Xi) +

∫
ehdx# min

h
!

1
2
y2 + h(y) convex

Very easy, very fast
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Typický výsledok, znova pre U(5, 15)
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Ešte trocha simuláciı́

Sum of squared errors, averaged over replications, rounded

U[5, 15] t3 χ2
2 095|205 050|250 095|505 050|550

br 101.5 112.4 77.8 19.7 57.3 12.6 21.1
kw 92.6 114.4 71.9 17.4 51.3 10.0 17.0
brlc 85.6 98.1 67.6 17.3 51.7 21.6 58.2
kwlc 84.9 98.2 66.8 16.5 50.4 21.2 67.6
mle 100.2 100.1 100.2 100.7 100.4 100.1 99.6
js 89.8 98.5 80.2 18.5 52.1 56.2 86.8
oracle 81.9 97.5 63.9 12.6 44.9 4.9 11.5

Last four: the mixtures of Johnstone and Silverman (2004):
n = 1000 observations, with 5% or 50% of µ equal to 2 or 5
and the remaining ones are 0
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A nakoniec d’alšie závery

- when the mixing (and then the mixture) distribution is
unimodal, it pays to enforce this shape constraint for the
estimate

- if it is not, then it does not pay

- unimodal Kiefer-Wolfowitz still appears to outperform the
unimodal monotonized empirical Bayes by small margin

- and both outperform James-Stein, significantly for
asymmetric mixing distribution

- computationally, unimodal monotonized empirical Bayes is
much more painless than unimodal Kiefer-Wolfowitz
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