
J. ANTOCH SAMPLE VARIANCE, INTERVAL DATA AND GENETIC ALGORITHMS ROBUST’14

SAMPLE VARIANCE, INTERVAL DATA

AND GENETIC ALGORITHMS
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GOALS

When we have interval values for the observations instead of
exact sample values, what is the interval of possible values for
the variance of these interval observations?

What is the situation when calcultaion, based on the same
type of the data, another statistical characteristics as, e.g.,
covariances, information, etc.

What is the inpact on regression etc.
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How tall is the tree?
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Main task

Let us have n intervals Ii = [ai , bi ], ai ≤ bi , i = 1, . . . , n
let K = I1 ⊗ . . .⊗ In = [a1, b1]⊗ . . .⊗ [an, bn] ⊂ R

n

Main tasks are:

P1 To find among all the vectors falling into K that one which has
maximal variance, i.e. to find

xmax = argmax
x∈K

1

n − 1

n∑

i=1

(
xi − xn

)2
,

P2 To find among all the vectors falling into K that one which has
minimal variance, i.e. to find

xmin = argmin
x∈K

1

n − 1

n∑

i=1

(
xi − xn

)2
.
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Main task (cont.)

P3 To find among all the vectors falling into K

x̃max = argmax
x∈K

1

n

n∑

i=1

∣∣∣ xi − med
1≤j≤n

xj

∣∣∣,

P4 To find among all the vectors falling into K

x̃min = argmin
x∈K

1

n

n∑

i=1

∣∣∣ xi − med
1≤j≤n

xj

∣∣∣

P5 To find among all the vectors falling into K

˜̃x
max

= argmax
x∈K

1

n

n∑

i=1

∣∣∣ xi − xn

∣∣∣

P6 To find among all the vectors falling into K

˜̃x
min

= argmin
x∈K

1

n

n∑

i=1

∣∣∣ xi − xn

∣∣∣
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Solution to P2, P4 and P6

Assertion If the intersection of all intervals is not empty (I = ∩i Ii 6= ∅)
then there exist either one or infinitely many solutions of P2, P4 and P6
consisting of all x ∈ K for which x1 ∈ I and x1 = . . . = xn. One solution
exists if I contains only one point while infinitely many solutions exist if
I is an interval.

x =
(
x1, . . . , xn

)′
∈ K, amax ≤ x1 ≤ bmin and xi = x1 ı = 2, . . . , n,

where
amax = max

1≤i≤n
ai & bmin = min

1≤i≤n
bi
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Assertion If the intersection of all intervals is not empty (I = ∩i Ii 6= ∅)
then there exist either one or infinitely many solutions of P2, P4 and P6
consisting of all x ∈ K for which x1 ∈ I and x1 = . . . = xn. One solution
exists if I contains only one point while infinitely many solutions exist if
I is an interval.

x =
(
x1, . . . , xn

)′
∈ K, amax ≤ x1 ≤ bmin and xi = x1 ı = 2, . . . , n,

where
amax = max

1≤i≤n
ai & bmin = min

1≤i≤n
bi

Idea

var x =
1

n − 1

n∑

i=1

(
xi − xn

)2
=

1

n(n − 1)

∑

1≤i<j≤n

(
xi − xj

)2
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Solution to P1 and P2

Assertion Assume the above mentioned setup. Then solutions of both
task P1 (“max”) and task P2 (“min”) are on the boundary of K.
Moreover, solution(s) of task P1 coincide with one (or more) vertex(es)
of K.

Remarks:

Proof of assertion shows that in the case of task P1
(argmaxx∈K var x) we are looking for that corner of K which has
the largest distance from the straight line passing through the origin
and the point (1, . . . , 1)′.

In the case of task P2 (arg minx∈K var x) we are, analogously,
looking for that point(s) from K which have the smallest distance.

Due to the fact that the straight line passing through the origin and
the point (1, . . . , 1)′ can have a nonempty intersection with K,
number of solutions of P2 can be infinite.
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Typical example

Vertical lines denote individual intervals, squares solution of task P1
(“max”), dots solution of task P2 (“min”). Solution of P1 (“max”) is
connected by a dashed line and solution of P2 (“min”) by a solid line.
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Practical example

Data present eight different classes of oils described by four quantitative
interval valued variables, i.e. Specific gravity, Freezing point, Iodine value

and Saponification.

Plant Specific Freezing Iodine Saponifi-
number Plant gravity point value cation

1 Linseed 0.93 0.94 -27 -18 170 204 118 196
2 Perilla 0.93 0.94 -5 -4 192 208 188 197
3 Cotton 0.92 0.92 -6 -1 99 113 189 198
4 Sesame 0.92 0.93 -6 -4 104 116 187 193
5 Camellia 0.92 0.92 -21 -15 80 82 189 193
6 Olive 0.91 0.92 0 6 79 90 187 196
7 Beef 0.86 0.87 30 38 40 48 190 199
8 Hog 0.86 0.86 22 32 53 77 190 202
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Numerical results

Point with minimal variance Point with maximal variance
Specific Freez. Iodine Saponi- Specific Freez. Iodine Saponi-
gravity point value fication gravity point value fication

0.93 -18.00 170.0 190-3 0.94 -27 204 118
0.93 -4.00 192.0 190-3 0.94 -5 208 197
0.92 -1.00 109.8 190-3 0.92 -6 99 198
0.92 -4.00 109.8 190-3 0.93 -6 116 193
0.92 -15.00 82.0 190-3 0.92 -21 80 193
0.91 1.42 90.0 190-3 0.92 6 79 196
0.87 30.00 48.0 190-3 0.86 38 40 199
0.86 22.00 77.0 190-3 0.86 32 53 202

0.000 735 278.82 2348.7 0 0.001 070 536.55 4086.7 786.29

Extreme points xmin and xmax solving P1 and P2. Last line in the table corresponds
to the variance of the corresponding column of data.
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0.86 22.00 77.0 190-3 0.86 32 53 202

0.000 735 278.82 2348.7 0 0.001 070 536.55 4086.7 786.29

Extreme points xmin and xmax solving P1 and P2. Last line in the table corresponds
to the variance of the corresponding column of data.

Danger for many statistics, including sample covariances or correlations is
more than evident.
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Genetical algorithms

Genetic Optimization Problem

Individual Candidate solution
Fitness of an individual Objective function calculated on solution
Chromosome of an individual Coding of a candidate solution
Gene (digit of a chromosome) Piece of a candidate solution

For a genetic algorithm solving (maybe) the problem, user must set up:

1 Representation scheme (encoding of objects)
usually most critical point

2 Measure of fitness

3 Parameters and variables controlling algorithm

4 Terminating criterion
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Genetic algorithm – set up

Representation of variance (6) allows to concentrate only on the vertexes
of the cube K !
Idea: It is evident that there exist a 1-1 mapping between set of all
vertexes of K and a set of vectors α =

(
α1, . . . , αn

)′
∈ {0, 1}n , where: ‘

αi = 0 corresponds to the choice xi = ai

αi = 1 corresponds to the choice xi = bi . ‘

Fitness function is given by the variance calculated for the vertex
corresponding to current α.

It is necessary to set

population size S

crossover k (alternatively k1, k2 etc.)

mutation probability pM

stopping rule.
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Choice of parameters

Other parameters of genetic algorithm used were chosen (empirically) as
follows:

Initial generation has been chosen randomly, i.e., the genes were
simulated from the alternative distribution Alt(1/2).

Crossover scheme : single point crossover with k ≈ 0.6n.

Mutation probability pM ≈ 0.01.

Fitness f (α) = var x , where x is that vertex of K that corresponds
to the chromosome α.

Population size card(S) = 100.

Number of generations 300.

Elitism was used, i.e., the best individual of a generation is cloned
with the new one.
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Sensitivity of proposed procedure

Basic conclusion is that the mutation probability considerably
influences both the population size card(S) and number of
generations.

Other parameters do not play so important role.

More specifically:

If we increase mutation probability, we must either considerably
increase the number of generations or population size. For example,
the choice pM = 0.025 recommended by the literature required
either to double the population size or to triple the number of
generations.

Choice of the initial generation does not have substantial impact on
the speed to arrive to the optimal solution.

Crossover scheme does not have an impact on the speed to arrive to
the optimal solution. Single point crossover gave us practically the
same results as two point or random crossover.
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Moderately difficult example

Genetic algorithm for P1 (“max”) has been tested on many real and
simulated datasets and converged very rapidly.

-47.50, 28.75 47.25, 91.75 38.50, 81.50 -53.50, 45.00 -11.00, -05.00

-46.50, 93.50 -98.25, -40.75 -34.50, -28.00 51.00, 64.00 -32.50, -13.50

40.75, 95.00 -47.00, 30.50 -95.75, -25.25 -34.00, -28.25 -88.50, -71.50

-01.25, 34.50 16.50, 81.25 -21.75, 39.75 30.25, 80.25 -14.50, -06.00

-10.00, 07.75 -81.50, -72.25 -94.00, -18.75 -65.50, 22.00 -93.00, -83.00

-03.25, 83.25 -90.25, -77.00 -24.75, -01.25 42.50, 79.75 -66.00, -61.25

27.75, 57.00 49.75, 85.50 12.75, 90.75 18.50, 85.50 -19.50, 06.75

-42.25, 20.00 -93.75, -33.00 -22.50, 01.25 -95.75, -52.00 -77.50, -42.75

An exhaustive search (that on a cluster of 16 processors took about 4
hours) revealed that the maximum for (4) was 4911.9990, which is
exactly the same value (and corresponds to the same endpoints
configuration) that the genetic algorithm found in less than 100
iterations (that took less than a second).
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Solution

According to Ferson there does not exists for this type of the data other
algorithms enabling to find xmax than exhaustive search. It took us about
4 hours on a cluster with 16 multi-kernel processors to reveal that xmax

correspond to the point given in Table 2. Notice that we have found the
same point using our genetic algorithm in less than several hundred
iterations, taking less than a second of CPU on one of the processors.

-47.50 91.75 81.50 45.00 93.50 -98.25 -34.50 64.00

95.00 -47.00 -95.75 -34.00 34.50 81.25 39.75 80.25

7.75 -81.50 -94.00 -65.50 83.25 -90.25 -24.75 79.75

57.00 85.50 90.75 85.50 -93.00 -95.75 -66.00 -77.50

-88.50 -93.75 -14.50 -22.50 -11.00 -19.50 -32.50 -42.25

Table 2. Solution.
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Some other approaches

1 Random sampling

2 Random walk on vertexes of hypercube

1 Random sampling – does not work

2 Random walk on vertexes of hypercube – works better, but much
more slowly

GENERAL PROBLEM : Unlike systematic search, none of
mentioned methods ensures finding global minima.


