Constructing efficient exact designs of experiments using a branch-and-bound method

Mgr. Eva Bednáriková

Supervisor: doc. Mgr. Radoslav Harman, PhD.

Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Slovakia

January 20, 2014

Table of contents

2 Multiplicative algorithm for partially fixed designs

Linear regression model

$$\mathbf{y}(\mathbf{x}) = \mathbf{f}^{\top}(\mathbf{x})\beta + \varepsilon(\mathbf{x})$$

where

- $x \in \mathfrak{X}$, and $\mathfrak{X} = \{x_1, x_2, \dots, x_n\}$ is a finite design space,
- y(x) is an observation in design point x,
- $\mathbf{f}(x) \in \mathbb{R}^m$ is a known regression function,
- $\beta \in \mathbb{R}^m$ is a vector of unknown parameters,
- E(ε(x)) = 0, Var(ε(x)) = σ² < ∞ and trials are performed independently.

Approximate and exact design of experiment

Approximate design ξ is a probability measure on \mathfrak{X}

$$\xi = \left\{ \begin{array}{ccc} x_1 & x_2 & \cdots & x_n \\ \xi_1 & \xi_2 & \cdots & \xi_n \end{array} \right\}$$

 ξ_i is a weight of design point x_i ∈ X

•
$$\sum_{i} \xi_i = 1$$

Exact design ξ_N of size *N* is a probability measure on \mathfrak{X} , such that $N\xi_N(x) \in \mathbb{Z}$ for all $x \in \mathfrak{X}$

$$\xi_N = \left\{ \begin{array}{ccc} X_1 & X_2 & \cdots & X_n \\ \frac{N(X_1)}{N} & \frac{N(X_2)}{N} & \cdots & \frac{N(X_n)}{N} \end{array} \right\}$$

- N the total number of trials
- *N*(*x_i*) the number of trials in the design point *x_i* ∈ 𝔅

•
$$\sum_i N(x_i) = N$$

D-optimality

Information matrix of a design ξ

$$\mathbf{M}(\xi) = \sum_{x \in \mathfrak{X}} \xi(x) \mathbf{f}(x) \mathbf{f}^{\top}(x).$$

D-optimality criterion

$$\Phi: \mathbf{M}(\xi) \mapsto \Phi(\mathbf{M}(\xi)) = \det^{1/m}(\mathbf{M}(\xi)).$$

- D-optimal design ξ^* maximizes the D-optimality criterion.
- Statistical interpretation: D-optimal design minimizes the volume of the confidence ellipsoid for β.
- Our main goal is to find D-optimal exact designs, using results from the theory of D-optimal approximate design.

Partially fixed design

- Let $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots, n\}$ be a set of indices.
- An approximate design ξ is called partially fixed, if

$$\xi(x_{i_l}) = \frac{N_{i_l}}{N} \quad \text{for } l = 1, 2, \dots, k,$$

where

- N_{i_i} is a given number of trials in the design point x_{i_i}
- *N* is the total number of trials; $\sum_{l=1}^{k} N_{i_l} \leq N$.
- D-optimal partially fixed design maximizes the determinant of the information matrix among all partially fixed designs.

Relative D-efficiency

The D-efficiency of design ξ relative to design η is given by

$$\operatorname{eff}_{D}(\xi|\eta) = rac{\operatorname{det}^{1/m}(\mathbf{M}(\xi))}{\operatorname{det}^{1/m}(\mathbf{M}(\eta))}$$

- The D-efficiency represents statistical "quality" of design ξ compared to design η.
- We usually compare designs to a D-optimal design ξ^{*}; in this case, eff_D(ξ|ξ^{*}) ≤ 1.

Re-normalization multiplicative heuristic

To compute a D-optimal partially fixed design, it is possible to use the **re-normalization multiplicative heuristic**, which consists of three parts:

- choice of the initial design ξ_0 ,
- 2 transformation of design ξ_i to design ξ_{i+1} ,
- the stopping rule.

In the following, we will use notation $\mathfrak{X}_0 := \mathfrak{X} \setminus \{x_{i_1}, \dots, x_{i_k}\}$ and $N_0 := N - \sum_{l=1}^k N_{i_l}$.

Re-normalization multiplicative heuristic

Initial design ξ₀ is

- fixed to the values N_{i_1}, \ldots, N_{i_k} for points x_{i_1}, \ldots, x_{i_k} ,
- uniformly distributed over all other points $x \in \mathfrak{X}_0$.
- At the step *j* of the algorithm, the **next design** ξ_{j+1} is
 - fixed to the values N_{i_1}, \ldots, N_{i_k} for points x_{i_1}, \ldots, x_{i_k} ,
 - for all $x \in \mathfrak{X}_0$ given by

$$\xi_{j+1}(x) = \xi_j(x)d(x,\xi_j)\frac{N_0/N}{\sum_{y\in\mathfrak{X}_0}\xi_j(y)d(y,\xi_j)},$$

where $d(x,\xi) = \mathbf{f}^{\top}(x)\mathbf{M}(\xi)^{-1}\mathbf{f}(x)$ is a variance function.

• The **stopping rule** is based on the D-efficiency of the current design relative to the D-optimal design, as specified in the following theorem.

Illustration of the re-normalization multiplicative heuristic

Figure: Illustration of one step of the re-normalization multiplicative heuristic. Points fixed to given values are marked in red, while points that remain "free" are marked in blue. An initial design ξ_0 is multiplied at first by the corresponding variance function, and then by a normalization constant (so that the new design ξ_1 is a probability measure on \mathfrak{X}).

Theoretical results of partially fixed designs

Theorem

Let ξ be a partially fixed design, let ξ^* be a D-optimal partially fixed design, and let $\epsilon = N^{-1} \left(\sum_{l=1}^{k} N_{i_l} d(x_{i_l}, \xi) + N_0 \max_{x \in \mathfrak{X}_0} d(x, \xi) \right) - m$. Then m = 0

$$eff_D(\xi|\xi^*) \geq \frac{m}{m+\epsilon}.$$

Moreover, let $h_m(\epsilon) = m \left(1 + \epsilon/2 - \sqrt{\epsilon(4 + \epsilon - 4/m)}/2\right)$. Then $\xi^*(x) = 0$ for any $x \in \mathfrak{X}_o$ satisfying

$$d(x,\xi) < \max_{y\in\mathfrak{X}_0} d(y,\xi) - \frac{N}{N_0} (m+\epsilon - h_m(\epsilon)).$$

This theorem follows from Harman [2014], and its second part can be used to accelerate the multiplicative algorithm mentioned before.

Branch-and-bound (B&B)

- a general enumerative method used to solve discrete optimization problems,
- for design problems, some versions of this method were used in, e.g., Welch [1982] and Ucinski and Patan [2007],
- each node of the branch-and-bound tree represents a class of partially fixed designs, associated with restrictions given by a couple (I, N), where $I = (i_1, ..., i_k)$ and $N = (N_{i_1}, ..., N_{i_k})$ for some $k \in \mathbb{Z}_0^+$,
- the root node of the tree corresponds to I = Ø, N = Ø (no design point is fixed)

References

Construction step of the B&B tree

At each **construction step**, one node $(I = (i_1, ..., i_k), N = (N_{i_1}, ..., N_{i_k}))$ is divided into $N_0 + 1$ descendants with one more point $x_{i_{k+1}}$ fixed to the values $0, 1, ..., N_0$:

$$(\mathbf{I}, \mathbf{N}) \begin{cases} ((\mathbf{I}, i_{k+1}) &, (\mathbf{N}, 0)) \\ ((\mathbf{I}, i_{k+1}) &, (\mathbf{N}, 1)) \\ & \vdots \\ ((\mathbf{I}, i_{k+1}) &, (\mathbf{N}, N_0)) \end{cases}$$

References

Illustration of the B&B tree

Figure: Illustration of a part of the branch-and-bound tree for N = 3 and n = 5. A blue tick represents a "free" design point, while a red dot represents a design point fixed to the particular value.

Termination of the nodes of the B&B tree

- The **global lower bound** *LB* is the maximum value of the D-optimality criterion among all information matrices of exact designs found so far.
- The **upper bound** *UB*(**I**, **N**) for each node (**I**, **N**) is a value of the D-optimality criterion of the corresponding D-optimal partially fixed design, that can be computed using the multiplicative algorithm. The node is discarded, if

$$\alpha \ UB(\mathbf{I}, \mathbf{N}) < LB,$$

where $\alpha > 0$ is a constant chosen so that the final design resulting from the B&B algorithm has the *required D*-efficiency relative to the D-optimal exact design.

Example 1: Quadratic regression

• Quadratic regression in two variables:

$$y(x_1, x_2) = \beta_1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_1 x_2 + \beta_5 x_1^2 + \beta_6 x_2^2 + \varepsilon(x_1, x_2),$$

where

•
$$(x_1, x_2)^{\top} \in \mathfrak{X} = \mathfrak{\tilde{X}} \times \mathfrak{\tilde{X}},$$

•
$$\tilde{\mathfrak{X}} = \{-1, -\frac{2}{3}, -\frac{1}{3}, 0, \frac{1}{3}, \frac{2}{3}, 1\}.$$

• That is, the number of design points is n = 49.

References

Example 1: Results

Figure: Exact designs for the quadratic regression model with D-efficiency at least 0.95 found by the branch-and-bound algorithm.

Example 2: Trigonometric regression

• Trigonometric regression in one variable:

$$y(x) = \beta_1 + \beta_2 \sin x + \beta_3 \cos x + \beta_4 \sin 2x + \beta_5 \cos 2x + \beta_6 \sin 3x + \beta_7 \cos 3x + \varepsilon(x),$$

where

•
$$x \in \mathfrak{X} = \{0, d, 2d, 3d, \dots, 29d\}$$
, where $d = \frac{2\pi}{30}$.

• That is, the number of design points is n = 30.

References

Example 2: Results

Figure: Exact designs for the trigonometric regression model with D-efficiency at least 0.95 found by the branch-and-bound algorithm.

References

- R. Harman. Multiplicative methods for computing d-optimal stratified designs of experiments. *Journal of Statistical Planning and Inference*, 146:82–94, 2014.
- D. Ucinski and M. Patan. D-optimal design of a monitoring network for parameter estimation of distributed systems. *Journal of Global Optimization*, 39(2):291–322, 2007.
- W. J. Welch. Branch-and-bound search for experimental designs based on d optimality and other criteria. *Technometrics*, 24(1):41–48, 1982.

Thank you for attention.