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Linear regression model

y(x) = f>(x)β + ε(x)

where
x ∈ X, and X = {x1, x2, . . . , xn} is a finite design space,
y(x) is an observation in design point x ,
f(x) ∈ Rm is a known regression function,
β ∈ Rm is a vector of unknown parameters,
E(ε(x)) = 0, Var(ε(x)) = σ2 <∞ and trials are

performed independently.
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Approximate and exact design of experiment

Approximate design ξ
is a probability measure on X

ξ =

{
x1 x2 · · · xn
ξ1 ξ2 · · · ξn

}

ξi is a weight of design
point xi ∈ X∑

i ξi = 1

Exact design ξN of size N
is a probability measure on X,
such that NξN(x) ∈ Z for all x ∈ X

ξN =

{
x1 x2 · · · xn

N(x1)
N

N(x2)
N · · · N(xn)

N

}

N - the total number of trials
N(xi) - the number of trials in
the design point xi ∈ X∑

i N(xi) = N
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D-optimality

Information matrix of a design ξ

M(ξ) =
∑
x∈X

ξ(x)f(x)f>(x).

D-optimality criterion

Φ : M(ξ) 7→ Φ(M(ξ)) = det1/m(M(ξ)).

D-optimal design ξ∗ maximizes the D-optimality criterion.
Statistical interpretation: D-optimal design minimizes the
volume of the confidence ellipsoid for β.
Our main goal is to find D-optimal exact designs, using
results from the theory of D-optimal approximate design.
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Partially fixed design

Let {i1, i2, . . . , ik} ⊂ {1,2, . . . ,n} be a set of indices.
An approximate design ξ is called partially fixed, if

ξ(xil ) =
Nil
N

for l = 1,2, . . . , k ,

where
Nil is a given number of trials in the design point xil

N is the total number of trials;
∑k

l=1 Nil ≤ N.
D-optimal partially fixed design maximizes the determinant
of the information matrix among all partially fixed designs.
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Relative D-efficiency

The D-efficiency of design ξ relative to design η is given by

effD(ξ|η) =
det1/m(M(ξ))

det1/m(M(η))
.

The D-efficiency represents statistical “quality” of design ξ
compared to design η.
We usually compare designs to a D-optimal design ξ∗; in
this case, effD(ξ|ξ∗) ≤ 1.
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Re-normalization multiplicative heuristic

To compute a D-optimal partially fixed design, it is possible to
use the re-normalization multiplicative heuristic, which
consists of three parts:

1 choice of the initial design ξ0,
2 transformation of design ξj to design ξj+1,
3 the stopping rule.

In the following, we will use notation X0 := X \ {xi1 , . . . , xik} and
N0 := N −

∑k
l=1 Nil .
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Re-normalization multiplicative heuristic

Initial design ξ0 is
fixed to the values Ni1 , . . . ,Nik for points xi1 , . . . , xik ,
uniformly distributed over all other points x ∈ X0.

At the step j of the algorithm, the next design ξj+1 is
fixed to the values Ni1 , . . . ,Nik for points xi1 , . . . , xik ,
for all x ∈ X0 given by

ξj+1(x) = ξj (x)d(x , ξj )
N0/N∑

y∈X0
ξj (y)d(y , ξj )

,

where d(x , ξ) = f>(x)M(ξ)−1f(x) is a variance function.

The stopping rule is based on the D-efficiency of the
current design relative to the D-optimal design, as
specified in the following theorem.

Eva Bednáriková Constructing efficient exact designs of experiments



Design of experiments
Multiplicative algorithm for partially fixed designs

Branch-and-bound method
References

Illustration of the re-normalization multiplicative
heuristic

Figure: Illustration of one step of the re-normalization multiplicative
heuristic. Points fixed to given values are marked in red, while points
that remain “free” are marked in blue. An initial design ξ0 is multiplied
at first by the corresponding variance function, and then by a
normalization constant (so that the new design ξ1 is a probability
measure on X).
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Theoretical results of partially fixed designs

Theorem
Let ξ be a partially fixed design, let ξ∗ be a D-optimal partially fixed
design, and let ε = N−1

(∑k
l=1 Nil d(xil , ξ) + N0 maxx∈X0 d(x , ξ)

)
−m.

Then
effD(ξ|ξ∗) ≥ m

m + ε
.

Moreover, let hm(ε) = m
(

1 + ε/2−
√
ε(4 + ε− 4/m)/2

)
. Then

ξ∗(x) = 0 for any x ∈ X0 satisfying

d(x , ξ) < max
y∈X0

d(y , ξ)− N
N0

(m + ε− hm(ε)) .

This theorem follows from Harman [2014], and its second part can be
used to accelerate the multiplicative algorithm mentioned before.
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Branch-and-bound (B&B)

a general enumerative method used to solve discrete
optimization problems,
for design problems, some versions of this method were
used in, e.g., Welch [1982] and Ucinski and Patan [2007],
each node of the branch-and-bound tree represents a
class of partially fixed designs, associated with restrictions
given by a couple (I,N), where I = (i1, . . . , ik ) and
N = (Ni1 , . . . ,Nik ) for some k ∈ Z+

0 ,
the root node of the tree corresponds to I = ∅,N = ∅ (no
design point is fixed)
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Construction step of the B&B tree

At each construction step, one node
(I = (i1, . . . , ik ),N = (Ni1 , . . . ,Nik )) is divided into N0 + 1
descendants with one more point xik+1 fixed to the values
0,1, . . . ,N0:

(I,N)


((I, ik+1) , (N,0))
((I, ik+1) , (N,1))

...

((I, ik+1) , (N,N0))
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Illustration of the B&B tree

Figure: Illustration of a part of the branch-and-bound tree for N = 3
and n = 5. A blue tick represents a “free” design point, while a red dot
represents a design point fixed to the particular value.
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Termination of the nodes of the B&B tree

The global lower bound LB is the maximum value of the
D-optimality criterion among all information matrices of
exact designs found so far.
The upper bound UB(I,N) for each node (I,N) is a value
of the D-optimality criterion of the corresponding D-optimal
partially fixed design, that can be computed using the
multiplicative algorithm. The node is discarded, if

α UB(I,N) < LB,

where α > 0 is a constant chosen so that the final design
resulting from the B&B algorithm has the required
D-efficiency relative to the D-optimal exact design.
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Example 1: Quadratic regression

Quadratic regression in two variables:

y(x1, x2) = β1+β2x1+β3x2+β4x1x2+β5x2
1 +β6x2

2 +ε(x1, x2),

where
(x1, x2)> ∈ X = X̃× X̃,
X̃ =

{
−1,−2

3 ,−
1
3 ,0,

1
3 ,

2
3 ,1
}

.
That is, the number of design points is n = 49.
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Example 1: Results

(a) N = 13 (b) N = 17 (c) N = 19

Figure: Exact designs for the quadratic regression model with
D-efficiency at least 0.95 found by the branch-and-bound algorithm.
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Example 2: Trigonometric regression

Trigonometric regression in one variable:

y(x) =β1 + β2 sin x + β3 cos x + β4 sin 2x + β5 cos 2x
+ β6 sin 3x + β7 cos 3x + ε(x),

where
x ∈ X = {0,d ,2d ,3d , . . . ,29d}, where d = 2π

30 .
That is, the number of design points is n = 30.
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Example 2: Results

Figure: Exact designs for the trigonometric regression model with
D-efficiency at least 0.95 found by the branch-and-bound algorithm.
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Thank you for attention.
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