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Motivation

Regression quantiles are an important tool of robust inference
in linear regression and other models, because they are a
straightforward extension of location quantiles. Quantile
regression is intensively applied in econometric problems.
Though regression quantiles are asymptotically normal, their
finite sample behavior is far from normality. But it is also the
case for ordinary quantiles. Hence, the finite sample behavior of
regression quantiles is of interest. A good approximation of the
finite-sample distribution is the saddle-point approximation
(small-sample asymptotics of Field and Ronchetti and Hampel).
Radka Sabolová studied the saddle-point technique during her
stay in University of Geneva under supervising of E. Ronchetti
and calculated the saddle-point approximations of densities of
regression quantiles. They are very precise.
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During our discussions, we have found the averaged regression
quantile 1

n

∑n
i=1 x

⊤
i β̂n(α) as a useful characteristic. Interesting

is the following identity, for which I still search the right
interpretation: If α ∈ (0, 1) is a continuity point of β̂n(α), then

x̄⊤n β̂n(α) = −1

n

n∑

i=1

Yi
d
dα âi (α) (1)

where ân1(α), . . . , ânn(α) are the so called regression rank scores
of the model (dual to regression quantile, explained later). In
the location model, (1) reduces to the identity β̂n(α) = Yn:[nα].
It leads to the conjecture that the averaged regression quantile
is asymptotically equivalent to the ordinary regression quantile
of the model errors.
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Introduction

Consider the linear regression model Yn = Xnβ +Un (2)

with observations Yn = (Y1, . . . ,Yn)
⊤, i.i.d. errors

Un = (U1, . . . ,Un)
⊤ with an unknown distribution function F ,

and unknown parameter β = (β0,β1, . . . ,βp)
⊤. The n × (p + 1)

matrix X = Xn is known and xi0 = 1 for i = 1, . . . , n (i.e., β0 is
an intercept). The α-regression quantile β̂n(α) of model (2) is a
solution of the minimization

∑n
i=1 ρα(Yi − x⊤i b) := min

with respect to b = (b0, . . . , bp)
⊤ ∈ IRp+1, where

ρα(z) = |z |{αI [z > 0] + (1− α)I [z < 0]}, z ∈ IR1.
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Regression rank scores

Koenker and Bassett (1978) used the following algorithm, dual
to regression quantile algorithm, as a computational device:

Y⊤
n â := max

under the constraints

{
(Xn)

⊤â = (1− α)(Xn)
⊤1n,

â ∈ [0, 1]n, 0 ≤ α ≤ 1.

The components of the optimal solution are called regression
rank scores (RRS): ân(α) = (ân1(α), . . . , ânn(α))

⊤, 0 ≤ α ≤ 1.
They are convenient for construction of the rank tests in the
linear model (see Gutenbrunner and JJur. (1992),
Gutenbrunner et al. (1993)). The RRS are invariant with
respect to the shift in location and scale and to changes of β.
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From the linear programming theory it follows that

âni (α) =

{
1 . . . Yi > x⊤i β̂n(α),

0 . . . Yi < x⊤i β̂n(α), i = 1, . . . , n

and that 0 < âni (α) < 1 if Yi = x⊤i β̂n(α) (the exact fit); there
are just p + 1 components with exact fit for each α, which
correspond to the optimal base among x1, . . . , xn. The values of
âni (α) are determined by the constraints in the linear program.

Jana Jurečková and Jan Picek Averaged regression quantiles



Motivation and Introduction
Asymptotic relations

Local heteroscedasticity
Application: Estimation of quantile density

Numerical illustration
References

The averaged regression quantile is the scalar statistic

B̄n(α) = x̄⊤n β̂n(α), x̄n = 1
n

∑n
i=1 xni .

B̄n(α) is scale equivariant and regression equivariant. Moreover,
we have the following useful facts:

Lemma 1

(i) If α ∈ (0, 1) is a continuity point of β̂n(α), then

B̄n(α) = − 1
n

∑n
i=1 Yi

d
dα âi (α).

(ii) B̄n(α) and hence also − 1
n

∑n
i=1 Yi

d
dα âi (α) are

nondecreasing step-functions of α ∈ (0, 1).

Moreover, the averaged regression α-quantile is asymptotically
equivalent to the ordinary location α-quantile.
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Assume the following conditions on matrix Xn:

A1 limn→∞Qn = Q, where Qn = n−1X⊤
n Xn and Q is a

positive definite matrix.
A2 n−1

∑n
i=1 x

4
ij = O(1), as n → ∞, for j = 1, . . . , p.

Theorem 1

Suppose that the distribution function F is continuous and twice
differentiable in a neighborhood of F−1(α) and that
F ′(F−1(α)) = f (F−1(α)) > 0, 0 < α < 1. Then, under the
conditions A1 - A2,

n1/2
[
x̄⊤n (β̂n(α)− β)− Un:[nα]

]
= Op(n

−1/4) (3)

as n → ∞, where Un:1 ≤ . . . ≤ Un:n are the order statistics
corresponding to U1, . . . ,Un.

Jana Jurečková and Jan Picek Averaged regression quantiles



Motivation and Introduction
Asymptotic relations

Local heteroscedasticity
Application: Estimation of quantile density

Numerical illustration
References

Theorem 1 has an easy corollary, leading to the first application:

Corollary

Under the conditions of the Theorem 1,

n1/2
[
x̄⊤n (β̂n(α2)− β̂n(α1))− (Un:[nα2] − Un:[nα1])

]
= Op(n

−1/4)

for any 0 < α1 ≤ α2 < 1.

The statistics of type x̄⊤n (β̂n(α2)− β̂n(α1)) are invariant to the
regression with design Xn, and equivariant with respect to the
scale. As such, they provide a tool for studentization of
M-estimators in linear regression model, and where one needs to
make a statistic scale-equivariant. For instance, we used the
regression interquartile range with α1 =

1
4 , α2 =

3
4 in

goodness-of-fit testing with nuisance regression and scale.
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The proposition of Theorem 1 remains true under a sequence of
distributions, contiguous with respect to the sequence
{∏n

i=1 F (uni )}. Among them, let us observe the local
heteroscedasticity. The frequent heteroscedastic model has the
form Yi = β0 + x⊤i β + σiUi , i = 1, . . . , n where
Un = (U1, . . . ,Un)

⊤ are the i.i.d. errors with the joint
distribution function F and

σi = exp{d⊤i γ}, i = 1, . . . , n

with known or observable di ∈ R
q, 1 ≤ i ≤ n and unknown

parameter γ ∈ R
q.
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We assume that

n∑

i=1

dij = 0, j = 1, . . . , q, max
1≤i≤n

‖di‖ = o(n1/2) as n → ∞,

lim
n→∞

Dn = lim
n→∞

1

n

n∑

i=1

did
⊤
i = D,

max
1≤i≤n

{
d⊤i (

n∑

k=1

dkd
⊤
k )

−1di

}
→ 0 as n → ∞

where D is positive definite (q × q) matrix. Homoscedasticity
means that γ = 0; then Theorem 1 applies. The local
heteroscedasticity means that

γ = γn = n−
1
2δ, δ ∈ R

q, δ 6= 0, ‖δ‖ ≤ C < ∞.
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Theorem 2

(i) Under the local heteroscedasticity, Theorem 1 remains true for
any fixed α ∈ (0, 1).
(ii) The sequences {√nx̄⊤n (β̂n(α)− β − e0F

−1(α))} and
{√n(Un:[nα] − F−1(α))} are asymptotically normally distributed

N
(
0, α(1−α)

f 2(F−1(α))

)
, both under homoscedasticity and under local

heteroscedasticity; e0 = (1, 0, . . . , 0)⊤ ∈ Rp+1.

Remark

By Theorem 2, the averaged regression quantile does not register
(asymptotically) the local heteroscedasticity; as such, it can be
considered asymptotically ancillary with respect to the local
heteroscedasticity.
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Corollary

The representation

√
nx̄⊤n (β̂n(α)− β − e0F

−1(α)) (4)

=
1√

nf (F−1(α))

n∑

i=1

(
α− I [Ui < F−1(α)]

)
+Op(n

−1/4)

holds for any fixed 0 < α < 1, both under homoscedasticity and
local heteroscedasticity. Under the homoscedasticity, it is uniform
for 0 < α0 ≤ α ≤ 1− α0 < 1, where α0 ∈ (0, 12) is any fixed.
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From Csörgő and Révész (1978) and Theorem 1 we obtain the
approximation of Bn(α) by Brownian bridge:

Theorem 3

Assume the conditions of Theorem 1 and that for some γ > 0

sup
x

{
F (x)(1− F (x))

∣∣∣∣
f ′(x)

f 2(x)

∣∣∣∣
}

≤ γ.

Then for each n one can define a Brownian bridge
{Bn(α) : 0 ≤ α ≤ 1} so that

sup
α0≤α≤1−α0

∣∣∣
√
nx̄⊤n (β̂n(α)− β − e0F

−1(α))− Bn(α)
∣∣∣ = Op(n

−1/4)

for every fixed α0 ∈ (0, 12), as n → ∞.
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Estimation of quantile density

The quantile density function q(u) = 1
f (F−1(u))

is often used in

nonparametric statistical inference, as in the studentization,
adaptive procedures, in the sequential confidence sets, in tests
on β based on L1-regression, and elsewhere. It is a scale
statistic, being location invariant and scale equivariant. The
sum of quantile densities is again a quantile density of some
random variable. In the location model, several authors
considered the histogram estimate of q(α); e.g. Siddiqui (1960),
Bloch and Gastwirth (1968), Bofinger (1975), Lai et al. (1983),
and others. The kernel-type estimators of q(α) was studied by
Parzen (1979), Yang (1985), Falk (1986), Zelterman (1990),
Soni et al. (2012) and others. Xiang (1995) studied the kernel
estimator of the conditional quantile density function.
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The first estimates of q(α) in the linear regression model were
proposed by Koenker and Bassett (1982) and Welsh (1987a).
Welsh (1987b) used a kernel smoothing of the empirical
quantile function of residuals from some initial estimator of β.
Dodge and JJur. (1995) extended Falk’s (1986) estimator to the
linear model, assuming that x̄j =

∑n
i=1 xij = 0 for j = 1, . . . , p.

In the linear model, analogous estimators can be based on
B̄(α); they can be used e.g. in the autoregression and sequential
models. The histogram type estimate is

Hn(α) =
1

2νn
[B̄n(α+ νn)− B̄n(α− νn)]

where νn = o(n−1/3) and nνn → ∞ as n → ∞. Hn(α) is
consistent and asymptotically normal:
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Theorem 4

Under the above assumptions,

Hn(α)− q(α) = Op(nνn)
−1/2 as n → ∞,

uniformly in α ∈ (ε, 1− ε), ∀ ε ∈ (0, 1/2). Moreover, Hn(α) is
asymptotically normal for every fixed α ∈ (ε, 1− ε),

(nνn)
1/2(Hn(α)− q(α))

D→ N
(
0, 12q

2(α)
)

as n → ∞.
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The kernel estimate of q(α) is defined as follows:

κ̂n(α) =
1

ν2n

∫ 1

0
B̄n(u)k

(α− u

νn

)
du,

assuming that νn ↓ 0, nν3n ↓ 0 and nν2n → ∞ as n → ∞. The
kernel function k : R1 7→ R

1 is assumed to satisfy the following
condition:

K1: k(·) is continuous on its compact support and

∫
k(x)dx = 0,

∫
xk(x)dx = −1.

The estimator κ̂n(α) is consistent and asymptotically normal.
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Theorem 5

Let F (distribution function of U1) have continuous density f
which is positive and finite in {x : 0 < F (x) < 1}. Let F−1 be
twice differentiable with bounded second derivative in a
neighborhood of α. Then, under the conditions of Theorem 2,

κ̂n(α)− q(α) = Op((nνn))
−1/2 as n → ∞.

Moreover, κ̂n(α) is asymptotically normally distributed,

(nνn))
1/2(κ̂n(α)− q(α))

D→ N
(
0, q2(α)

∫
K 2(x)dx

)
,

where K (x) =
∫ x

−∞
k(y)dy .
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Remark

Example of kernel satisfying K1 is the Epanechnikov (1969) kernel
with

k(x) =

{
− 3

2b3
· x if −b ≤ x ≤ b

0 elsewhere.

The kernel estimate dominates the histogram for b > 6
5 , when∫

K 2(x)dx = 3
5b < 1

2 .
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Numerical illustration

Consider the linear regression model

Yi = β0 + xiβ1 + ei , i = 1, . . . , n.

Errors ei , i = 1, . . . , n, were simulated from the normal,
exponential and Cauchy distributions and x1,1, . . . , x1,n were
generated from the uniform distribution on the interval (-5,50)
for n = 20, 100, 500. The choice of β is β0 = 1 and β1 = −2.
We compare the averaged regression α-quantiles with the
location α-quantiles for α = 0.55, 0.95 and 10 000 replications
of models were simulated for each combination of the
parameters and each α. Figures 1–3 and Tables 1–2 compare
some characteristics of differences between the averaged
regression α-quantile and the location α-quantile.
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Figure 1:The median, 5%-, 95%-
quantiles in the sample of 10 000 differences between averaged regression and location

α-quantiles; normal distributions of errors; sample sizes n =20.
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Figure 2: The median, 5%-, 95%- quantiles
in the sample of 10 000 differences between averaged regression and location α-quantiles; normal distributions of

errors; sample sizes n =500.
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Figure 3: The median, 5%-,
95%- quantiles in the sample of 10 000 differences between averaged regression and location

α-quantiles; Cauchy distributions of errors; sample sizes n =500.
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n law mean stand. quantiles
dev. 0 0.05 0.25 0.5 0.75 0.95 1

20N -0.005 0.123 -0.562 -0.220 -0.064 -0.003 0.048 0.208 0.589

20E 0.023 0.101 -0.283 -0.113 -0.028 0.004 0.060 0.211 0.681

20C -0.029 0.216 -1.785 -0.368 -0.108 -0.009 0.065 0.287 0.825

100N -0.002 0.042 -0.181 -0.069 -0.022 -0.001 0.018 0.065 0.170

100E 0.005 0.033 -0.135 -0.042 -0.012 0.000 0.019 0.064 0.173

100C -0.003 0.056 -0.331 -0.099 -0.029 -0.001 0.024 0.091 0.205

500N -0.001 0.013 -0.050 -0.025 -0.008 -0.001 0.006 0.021 0.054

500E 0.001 0.010 -0.044 -0.015 -0.004 0.000 0.006 0.018 0.038

500C -0.001 0.017 -0.080 -0.032 -0.009 0.000 0.009 0.027 0.073

Table 1: Mean, standard deviation and quantiles of difference between averaged regression and location
0.55-quantiles; normal (N), exponential (E) and Cauchy (C) distributions of errors; sample sizes n =20, 100, 500,
and 10 000 replications.
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n law mean stand. quantiles
dev. 0 0.05 0.25 0.5 0.75 0.95 1

20N 0.065 0.179 -0.592 -0.215 -0.014 0.047 0.149 0.387 1.065

20E 0.123 0.269 -0.871 -0.214 -0.008 0.073 0.230 0.669 1.453

20C 0.880 2.314 -2.577 -0.378 0.024 0.260 0.875 3.899 32.680

100N 0.012 0.061 -0.281 -0.089 -0.018 0.008 0.042 0.118 0.281

100E 0.032 0.098 -0.275 -0.113 -0.019 0.021 0.078 0.196 0.579

100C 0.139 0.325 -0.629 -0.217 -0.017 0.067 0.228 0.692 3.420

500N 0.002 0.019 -0.060 -0.030 -0.008 0.003 0.013 0.034 0.085

500E 0.007 0.031 -0.123 -0.042 -0.009 0.005 0.021 0.059 0.159

500C 0.023 0.074 -0.206 -0.085 -0.015 0.013 0.057 0.152 0.401

Table 2: Mean, standard deviation and quantiles of difference between averaged regression and location

0.95-quantiles; normal (N), exponential (E) and Cauchy (C) distributions of errors; sample sizes n = 20, 100, 500

and 10 000 replications.
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Jana Jurečková and Jan Picek Averaged regression quantiles



Motivation and Introduction
Asymptotic relations

Local heteroscedasticity
Application: Estimation of quantile density

Numerical illustration
References

Falk, M. (1986). On the estimation of the quantile density
function. Statist. Probab. Lett. 4, 69–73.

C.Gutenbrunner and J. Jurečková (1992): Regression rank
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