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Introduction

Let us consider the overdetermined set of linear equations (n > p)

Y ≈ Xβ0,

where
I Y ∈ Rn×1 is vector of response (dependent variable),
I X ∈ Rn×p is matrix of predictors (independent variables) with full column rank,
I β0 ∈ Rp×1 is unknown vector of parameters (coefficients).

The aim is to
I estimate the parameter β0 and find such a linear model that describes the

structure best fitting the bulk of the data.
I find such a robust estimator, which can cope with the situation when some

predictors are not error free and data set contains outliers.

Let use the theory of mixed least squares - total least squares, robust estimation based

on trimming or on downweighting the influential points and mix it all together.
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Mixed Least Squares - Total Least Squares problem

Y ≈ Xβ, Y ∈ Rn, X ∈ Rn×p, n > p,

partition X =
[
X(1),X(2)

]
X(1) ∈ Rn×p1 , X(2) ∈ Rn×p2

βT =
[
β(1)T

, β(2)T
]

β(1) ∈ Rp1 , β(2) ∈ Rp2

and assume that the columns of X(1) are error free and p1 + p2 = p then LS-TLS
estimation is given as

β̂(LS−TLS) = min
β∈Rp,[ε,Θ]∈Rn×(p2+1)

‖[ε,Θ]‖F

subject to Y + ε = X(1)β(1) + (X(2) + Θ)β(2),

where ‖ ‖F is the Frobenius norm and rows in [ε,Θ] are i.i.d . and normal.

By varying p1 from zero to p, the mixed LS-TLS problem can handle also with any

ordinary LS or ordinary TLS problem.
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Mixed Least Squares - Total Least Squares problem

X =
[
X(1),X(2)

]
has full column rank, columns of X(1) are error free, and 0 < p1 < p.

QR factorization:

[
X(1),X(2),Y

]
= Q

[
R11 R12 RY1
0 R22 RY2

]
.

Ordinary TLS solution β̂(TLS,p−p1) of RY2 ≈ R22β gives the last p2 components of
β̂(LS−TLS).
The first p1 components are obtained from the solution of

R11β̂
(LS,p1) = RY1 − R12β̂

(TLS,p−p1).

The mixed LS-TLS solution is β̂(LS−TLS) =
[
β̂(LS,p1), β̂(TLS,p−p1)

]
.

Unfortunately this universal estimator is not robust and gives misleading results when

outliers occur.
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Total Least Trimmed Squares
Total Least Squares (TLS)
minimizes the sum of the squared orthogonal distances from the data points to the fitting
hyperplane:

β̂(TLS) = arg min
β∈Rp

1

1 + ‖β‖2

n∑
i=1

|Yi − Xiβ|2 = arg min
β∈Rp

‖Y− Xβ‖√
1 + ‖β‖2

.

The basic stable algorithm used to solve the problem is based on the SVD (see Golub
and Van Loan (1980), for generalization Van Huffel and Vandewalle (1991), Paige and
Strakoš (2006)), and Hnětynková, M. Plešinger etc. (2011)

Total Least Trimmed Squares (TLTS)
minimizes the sum of the h smallest squared orthogonal distances of data points to the
manifold given by β:

β̂(TLTS) = arg min
β∈Rp

h∑
i=1

d2
(i), dj =

∣∣∣Yj − X T
j β
∣∣∣∥∥[−1, βT
]∥∥ ,

where h is an optional parameter satisfying n
2 ≤ h ≤ n and d2

(i) is the i th least squared

orthogonal distance, i.e. for any β ∈ Rp d2
(1)

(β) ≤ d2
(2)

(β) ≤ . . . ≤ d2
(n)

(β).
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Robustified mixed LS-TLS

The idea to compute the robustified mixed LS-TLS estimation of the problem

Y ≈
[
X(1),X(2)

]
(β(1)T

, β(2)T
)T

is the same. We need to identify the influential points from both parts and trim (down-
weight) them.

Squared orthogonal distance of j th observation from the manifold represented by β(2):

dj =

∣∣∣(Yj − (X (1)
j )Tβ(LS)

)
− (X (2)

j )Tβ(TLS)
∣∣∣∥∥[−1, (β(TLS))T

]∥∥ .

Squared vertical distance of j th observation from the manifold represented by β(1):

rj =
((

Yj − (X (2)
j )Tβ(TLS)

)
− (X (1)

j )Tβ(LS)
)
.
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Mixed Least Trimmed Squares - Total Least Trimmed Squares

Let us denote by qi the sum of both distances di (orthogonal) and ri (vertical).
Mixed Least Trimmed Squares - Total Least Trimmed Squares (LTS-TLTS)
minimizes the sum of the h smallest distances qi

β̂(LTS−TLTS) = arg min
β∈Rp

h∑
i=1

q(i)(β),

where h is an optional parameter satisfying n
2 ≤ h ≤ n and q(i) is the i th least mixed

distance, i.e. for any β ∈ Rp

q(1)(β) ≤ q(2)(β) ≤ . . . ≤ q(n)(β), qj (β) = d2
j (β) + r2

j (β), j ∈ {1, 2, . . . , n}
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Mixed LWS - TLWS

Mixed Least Weighted Squares - Total Least Weighted Squares (LWS-TLWS)
minimizes the sum of the re-weighted squared distances by some weights from 〈0, 1〉.
The estimator is inspired by the Least Weighted Squares (see Víšek 2011).

β̂(LWS−TLWS,w) = arg min
β∈Rp

n∑
i=1

w
(

i−1
n

)
q(i)(β) =

= arg min
β∈Rp

n∑
i=1

w
(
π(β,i)−1

n

)
qi (β),

where π(β, i) is the random rank of the i-th residual, weights wi are defined by the

weight function w : 〈0, 1〉 → 〈0, 1〉 and satisfy certain conditions.

Computational aspects of Robustified mixed LS-TLS estimation jiri.franc@fjfi.cvut.cz 8

http://www.cvut.cz/en
http://www-en.fjfi.cvut.cz


Properties of Mixed LTS-TLTS estimator

Proven properties:
I The existence of the LTS-TLTS problem is given by the existence of the classical

LS-TLS estimation for any subsample of size h.
I TLTS is so called half-sample estimator and it has 50% breakdown points

(LTS-TLTS should be too).
I Objective function is continuous, nonconvex, non-differentiable and has multiple

local minima, whose number commonly rises with the number of observations
and unknowns.

Expected properties:
I It is supposed that the LTS-TLTS estimator is consistent, because Empirical

Mean Square Errors from simulated examples tends to zero. Theoretically it will
be hopefully proven soon.
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Properties of Mixed LTS-TLTS estimator
behavior of the estimators for large n

Plot of median squares errors Y = mediani (β̂
(j)
i −β

(j)
i )2 for varying n, m = 50. Outliers

= 25%, Trimming = 30%, Regressors without error free columns.
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Algorithms for robustified mixed LS-TLS estimation

LTS-TLTS:
I Exact algorithm based on evaluation of all

(n
h

)
computations of LS-TLS works in

practice only if the number of observations is less than 20.
I Implemented non-exhaustive exact algorithms are Branch-and-Bound algorithm

(BAB) and Borders Scanning Algorithm (BSA).
I Approximative algorithms for larger data sets (circa n>60) with more

observations and unknowns, with best ratio between achievement and price
(computation time) is FAST LTS-TLTS algorithm based on Rousseeuw and Van
Driessen resampling algorithm for LTS and k-opt algorithm.

I Another approximative algorithms are based on theory of simulating annealing
(Metropolis-Hastings algorithm) or genetics algorithms.

LWS-TLWS:
I Exhaustive algorithm for LWS-TLWS needs n! steps and is very impractical.
I For LWS-TLWS we do not have any non-exhaustive exact algorithms.
I Among approximative algorithms, the re-weighted concentration algorithm

(based on Rousseeuw algorithm) is the fastest and most accurate one.

All these algorithms were implemented in MATLAB.
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FAST LTS-TLTS algorithm
approximative algorithm

For k=1 to number of iteration do:

1. Pick randomly (p + 1) data points and compute ordinary LS-TLS estimate
β̂(LS−TLS,p+1).

2. Compute the distance qi for all n data points.

3. Select the h data points with the smallest distances.

4. Compute ordinary LS-TLS estimate β̂(LS−TLS,h) for selected h data points.

5. Repeat steps 2-4 until convergence.

6. If the value of the objective function is the smallest one among the values, that
have been reached up to this moment, store the appropriate estimation as a
LS-TLS estimate.

Properties:

I The algorithm usually finds a local minimum which is close to the global
minimum, but not necessarily equal to that global minimum.

I Hawkins and Olive (2002) showed that elemental concentration algorithms,
where the number of concentration steps is finite, are zero breakdown and
resampling estimators are zero breakdown and inconsistent.
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BSA - Borders scanning algorithm
exact algorithm

The BSA algorithm was firstly introduced for LTS by Karel Klouda in 2007 and is based
on scanning of the objective function.

The graph of optional function (red bold line) for LTS and TLTS estimation on data with n = 10 observations, p = 1
and trimming parameter h = 6.
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Borders scanning algorithm
exact algorithm

The idea of the algorithm is to find all compositions of the objective function, in given
part find the local minimum and the global minimum must be among them. We want to
find set

H =
{
β ∈ Rp | ∃i, j ∈ {1, 2, . . . n} , q(h)(β) = qi (β) = qj (β) = q(h+1)(β)

}
.

where again qj = d2
j + r2

j is the sum of the j th squared orthogonal distance dj and the
j th squared vertical distance rj and

q(1)(β) ≤ q(2)(β) ≤ . . . ≤ q(n)(β).

We are looking for a set containing such a β’s that give a hyperplanes which divide the
distance between the hth and (h + 1)th most distant points from a given hyperplane into
two halves.
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BAB - Branch and Bound algorithm
exact algorithm

The algorithm is inspired by BAB algorithm for LTS presented by José Agulló (2001)
and guarantees global optimality. The algorithm passes through the tree with h levels,
(n − h + 1) roots and

(n
h

)
terminal nodes. The tree has at the level m, where m < h,(n−h+m

m

)
number of nodes.

6

1

2222222222222222222222222222222222222222222

2222222222222222222222222222222222222222222
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3

3 3
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4

5 5 5

4 4 4

6 6 4 5 6 5 6 6 5 6 6 66

5 5 5 5

Level 1 → (  n – h + 1
   1 ) points

Level 2 → (  n – h + 2
   2 ) points

Level 3 → (  n – h  + 3
   3 ) points

Tree for n=6, h=3 Level 0 → (  n - h
   0 ) points

Tree for 6 observations and coverage equal to 3.
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BAB - Branch and Bound algorithm

1. Compute initial LTS-TLTS estimation β̂(init,n) via any fast approximative algorithm

and evaluate its objective function S(β̂(init,n)) =
h∑

i=1
q(i) and set the

S(β̂(LTS−TLTS,n)) = S(β̂(init,n)).

2. For given number of nodes at the level g, j ∈ 1 . . .
(n−h+g

g

)
we compute ordinary

LS-TLS estimate and evaluate its objective function S(β̂(LTS−TLTS,g,j)) =
g∑

i=1
qi .

3. If S(β̂(LTS−TLTS,g,j)) > S(β̂(LTS−TLTS,n)) then cut all children of given node, move
to the next node and repeat step 2.

4. If S(β̂(LTS−TLTS,g,j)) < S(β̂(LTS−TLTS,n)) and g < h then move to the child of
given node and repeat step 2.

5. If S(β̂(LTS−TLTS,g,j)) < S(β̂(LTS−TLTS,n)) and g = h then set
S(β̂(LTS−TLTS,n)) = S(β̂(LTS−TLTS,h,j)) and move to the next upper node.
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Speed and quality comparison
Median of CPU time depending on different algorithms and number of obser-
vations.
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Simulation study - comparing BSA with others algorithms

Results of simulation study of the experiment with p = 3, p1 = 2, p2 = 1, data contains
intercept, n is varying, 25% outliers, trimming level h = 0.7n. FAST operates with 1000
iterations and starting level of BAB is dh/4e, number of repetition for each n is only 5.

n times_median 1.0e+3 n_tls_comps_median EMSE 1.0e+2
FAST BSA BAB FAST BSA BAB FAST exact

15 0.0068 0.0037 0.0006 40407 5148 501 8.6300 0.2811
20 0.0070 0.0092 0.0010 41432 8442 1674 3.0361 0.1320
25 0.0080 0.0237 0.0043 47180 20214 19467 1.1849 0.6110
30 0.0084 0.0471 0.0468 49266 32382 263979 0.6026 0.2911
35 0.0103 0.0902 0.0835 59821 60876 472936 0.2579 0.1803
40 0.0092 0.1480 0.2758 52831 79434 1596996 0.3416 0.1635
45 0.0102 0.2370 4.6032 58022 116460 16330600 0.1765 0.1016

Computation was running in MATLAB on one core of Intel i5-3210M CPU.
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Simulation study - comparing BSA with others algorithms

Results of simulation study of the experiment with p = 5, p1 = 3, p2 = 2, with intercept,
varying n, 25% outliers, trimming level h = 0.7n. FAST operates with 1000 iterations
and starting level of BAB is dh/4e, number of repetition for each n is only 5.

n times_median 1.0e+4 n_tls_comps_median EMSE 1.0e+3
FAST BSA BAB FAST BSA BAB FAST exact

15 0.0006 0.0095 0.0000 32957 211596 279 3.3199 2.2971
20 0.0007 0.0404 0.0001 41741 661485 2300 0.1345 0.0714
25 0.0007 0.1781 0.0007 41339 2780778 33727 2.6977 0.0835
30 0.0009 0.4620 0.0026 49372 5367450 141243 0.2759 0.0799
35 0.0009 1.2064 0.0245 51742 12978999 1401634 1.0107 0.0382
40 0.0010 2.6130 0.0338 56216 23414160 1933190 0.8178 0.0273
45 0.0012 5.5081 0.5177 60711 45259467 29251432 0.0395 0.0196

Computation was running in MATLAB on one core of Intel i5-3210M CPU.
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Real data sets analysis

Real data sets are from Leroy (1987) and let us denote by

I "Stars" - the Hertzsprung-Russell Diagram of the Star Cluster CYG OB1.
I "Wood" - the modified Wood Gravity Data with five independent variables and

intercept.
I "Brain" - we denote Mammal brain weights data with 28 observations.

Computational time of LTS-TLTS for real data sets
Data n p h time in seconds

BSA BAB
Stars 47 2 0.8n 4.042 4.973
Wood 20 6 0.6n 235.546 0.187
Brain 28 2 0.8n 2.044 0.515
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Real data sets analysis
Estiamtion of the Hertzsprung-Russell Diagram of the Star Cluster CYG OB1
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Conclusion

From the simulations and analysis we can conclude following statements:

I Mixed LTS-TLTS is very powerful robust estimator for linear problems, where
some predictors are measured with random errors and outliers occur.

I We have several algorithms for computation of LTS-TLTS estimation.
I BSA algorithm can be used for data sets with p < 4 and n < 70, and the

computation time depends more on the number of predictors p than BAB.
I BAB algorithm can be used for data sets with n < 60 and the computation time

grows rapidly with growing number of observations.

Future work:
I Proofs of theoretically properties of LTS-TLTS.
I Parallelizing of mentioned algorithms and improved computational speed.
I Research into categorical variables.
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