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Lévy process.

@ Stochastic basis (2, A, F = (F)¢>o0, P)
@ L Lévy process (in R):
@ stacionar independent increments,
@ L(0)=0,
@ stochastically continuous.
© Especially L has cadlag version.
© Denote ALy =Ly — L.
@ Poisson measure of L: N(t,A) = #{s € [0, t]; ALs € A}.
@ Intensity jump measure of L: v(A) = EN(1, A).
@ L is Lévy process, so EN(t, A) = tv(A).
@ Compensated Poisson measure: N(t, A) = N(t, A) — tv(A)

(F-martingal).



Lévy process.

Q@ For ACR,0¢ Aand f: R4 x R — R”" borel measurable

(n € N):
/[O,t]/Af(s,x)N(ds, dx)

=) f(s,ALS)]IALseA—/ /f(s,x)dy(x)ds
[0,t] JA

0<s<t

and [ [ f(s,x)N(ds, dx) we obtain by approximation.
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@ We especially suppose L to be a-stable square integrable
martingal, o € (0, 2). So

o
L :/ /xN(ds, dx), teR,
[0,t] /R

@ v has the density

(e 00,00)(X) + -V~ oc,0)) x|~

where ¢, ,c_ > 0.
(3]

a=ElL = [ [xPdv(x)
R
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[too formula

O Let X; =Xo+ [y F(s)ds+ [, G
F e L1oc(Q x R, R"), G e L2 "’C(Q xRy, R, F,G
progresive (denote F € L;IOC(R+,R"), G e ]Léloc(RJr,R")),
Q@ f € C3(R").
© Then
FX) = F00) + [ EOG)F(s)ds

0.]

/[o t]/ (Xs_ + G(s)x) — F(Xs_)) N(ds, dx)

" /[O,t] /R(f(Xs_ + G(s)x) — f(Xs_) — G(s)xf(Xs_))dv(x)ds.
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o
dXt = (AXt_ + BUt)dt + O'tdl_t, (1)

where
© UecLY(R,, Rk
@ A c R™" satisfying

e < Moe™", (2)

where n € N, My, w > 0, for each t > 0,
©® B is n x k matrix,
QO oc ]Lz,/OC(RJr’Rn)

@ It is possible to verify that this equation has a unique solution
X € LZ°(R,).
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© Suppose U; = K X;_, K; to be a random k x n matrix, t > 0,
K uniformly bounded on R a.s.

@ The controlled SDE (1) takes the form
dXt = (A + BKt)Xt_ dt + Utst. (3)

© It is possible to prove the existence of the unique solution
X e IL2}-[0, T] for all T > 0 and by splicing we obtain the

. 2,loc
solution on L2 (R )
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°
i
5, T):/ ((QXe, Xs) + (RUs, Us))ds, T >0,  (4)
0

where

@ Q € R"™" symmetric positive definite,
® R € RF*k regular symmetric positive definite.
g Y p

@ Let P be the solution of the so called stationary Riccati
equation

PA+ATP+ Q- PBRBTP=0. (5)

® Note that P is the limit of the solutions on [0, T] of
P.+PA+ATP, + Q- P.BR!BTP, =0 (6)

for t — oo.



Main result

Suppose that
o
(PXt, Xt)

; —0, t— o0, a.s., (7)

@ let there exists ¢; > 0 such that
(1]

t
PXs_, Xs_)d
lim supM <qg as., (8)
t—o00 t

Jy (PXs_, X, )ds
t

lim sup <c as., (9)
t—o0
© inthecaseof a =1 let as.

. JS(PXs_, Xs_) log(PXs_, Xs_)ds
lim sup

t—00 t

=0.  (10)



Main result

Suppose that
o

lim Ky = ko= —-RBTP as., (11)
t—o0

Q let there exists

f0t<Pas, os)ds

t—o00 t

< 00 (12)

(which equals (Po, o) in the case of constant o)
Then
t
lim J(U 1) = P,q, a.s. (13)

t—00 t
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@ Using Itdo formula and (6) we obtain

(PXe, Xe) — (PXo, Xo)
t

JU.8) | Jo JalPos os)lxPdv(x)ds
t
fot<(k0 — Ks)Xs, P(ko — Ks)Xs)ds
t
fOt<PXS_ ) Xs_ >dl-s
+ " )
@ We can send last part to zero a.s. using our assumptions, the

changing time representations and the strong law of large
numbers for Lévy processes.

© We can prove that assuming (11) the third part tends to zero
a.s..

© Assuming (7), the left side tends to zero a.s. also.
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