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Lévy process.

1 Stochastic basis (Ω,A,F = (Ft)t≥0,P)

2 L Lévy process (in R):

1 stacionar independent increments,
2 L(0) = 0,
3 stochastically continuous.

3 Especially L has cádlág version.
4 Denote ∆Lt = Lt − Lt−.
5 Poisson measure of L: N(t,A) = #{s ∈ [0, t]; ∆Ls ∈ A}.
6 Intensity jump measure of L: ν(A) = EN(1,A).
7 L is Lévy process, so EN(t,A) = tν(A).
8 Compensated Poisson measure: Ñ(t,A) = N(t,A)− tν(A)

(F-martingal).
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(F-martingal).



Lévy process.

1 Stochastic basis (Ω,A,F = (Ft)t≥0,P)
2 L Lévy process (in R):

1 stacionar independent increments,
2 L(0) = 0,
3 stochastically continuous.

3 Especially L has cádlág version.
4 Denote ∆Lt = Lt − Lt−.
5 Poisson measure of L: N(t,A) = #{s ∈ [0, t]; ∆Ls ∈ A}.
6 Intensity jump measure of L: ν(A) = EN(1,A).

7 L is Lévy process, so EN(t,A) = tν(A).
8 Compensated Poisson measure: Ñ(t,A) = N(t,A)− tν(A)
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Lévy process.

1 For A ⊂ R, 0 /∈ Ā and f : R+ × R→ Rn borel measurable
(n ∈ N): ∫

[0,t]

∫
A

f (s, x)Ñ(ds, dx)

=
∑
0≤s≤t

f (s,∆Ls)I∆Ls∈A −
∫

[0,t]

∫
A

f (s, x)dν(x)ds

and
∫ t
0

∫
R f (s, x)Ñ(ds, dx) we obtain by approximation.



Lévy process.

1 We especially suppose L to be α-stable square integrable
martingal, α ∈ (0, 2). So

1

Lt =

∫
[0,t]

∫
R

xÑ(ds, dx), t ∈ R+

2 ν has the density(
c+I(0,∞)(x) + c−I(−∞,0)

)
|x |−α−1

where c+, c− ≥ 0.
3

q = E|L1|2 =

∫
R
|x |2dν(x)



Lévy process.

1 We especially suppose L to be α-stable square integrable
martingal, α ∈ (0, 2). So
1

Lt =

∫
[0,t]

∫
R
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Itôo formula

1 Let Xt = X0 +
∫ t
0 F (s)ds +

∫ t
0 G (s)dLs ,

F ∈ L1,loc(Ω× R+,Rn), G ∈ L2,loc(Ω× R+,Rn), F ,G
progresive (denote F ∈ L1,locF (R+,Rn), G ∈ L2,locF (R+,Rn)),

2 f ∈ C2(Rn).
3 Then

f (Xt) = f (X0) +

∫
[0,t]

fx(Xs)F (s)ds

+

∫
[0,t]

∫
R

(f (Xs− + G (s)x)− f (Xs−))Ñ(ds, dx)

+

∫
[0,t]

∫
R

(f (Xs− + G (s)x)− f (Xs−)−G (s)xfx(Xs−))dν(x)ds.
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Controlled SDE

1

dXt = (AXt− + BUt)dt + σtdLt , (1)

where

1 U ∈ L2,locF (R+,Rk×n)
2 A ∈ Rn×n satisfying

|etA| ≤ M0e−ωt , (2)

where n ∈ N, M0, ω > 0, for each t ≥ 0,
3 B is n × k matrix,
4 σ ∈ L2,loc(R+,Rn)

2 It is possible to verify that this equation has a unique solution
X ∈ L2,locF (R+).
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Controlled SDE

1 Suppose Ut = KtXt− , Kt to be a random k × n matrix, t > 0,
K uniformly bounded on R+ a.s.

2 The controlled SDE (1) takes the form

dXt = (A + BKt)Xt−dt + σtdLt . (3)

3 It is possible to prove the existence of the unique solution
X ∈ L2F [0,T ] for all T > 0 and by splicing we obtain the
solution on L2,locF (R+)
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Cost functional

1

J(U,T ) =

∫ T
0

(〈QXs ,Xs〉+ 〈RUs ,Us〉)ds, T > 0, (4)

where

1 Q ∈ Rn×n symmetric positive definite,
2 R ∈ Rk×k regular symmetric positive definite.

2 Let P be the solution of the so called stationary Riccati
equation

PA + ATP + Q − PBR−1BTP = 0. (5)

1 Note that P is the limit of the solutions on [0,T ] of

Ṗt + PtA + ATPt + Q − PtBR−1BTPt = 0 (6)

for t →∞.
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Ṗt + PtA + ATPt + Q − PtBR−1BTPt = 0 (6)

for t →∞.



Cost functional

1

J(U,T ) =

∫ T
0

(〈QXs ,Xs〉+ 〈RUs ,Us〉)ds, T > 0, (4)

where
1 Q ∈ Rn×n symmetric positive definite,
2 R ∈ Rk×k regular symmetric positive definite.

2 Let P be the solution of the so called stationary Riccati
equation

PA + ATP + Q − PBR−1BTP = 0. (5)

1 Note that P is the limit of the solutions on [0,T ] of
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Main result

Suppose that
1

〈PXt ,Xt〉
t

→ 0, t →∞, a.s., (7)

2 let there exists c1 > 0 such that
1

lim
t→∞

sup

∫ t
0 〈PXs− ,Xs−〉ds

t
≤ c1 a.s., (8)

2

lim
t→∞

sup

∫ t
0 〈PXs− ,Xs−〉αds

t
≤ c1 a.s., (9)

3 in the case of α = 1 let a.s.

lim
t→∞

sup

∫ t
0 〈PXs− ,Xs−〉 log〈PXs− ,Xs−〉ds

t
= 0. (10)



Main result

Suppose that
1

lim
t→∞

Kt = k0 = −R−1BTP a.s., (11)

2 let there exists

Pσ = lim
t→∞

∫ t
0 〈Pσs , σs〉ds

t
<∞ (12)

(which equals 〈Pσ, σ〉 in the case of constant σ)

Then

lim
t→∞

J(U, t)

t
= Pσq, a.s. (13)



Proof

1 Using Itôo formula and (6) we obtain

〈PXt ,Xt〉 − 〈PX0,X0〉
t

= −J(U, t)

t
+

∫ t
0

∫
R〈Pσs , σs〉|x |

2dν(x)ds
t

−
∫ t
0 〈(k0 − Ks)Xs ,P(k0 − Ks)Xs〉ds

t

+

∫ t
0 〈PXs− ,Xs−〉dLs

t
.

2 We can send last part to zero a.s. using our assumptions, the
changing time representations and the strong law of large
numbers for Lévy processes.

3 We can prove that assuming (11) the third part tends to zero
a.s..

4 Assuming (7), the left side tends to zero a.s. also.



Proof

1 Using Itôo formula and (6) we obtain

〈PXt ,Xt〉 − 〈PX0,X0〉
t

= −J(U, t)

t
+

∫ t
0

∫
R〈Pσs , σs〉|x |

2dν(x)ds
t

−
∫ t
0 〈(k0 − Ks)Xs ,P(k0 − Ks)Xs〉ds

t

+

∫ t
0 〈PXs− ,Xs−〉dLs

t
.

2 We can send last part to zero a.s. using our assumptions, the
changing time representations and the strong law of large
numbers for Lévy processes.

3 We can prove that assuming (11) the third part tends to zero
a.s..

4 Assuming (7), the left side tends to zero a.s. also.



Proof

1 Using Itôo formula and (6) we obtain

〈PXt ,Xt〉 − 〈PX0,X0〉
t

= −J(U, t)

t
+

∫ t
0

∫
R〈Pσs , σs〉|x |

2dν(x)ds
t

−
∫ t
0 〈(k0 − Ks)Xs ,P(k0 − Ks)Xs〉ds

t

+

∫ t
0 〈PXs− ,Xs−〉dLs

t
.

2 We can send last part to zero a.s. using our assumptions, the
changing time representations and the strong law of large
numbers for Lévy processes.

3 We can prove that assuming (11) the third part tends to zero
a.s..

4 Assuming (7), the left side tends to zero a.s. also.



Proof

1 Using Itôo formula and (6) we obtain

〈PXt ,Xt〉 − 〈PX0,X0〉
t

= −J(U, t)

t
+

∫ t
0

∫
R〈Pσs , σs〉|x |

2dν(x)ds
t

−
∫ t
0 〈(k0 − Ks)Xs ,P(k0 − Ks)Xs〉ds

t

+

∫ t
0 〈PXs− ,Xs−〉dLs

t
.

2 We can send last part to zero a.s. using our assumptions, the
changing time representations and the strong law of large
numbers for Lévy processes.

3 We can prove that assuming (11) the third part tends to zero
a.s..

4 Assuming (7), the left side tends to zero a.s. also.



References.

[1] Applebaum D. (2004): Lévy Processes and Stochastic
calcullus. Cambridge University Press, Cambridge.

[2] Bertoin J. (1996): Lévy Processes. Cambridge University
Press, Cambridge.

[3] Kallenberg O.: Some time change representations of stable
integrals, via predictable transformations of local martingales.
Stochastic Processes and their Applications North-Holland,
40, 199–223 1992.

[4] Peszat S., Zabczyk J.: Stochastic Partial Differential
Equations Driven by Lévy Processes. Cambridge University
Press, Cambridge, 2006.

[5] Tang H., Wu Z.: Stochastic differential equations and
stochastic linear quadratic optimal control problem with Lévy
process. Jrl Syst Sci & Complexity, 22, 122–136, 2009.



Thank you.


