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Introduction and Motivating Examples

There exists a considerable debate about the applicability of limit
theorems in probability theory because in practice one deals only
with finite samples. Consequently, in the real-world, because one
never deals with infinite samples, one can never know whether the
underlying distribution is heavy tailed, or just has a long but
truncated tail. Limit theorems are not robust with respect to
truncation of the tail or with respect to any change from “light” to
“heavy"” tail, or vice versa. An approach to classical limit theorems
that overcomes this problem is the “pre-limiting” approach. The
advantage of this approach is that it does not rely on the tails of
the distribution, but instead on the “central section” (or “body")
of a distribution. Therefore, instead of a limiting behavior when
the number n of identical and independently distributed (i.i.d.)
observations tends to infinity, a pre-limit theorem provides an
approximation for distribution functions when n is “large” but not
too “large.” The pre-limiting approach that we discuss in this
chapter is more realistic for practical applications than classical
central limit theorems.



Two Motivating examples

To motivate the use of the pre-limiting approach, we provide two
examples.

Example 1: Pareto-Stable Laws More than 100 years ago Vilfredo
Pareto observed that the number of people in the population whose
income exceeds a given level x can be satisfactorily approximated
by Cx~¢ for some C > 0 and a > 0. About 60 years later, Benoit
Mandelbrot (1959, 1960) argued that stable laws should provide a
more appropriate model for income distributions. After examining
some income data, Mandelbrot made the following two claims:

1. The distribution of the size of income for different (but
sufficiently long) time periods must be of the same type. In
other words, the distribution of income follows a stable law
(Lévy's stable law).

2. The tails of the Gaussian law are too thin to describe the
distribution of income in typical situations.



It is known that the variance of any non-Gaussian stable law is
infinite, thus an essential condition for a non-Gaussian stable limit
distribution for sums of random incomes is that the summands
have “heavy” tails in the sense that the variance of the summands
must be infinite. On the other hand, it is obvious that incomes are
always bounded random variables (in view of the finiteness of all
available money in the world, and the existence of a smallest
monetary unit). Even if we assume that the support of the income
distribution is infinite, there exists a considerable amount of
empirical evidence that shows that income distributions have
Pareto tails with index o between 3 and 4, so the variance is finite.
Thus, in practice the underlying distribution cannot be heavy
tailed. Does this mean that we have to reject the Pareto-stable
model?



Example 2. Exponential decay.
One of the most popular examples of exponential distributions is
the random time for radioactive decay. The exponential
distribution is in the domain of attraction of the Gaussian law. It
has been shown in quantum physics that the radioactive decay may
not be exactly exponentially distributed (See Khalfin (1958),
Wintner (1961), and Petrovsky and Prigogine (1997)).
Experimental evidence supported that conclusion (see Wilkinson et
al., (1997)) But then one faces the following paradox. Let p(t) be
the probability density that a physical system is in the initial state
at moment t > 0. It is known that p(t) = |f(t)|, where

F(t) = /0 ~ W(E) exp(iEt)dE,

and w(E) > 0 is the density of the energy of the disintegrating
physical system. For a broad class of physical systems, we have

A
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(see Zolotarev (1983a) and the references therein), where A is a
normalizing constant, and E, and I are the mode and the measure
of dissipation of the system energy (with respect to E,). For
typical nonstable physical systems, the ratio '/ E, is very small (of
order 10715 or smaller). Therefore, the quantity
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by a very small value (of magnitude 1071%). That is, p(t) = |f(t)|?
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the classical exponential distribution as a model for decay.



On the other hand, it is equally easy to find the asymptotic
representation of f(t) as t — oo. Namely,
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Therefore, p(t) belongs to the domain of attraction of a stable law
with index o = 1. Thus, if T;,j > 1 are i.i.d. random variables
describing the times of decay of a physical system, then the sum
\% > i=1(Tj = c)) does not tend to a Gaussian distribution for any
centering constant ¢ (as we would expect under exponential
decay), but diverges to infinity. Does this mean that the
exponential approximation cannot be used anymore?

The two examples illustrate that the model based on the limiting
distribution leads to an “ill-posed” problem in the sense that a
small perturbation of the tail of the underlying distribution changes
significantly the limit behavior of the normalized sum of random
variables.



We can see the same problem in a more general situation. Given
i.i.d. random variables Xj,j > 1, the limiting behavior of the
normalized partial sums S, = n_l/a(Xl + ...+ X,) depends on the
tail behavior of X. Both, the proper normalization n=1/® and the
corresponding limiting law are extremely sensitive to a tail
truncation. In this sense, the problem of limiting distributions for
sums of i.i.d. random variables is ill-posed. In the next section, we
propose a “well-posed” version of this problem and provide a
solution in the form of a pre-limit theorem.



Principle idea

Here is the main idea. Suppose for simplicity that X1, Xo,..., X,
are i.i.d. symmetric random variables whose distribution tail is
heavy, but the "main body" looks to be similar to that of the
Gaussian distribution. It seems natural to suppose that the
behavior of the normalized sum

1 n
Si=—=3"X
W;X

will be as following. For small values of n, it will be more or less
arbitrary, and for growing values of n up to some number N, it
becomes closer and closer to the Gaussian distribution (the tail
does not play too essential a role). After the moment N, the
distribution of S, deviates from the Gaussian (the role of the tail is
now essential).



Let us illustrate this graphically. Suppose that X1, X, ..., X, are
i.i.d. random variables with density function

p(x) = (1 - &)a(xV2) +es(x).

Here g(x) = exp(—|x|)/2 and s(x) = 1/(7(1 + x2)) are the
Laplacian and the Cauchy densities, respectively. Choose ¢ = 0.01.
In panels a through e of Figure 1.1 we show the plot of the density
of the sum

1 n
Si=—=3"X
W;X

(the solid line) versus one of the density of the standard Gaussian
distribution (the dashed line).
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Figure: Density of a sum with different n versus Gaussian density



For n =5 (panel a), we see that the densities are not too close to
each other. When n = 10 (panel b), the two densities become
closer to each other compared to when n = 5. They are almost
identical when n =25 (panel c). However, the two densities are
not as close when n = 50 (panel d) and when n = 100 (panel e).
Thus we see that the optimal N is about 25.

A very similar result is realized when the comparison is to a stable
distribution. Suppose that X1, Xo,..., X, are i.i.d. random
variables with density function

p(x) = (1 — £)a(2x) + es(x).

Here q(x) is a density with ch.f. (1 + |t|)~2, which belongs to a
region of attraction of the Cauchy distribution and s(x) is the
density of the standard Gaussian distribution. We choose ¢ = 0.03.



In panels a and b of Figure 1.2 we show the plot of the density of
the normalized sum ,
1
J:

(the dashed line) versus one of the density of the Cauchy
distribution (the solid line).

Panel a in the figure shows the two densities when n = 5. As can
be seen, the densities are not too close to each other. However, as
can be seen in panel b, the two densities become much closer to
each other when n =50
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Figure: Density of a sum for various n (solid line) versus Cauchy density

(dashed line)



Let ¢ and  be two positive constants, and consider the following
semi-distance between random variables X and Y:

der(X, ¥) = sup X = (D]

2
| >c £ 02)

Here and in what follows Fx and fx stand for the cumulative
distribution function (c.d.f.) and the characteristic function (ch.f.)
of X, respectively.



Observe that in the case ¢ = 0, dc (X, Y) defines a well-known
probability distance in the space of all random variables for which
do~ (X, Y) is finite. Next, recall that Y is a strictly a-stable
random variable. If for every positive integer n

Vit tYa

d
= U =
n nl/a ’

Y, (0.3)

where £ stands for equality in distribution and the Yj's, j > 1, are
i.i.d. copies of Y.



Let X, Xj,j > 1, be a sequence of i.i.d. random variables such that
do(X,Y) is finite for some strictly stable random variable Y.
Suppose that Y}, j > 1, are i.i.d. copies of Y and v > . Then

d077(5n7 Y) = doﬁ(sna Un)

[t/ n'/*) — Fp(t/n'/®)|

= su
: [t
|fx(t/n"*) — fy(t/n/*)] 1
S nSL:p ‘t”y - n,y/a_]_ do,'V(X7 Y)

From this we can see that dp ,(Sh, Y) tends to zero as n tends to
infinity; that is, we have convergence (in dp) of the normalized
sums of X to a strictly a-stable random variable Y provided that
do~(X,Y) < co. However, any truncation of the tail of the
distribution of X leads to dg (X, Y) = oc.



Our goal is to analyze the closeness of the sum S, to a strictly
a-stable random variable Y without the assumption about the
finiteness of dp (X, Y), restricting our assumptions to bounds in
terms of dc (X, Y) with ¢ > 0. In this way, we can formulate a
general type of a central pre-limit theorem with no assumption on
the tail behavior of the underlying random variables. We shall
illustrate our theorem providing answers to the problems addressed
in Examples 1 and 2 in Section 1



Central Pre-Limit Theorem

In our Central Pre-Limit Theorem we shall analyze the closeness of
the sum S, to a strictly a-stable random variable Y in terms of the
following Kolmogorov metric, defined for any c.d.f.'s F and G as
follows:

kn(F, G) := sup |F x h(x) — G * h(x)|.

x€R

Here, * stands for convolution, and the “smoothing” function h(x)
is a fixed c.d.f. with a bounded continuous density function,
sup, |h'(x)| < c(h) < co. The metric kj, metrizes the weak
convergence in the space of c.d.f.'s. We have the following
pre-limit theorem.



Theorem (Central Pre-Limit Theorem)

Let X, Xj,j > 1, be i.i.d. random variables and

Sy, =n"la Z}’Zl Xj. Suppose that Y is a strictly a-stable random
variable. Let v > o and A > § be arbitrary given positive
constants and let n < (§)* be an arbitrary positive integer. Then

1

X.Y)(2a)Y
ko(Fs,. Fy) < inf (szd‘“(; )(2a) +2C(h)+2A-a>.
a>0 Noa ™~ ¥ a



If A — 0 and A/6 — oo, then n can be chosen large
enough so that the right-hand-side of the above bound is
sufficiently small, and we obtain the classical limit theorem
for weak convergence to an a-stable law. This result, of
course, includes the central limit theorem for weak
distance.

The c.d.f. of a normalized sum of i.i.d. random variables is close to
the corresponding a-stable c.d.f. for “mid-size values” of n. We
also see that for these values of n, the closeness of S, to a strictly
a-stable random variable depends on the “middle part” (“body")
of the distribution of X.



Remark Consider our example of radioactive decay and
apply Theorem 0.1 to the centralized time moments,
denoted by X;. If Y is Gaussian, v =3, a =2, A =107,
§ = 10739, then for n < 10%° the following inequality holds:

kn(Fs,, Fy) <

cho-03(X, Y)(2a)3
< inf (@ 10 03(X, ¥)(23) +2C(h)+2-1o—10a).
a>0 3\/5 d

Here, dyg-33(X,Y) <1 in view of the fact that

A2
|fX(t) - fY(t)‘ ~ mt, ast — 0

o



Thus, we obtain a rather good normal approximation of
Fs (x) for “not too large” values of n (n < 10%). If
c(h) <1 and n is of order 10%°, then ky(Fs,, Fy) is of
order 107°.



Sums of a Random Number of Random Variables

Limit theorems for random sums of random variables have been
studied by many specialists in such fields as probability theory,
queueing theory, survival analysis, and financial econometric theory.
We briefly recall the standard model: suppose X, X;,j > 1, are
i.i.d. random variables and let {v,, p € A C (0,1)} be a family of
positive integer-valued random variables independent of the
sequence of X's. Suppose that {v,} is such that there exists a
v-strictly stable random variable Y, that is

Vp

VLR,
j=1

where Y, Y}, j > 1, are i.i.d. random variables independent of v,
and Ev, =1/p.



Bunge (1996) and Klebanov and Rachev (1996) independently
obtained general conditions guaranteeing the existence of
analogues of strictly stable distributions for sums of a random
number of i.i.d. random variables. For this type of a random
summation model, we can derive an analogue of Theorem 0.1.



Theorem

Let X, X;, j > 1, be i.i.d. random variables. Let S, =

pt/e ijil X;. Suppose that Y is a strictly v-stable random
variable Let v > «, and A > § be arbitrary given positive
constants, and let p > (%)O‘ be an arbitrary positive number from
(0,1). Then the following inequality holds:

ds- (X, Y)(2a)" h
kh(F:g ,Ff/) < inf p%_lv 27 5;\/( ’ )( 3) +2C( ) +2Aa .
P a>0 Y a



Local Pre-Limit Theorems and Their Applications to
Finance

Now we formulate our “pre-limit” analogue of the classical local
limit theorem.

Theorem (Local Pre-Limit Theorem)

Let X, X;,j > 1, be i.i.d. random variables having a bounded
density function with respect to the Lebesgue measure, and

S, =n"1/a Z}’Zl Xj. Suppose that Y is a strictly a-stable random
variable. Lety > a, A >§ >0 and n(5)® be a positive integer

not greater than (%)a. Then

17

ds~(X, Y)(2a)7*1 h
kn(ps,, py) < inf | V271 52(X, Y)(22) +2C( )+2c(h)Aa )
>0 na=(y+1) a

where ps, and py are the density functions of S, and Y,
respectively.



Thus, the density function of the normalized sums of i.i.d. random
variables is close in smoothed Kolmogorov distance to the
corresponding density of an a-stable distribution for “mid-size
values” of n.

The corresponding local pre-limit result for the sums of random
number of random variables has the following form.

Theorem (Local Pre-Limit Theorem for Random Sums)

Let X, X;,j > 1, be i.i.d. random variables having bounded density
function with respect to the Lebesgue measure. Let

e Z}’;l X;. Suppose that Yisa strictly v-stable random
variable. Lety >, and A > § >0, and 7 € [(§),1). Then the
following inequality holds:

ds~ (X, Y)(2a)"
kn(pz . py) < inf (rl—lx/zn 5,(X, ¥)(22) +2C(h) +2A~a> .
T a>0 Y a



Remark Consider now our first example in Section 1
concerning Pareto-stable laws. Following the Mandelbrot
(1960) model for asset returns, we view a daily asset
return as a sum of a random number of tick-by-tick returns
observed during the trading day. We can assume that the
total number of tick-by-tick returns during the trading day
has a geometric distribution with a large expected value.
In fact, the limiting distribution for geometric sums of
random variables (when the expected value of the total
number tends to infinity) is geo-stable. Then, according to
Theorem 1.4 from Klebanov, Rachev, Kozubowskii (2006),
the density function of daily returns is approximately
geo-stable (in fact, it is v-stable with a geometrically
distributed v ).



Pre-Limit Theorem for Extremums

Let Xi1,...,X,,... be a sequence of non-negative i.i.d. random
variables having the c.d.f. F(x).
Denote

Xl;n = min(Xl, e ,Xn).

It is well-known that if F(x) ~ ax® as x — 0, then F,(x) (c.d.f. of
nt/%X1.,) tends to the c.d.f. G(x) of the Weibull law, where

Glx) = 1—e > for x>0,
0, for x <0.

The situation here is almost the same as in the limit theorem for
sums of random variables. It is obvious that the index « cannot be
defined using empirical data on c.d.f. F(x), and therefore, the
problem of finding the limit distribution G is ill-posed. Here we
propose the pre-limit version of the corresponding limit theorem.



As an analogue of d. ., we introduce another semi-distance
between random variables X, Y

9

F, —F
e (X, Y) = sup X = v ()
x>c X7

where Fx and Fy are c.d.f.'s of random variables X, Y > 0.
Theorem
Let X;, j > 1, be non-negative i.i.d. random variables and
Xi:n = min(Xq, ..., X,). Suppose that Y is a random variable
having the Weibull distribution

1—e " f >0
Glx) = e , for x )
0, for x <0.

Let v > o and A > § be arbitrary given positive constants, and
n < (%)0‘ be an arbitrary positive integer. Then

A7

sup |Fn(x)—G(x)| < inf <2e_aAa +2(1- e_aAa) + T_1H5:’Y(F7 G)
naoa

x>0 A>A

).



A little more rough estimator under the conditions of Theorem 1.5
and A < 1 has the form

1 1 o
sup |[Fn(x) — G(x)| < <2 + 7(Iog)zc> en+2(1— e 28 ),
x>0 da €n

where 1
En = T_].K(S,»Y(F, G)
na

To get this inequality, it is sufficient to calculate instead the
1

.. . _ 1 1 e
minimum the corresponding value for A = (5 log 5) .



Relations with Robustness of Statistical Estimators

Let X, X1,..., X, be a random sample from a population having
cd.f. F(x,0), 8 € © (which we shall call “the model” here). For
simplicity, we shall further assume that F(x,0) is a c.d.f. of
Gaussian law with § mean and unit variance, so that

F(x,0) = ®(x — 0) where ®(x) is c.d.f. of standard normal law.
One uses the observations Xi, ..., X, to construct an estimator

0* = 0*(X1,...,X,) of the O-parameter.

The main point in the theory of robust estimation is that any
proposed estimator should be insensitive (or weakly sensitive) to
slight changes of the underlying model; that is, it should be robust.



For mathematical formalization of this, we have to clarify two
notions. The first one is the idea of how to express the notation of
“slight changes of underlying model” in quantitative form. And the
second is the idea of the measurement of the quality of an
estimator.

The most popular definition of the changes of the model in the
theory of robust estimation is the following contamination scheme.
Instead of the normal c.d.f. ®(x), is considered

G(x) = (1 — &)®(x) + eH(x), where H(x) is an arbitrary
symmetric c.d.f.. Of course, for small values of £ > 0, the family
G(x — 0) is close to the family ®(x — 0).



Sometimes the closeness of the families of c.d.f.'s is considered in
terms of uniform distance between corresponding c.d.f.'s, or in
terms of Lévy distance. As to the measurement of the quality of
an estimator, then it is an asymptotic variance of the estimator.

It is a well known fact that the minimum variance estimator for the
parameter 6 in a “pure” model x = % }’:1 xj is non-robust.

From our point of view, it is mostly connected not with the
presence of contamination, but with the use of asymptotic variance

as a loss function. For not too large n, we can apply Theorem 0.1.



It is easy to see that
€
dey(P(x—0),G(x—0)) < 2C—7.
Suppose that zi,..., z, is a sample from the population with c.d.f.
G(x —0), and let uj = (z; — 0), j=1,...,n. Denote

1 & _
Sn:ﬁ;uj:\/ﬁ(z—e).

For any h(x) with a continuous density function, sup, |h'(x)| <1,
we have

2a)7 1
kn(Fs,, ®) < 2inf (27— (Wa) +-+A-a).
a>0 oY ni_lfy a

Here v > 2, n < (%)2, and A > § > 0 are arbitrary. It is not easy
to find the infimum over all positive values of a. Therefore, we set
a= A2 to minimize the sum of the two last terms. Also we
propose to find A = &€ and § = £ to have A/2§ =¢¥/7. And,
finally, we choose v to maximize the degree c.



The corresponding value is

2
:2 —
v=253

and therefore

V2727 1 Ve
- V3
kh(an, (D) <2 < 5 nl/\/é + 2e12+V6 , (04)
for all .
n< e 1247v6
Here
\V2m2Y
T2~ 6.269467557,
v
V6

1
— > ———— 220.08404082058 > .
117 12++6 12



Now we see that (for very small €) the properties of z as an
estimator of 6 do not depend on the tails of contaminating c.d.f.
H for not too large values of the sample size. Therefore, the
traditional estimator for the location parameter of the Gaussian
law is robust for a properly defined loss function. Note that the
estimator of “stability” does not depend on whether c.d.f. H(x) is
symmetric or not, though the assumption of symmetry is essential
when the loss function coincides with asymptotic variance.



Of course, we can obtain a corresponding estimator for both Lévy
and uniform distances, but the order of “stability” will be worse.
For example, the Lévy distance estimator has the form

g V30
L(Fs,, ®) <2 var2 1 | 3TV
v pV/3/10
for all o
n<eg 60+13v30
where
v30

We shall not provide here the estimator for uniform distance.



One possible objection is that the order of “stability” in our
inequality is very bad. On the one hand, our estimators are not
precise. On the other hand, it is related to the “improper” choice
of the distance between the distributions under consideration. It
would be better to use d., as a measure of closeness of the
corresponding model and real c.d.f.'s. If

do ~(P(x — 6), G(x — 0)) <,

and c(h) <1, then

(0.5)

2 1
+ 2
n

kn(Fs,. ) < 4 <2F )

1 . . . . . .
for all n < =, which is superior to previous inequality.



Probably, the estimator of stability is better for other type of
distances. We can support this position with numerical examples.
Namely, let X1, Xo, ..., X, be i.i.d. random variables distributed as
a mixture of the standard Gaussian distribution (with weight 1 — ¢)
and Cauchy distribution (weight ). The uniform distance between
distribution F(x, n,¢) of the normalized sum

1 n
Sn=—7=>_X;

for e = 0.01, n = 50 and the standard Gaussian distribution is
approximately 0.014. For € = 0.02, n = 50, this distance is about
0.027.
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Figure: Plots of distributions of normalized sums

Figure 3 provides graphs of F(x,n,e) — 0.5 for n =50 and ¢ =0
(solid line), € = 0.01 (dashed line, short intervals), and e = 0.02
(dashed line, long intervals).



We propose the use of models that are close to each other in terms
of weak distances. Therefore, we cannot use such loss functions
like the quadratic one because the risk of one estimator can
become infinite. Therefore, we have to discuss possible choices for
the losses. This is a major separate problem in statistics, and we
refer the reader to Kakosyan, Klebanov, and Melamed (1984b).



Statistical Estimation for Non-Smooth Densities

Now we shall consider some relations between pre-limit theorems
for extremums and statistical estimation for non-smooth densities.
A typical example here is a problem of estimation of the scale
parameter for a uniform distribution. Let us describe it in more
detail.

Suppose that Ui, ..., U, are i.i.d. random variables uniformly
distributed over interval (0,6). Based on the data, we have to
estimate the parameter 6 > 0. It is known that the statistic

Up:n = max{Us, ..., Up}

is the best equivariant estimator for 6. Moreover, the distribution
of n(6 — Up.n) tends to exponential law as n tends to infinity. In
other words, the speed of convergence of U, to the parameter 6
is % But it is known that the speed of convergence of a statistical
estimator to the “true” value of the parameter is ﬁ in the case
where there is a smooth density function of the observations. More
detailed formulations may be found in Ibragimov and Khasminskii

(1979).



Our point here is that it is inpossible to verify based on empirical
observations whether a density function has a discontinuity point
or not. On the other hand, any c.d.f. having a density with a point
of discontinuity can be approximated (arbitrary closely) by a c.d.f.
having continuous density. But the speed of convergence for
corresponding statistical estimators differs essentially (1/n for the
jump case, and 1/4/n in the continuous case). This means that
the problem of asymptotic estimation is ill-posed, and we have a
situation that is very similar to that of summation of random
variables.



Let's now Xi,..., X, be a sample from a population with c.d.f.
F(x/0), 8 > 0 (F(+0) = 0). Consider X,., as an estimator for 6,

and introduce
=X

0 )
It is obvious that Z;., = %. Therefore, we can apply the
pre-limit theorem for minimums to study the closeness of the
distribution of the normalized estimator to the limit exponential
distribution for the pre-limit case.

Z; j=1...,n



We have
]Pg{Zj < x}= IP(;{XJ- >(1-x)0} =1—- F(1-x),

and we see that the c.d.f. of Z; does not depend on 6. Let us
denote by F, the c.d.f. of Z;. Denote by F, c.d.f. of nZy,,, and by
G - c.d.f. of the exponential law G(x) =1 — exp{—x} for x > 0.
From Theorem for minimums in the case of & = 1, we obtain

: —A -A AT
sgp |Fn(x)—G(x)| < Alng 27+ 2(1—e %)+ Wﬁlgﬂ(Fz, G)

(0.6)
for all n < %.



Consider an example, when the c.d.f. of observations has the form
F(x) = x for 0 < x < a, where a is a fixed positive number, and
F(x) is arbitrary for x > a. In this case, it is easy to verify that

Ka2 < 5

Choosing in (0.6) 6 = a, A = }logl,/a, and A= Jlogl, we
obtain that

1
sup |Fn(x) — G(x)| < Valog =
X a
log 1 C .
for all n < % (553. In other words, the distribution of normalized
estimator remains close to the exponential distribution for not too
large values of the sample size, although F does not belong to the
attraction domain of this distribution.




Let us now give some results of numerical simulations. We
simulated m = 50 samples of the size n = 1000 from two
populations. The first one is uniform on (0,1), and the second has
the following distribution function

0, for x <0,
F( ) X, for <x < 1—5,
X,€) =
l—ﬁ(l—x)‘r’/“, for 1—e<x<1,
]-a for X > 1

with € = 0.005. So, we had i.i.d. random variables Yij
i=1,...,n j=1,...,m with uniform (0,1) distribution, and
i.i.d. X;; with distribution F(x,e). Denote V; = max; Y;; and
Uj = max; X,"J'.



0.005 |- .
0.004 -
® o ]
0.003 |- ‘
[ ]

0.002] ( 1 ‘ ' ]
0.001 ‘ .. ?. . . '—
o %0 & 0 MO oty

00 02 04 06 08 10

Figure: Simulated points (j/m,1— V;)

In Figure 4 the simulated points (j/m,1 — V) are shown. The
values 1 — V; are identical to those of the difference between the
true value of the scale parameter and the value of the estimator for
the “true” model.
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Figure: Simulated points (j/m,1 — U;)

In Figure 5 the simulated points (j/m, 1 — U;) are shown. The
values 1 — U; are identical to those of the difference between true
value of the scale parameter and the value of the estimator for
“perturbed” model. Comparing Figures 5 and 4 we can see that
the simulated results are very similar.



We can also compare empirical distributions. We simulated

m = 5000 samples of the size n = 200 each from the same
populations as before. Now we consider normalized values of the
differences between true value of the parameter and its statistical
estimators: n(1 — V;) for the “pure” model, and n(1 — U;) for the
“perturbed” model. Averaging over all m = 5000 samples, we find
empirical distributions of the estimator in both models.
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Figure: Graphs of distribution functions of the normalized estimators



Figure 6 shows the graphs of distributions of the normalized
estimator for the “pure” (solid line) and for the “perturbed”
models (dashed line). Of course, the agreement is rather good.



Thank yoou for your attention



