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Let T > 0 be a finite time horizon
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Let 7' > 0 be a finite time horizon and (X;)ic[o7| be a
controlled It6 diffusion process in R™ given by the SDE

dX¢ = b(t, Xt,ut)dt + U(t,Xt,Ut)th, Vt € (O,T] (1)
Xo =,
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State variable

Let 7' > 0 be a finite time horizon and (X¢)c(o,7) be a
controlled It6 diffusion process in R™ given by the SDE

dX; = b(t,Xt,ut)dt—i—cT(t,Xt,ut)th, vVt € (O,T]
Xo ==,

where u(-) € Uyq is U-valued control process (U C R¥),
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State variable

Let 7' > 0 be a finite time horizon and (X¢)c(o,7) be a
controlled It6 diffusion process in R™ given by the SDE

dX; = b(t,Xt,ut)dt—i— O'(t,Xt,ut)th, vVt € (O,T]
Xo ==,

where u(-) € Uyq is U-valued control process (U C R¥),
U,q is a set of admissible controls.
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State variable

Let 7' > 0 be a finite time horizon and (X¢)c(o,7) be a
controlled It6 diffusion process in R™ given by the SDE

dX; = b(t,Xt,ut)dt—i— O'(t,Xt,ut)th, vVt € (O,T] (1)
Xo ==,

where u(-) € Uyq is U-valued control process (U C R¥),
U,q is a set of admissible controls.

b and o are some "nice enough”functions ensuring existence of
the solution to (1) for all u(-) € Uyg.
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State variable

Let 7' > 0 be a finite time horizon and (X¢)c(o,7) be a
controlled It6 diffusion process in R™ given by the SDE

dX; = b(t,Xt,ut)dt—i— O'(t,Xt,ut)th, vVt € (O,T] (1)
Xo ==,

where u(-) € Uyq is U-valued control process (U C R¥),
U,q is a set of admissible controls.

b and o are some "nice enough”functions ensuring existence of
the solution to (1) for all u(-) € Uyg.

W is a standard Wiener process on <Q, F, (]:t)te[o,T] ,IP’), with

(Ft)sepo,r being his completed canonical filtration. h /\
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Further, define for each admissible u(-) the functional

J(u(-)) = E[/OT 0(t, Xy, up)dt + h(XT)}, (2)



Further, define for each admissible u(-) the functional

J(u(-)) = E[/OT 0(t, Xy, up)dt + h(XT)}, (2)

where, again, £ and h are two ”appropriate” functions.



Control problem Maximum principle Near-optimalit;

Cost function

Further, define for each admissible u(-) the functional

T
J(u() —E[/O Ut Xy ur)dt + h(X7)]

where, again, £ and h are two ”appropriate” functions.
Define the cost function V' by

V= inf J(u(-)).
ot (u(-))

Petr Veverka Near-optimal control of FBSDEJ

< -



Control problem Maximum principle Near-optimalit;

Cost function

Further, define for each admissible u(-) the functional

T
J(u() = B / 0t X, ue)dt + h(X7)|, (2)

where, again, £ and h are two ”appropriate” functions.
Define the cost function V' by

V= nf ) 3

Usually, the goal is to find such a strategy u*(-) € Uyq so that

V =Jw*()).
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Cost function

Further, define for each admissible u(-) the functional

T
J(u() = B / 0t X, ue)dt + h(X7)|, (2)

where, again, £ and h are two ”appropriate” functions.
Define the cost function V' by

V= nf ) 3

Usually, the goal is to find such a strategy u*(-) € Uyq so that
V =Ju*(")).

We call w*(-) optimal control to control problem (1)-(3). A

S
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Now, define the Hamiltonian of the problem by

H(t,x,u,y,2) =b(t,x,u)y + Tr(a’(t, x, u)z) —L(t,z,u).
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Hamiltonian function

Now, define the Hamiltonian of the problem by
H(t,x,u,y,2) =b'(t, z,u)y + Tr(o'(t, x, u)z) —U(t,x,u).

Note that the Hamiltonian can be viewed as generalized
Lagrange function for constrained optimization.
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Hamiltonian function

Now, define the Hamiltonian of the problem by
H(t,x,u,y,2) =b'(t, z,u)y + Tr(o'(t, x, u)z) —U(t,x,u).

Note that the Hamiltonian can be viewed as generalized
Lagrange function for constrained optimization.

Roughly speaking, the idea of maximum principle is that the
optimal control is a maximal point of the Hamiltonian in some
sense.
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Hamiltonian function

Now, define the Hamiltonian of the problem by

H(t,r,u,y,z) =b(t,r,u)y + Tr(o'(t, x, u)z) —U(t,x,u).
Note that the Hamiltonian can be viewed as generalized
Lagrange function for constrained optimization.

Roughly speaking, the idea of maximum principle is that the
optimal control is a maximal point of the Hamiltonian in some
sense.

This will help to reduce the infinite dimensional optimization
problem to finite dimensional one.
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Assume further that H and h are differentiable in z and
consider the following Backward SDE



Assume further that H and h are differentiable in z and
consider the following Backward SDE

—dY; = Vo H(t, Xo,us, Ve, Zy)dt — Z,dWy, Yt €[0,T)
Yy = =V h(X7). (4)
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Adjoint BSDE

Assume further that H and h are differentiable in z and
consider the following Backward SDE

— dY% = VIH(t, Xt,ut,Y;g,Zt)dt— thWt, YVt € [O,T)
Yi = —V,h(Xr).

Here, the equation is ”"backward”in time (due to the terminal
condition —V h(X7))
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Adjoint BSDE

Assume further that H and h are differentiable in z and
consider the following Backward SDE

— dY% = VIH(t, Xt,ut,Y;g,Zt)dt— thWt, YVt € [O,T)
Yi = —V,h(Xr).

Here, the equation is ”"backward”in time (due to the terminal

condition —V;h(X7)) and
the solution is a couple (Y7, Zt)te[o,T]
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Adjoint BSDE

Assume further that H and h are differentiable in z and
consider the following Backward SDE

— dY% = VIH(t, Xt,ut,Y;g,Zt)dt— thWt, YVt € [O,T)
Yi = —V,h(Xr).

Here, the equation is ”"backward”in time (due to the terminal
condition —V;h(X7)) and

the solution is a couple (Y3, Z),c(0, ) and these are the
(stochastic) Lagrange multipliers.
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The necessary maximum principle says (for b, o, ¢, h "nice
enough”):
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Necessary Maximum principle, Peng 1990, Zhou 1991

The necessary maximum principle says (for b, o, ¢, h "nice
enough”):

Theorem (Necessary Maximum principle)

Let U be convex, H differentiable in u. Then for every control
u*(+) optimal to problem (1)-(3) there is a couple (Y*,Z*)
solving BSDE (4) such that
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Necessary Maximum principle, Peng 1990, Zhou 1991

The necessary maximum principle says (for b, o, ¢, h "nice
enough”):

Theorem (Necessary Maximum principle)

Let U be convex, H differentiable in u. Then for every control
u*(+) optimal to problem (1)-(3) there is a couple (Y*,Z*)
solving BSDE (4) such that

(VuH)' (6 X7, ui, Yy Z7) (u = up) <0, (5)
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Necessary Maximum principle, Peng 1990, Zhou 1991

The necessary maximum principle says (for b, o, ¢, h "nice
enough”):

Theorem (Necessary Maximum principle)

Let U be convex, H differentiable in u. Then for every control
u*(+) optimal to problem (1)-(3) there is a couple (Y*,Z*)
solving BSDE (4) such that

(VoH)' (8, X7, uf, Yy, Z7) (u —up) <0, (5)

holds for allu e U, P® dt — a.e.
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Necessary Maximum principle, Peng 1990, Zhou 1991

The necessary maximum principle says (for b, o, ¢, h "nice
enough”):

Theorem (Necessary Maximum principle)

Let U be convex, H differentiable in u. Then for every control
u*(+) optimal to problem (1)-(3) there is a couple (Y*,Z*)
solving BSDE (4) such that

(VoH)' (8, X7, uf, Yy, Z7) (u —up) <0, (5)

holds for allu e U, P® dt — a.e.

In other words, u; maximizes the function H (¢, X, -, Y, Z})
over U. )
2 A °
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Sufficient Maximum principle, Peng 1990, Zhou 1991

Theorem (Sufficient Maximum principle)

Conversely, if the variational inequality

(Vo HY (t,Xt,ﬁt,f/;, Zt) (u—1) <0, Yu € U, Pdt—a.e., (6)
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Sufficient Maximum principle, Peng 1990, Zhou 1991

Theorem (Sufficient Maximum principle)

Conversely, if the variational inequality
(Vo HY (t,Xt,ﬂt,f/;, Zt) (u—1) <0, Yu € U, Pdt—a.e., (6)

holds for some admissible u(-) where (X, Y, Z) are the

associated forward and backward processes,

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality

Sufficient Maximum principle, Peng 1990, Zhou 1991

Theorem (Sufficient Maximum principle)

Conversely, if the variational inequality
(Vo HY (t,Xt,ﬁt,f/;, Zt) (u—1) <0, Yu € U, Pdt—a.e., (6)

holds for some admissible u(-) where (X, Y, Z) are the
associated forward and backward processes, H (t, o Y, Zt) 18

concave and h(-) is convex
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Sufficient Maximum principle, Peng 1990, Zhou 1991

Theorem (Sufficient Maximum principle)

Conversely, if the variational inequality
(Vo HY (t,Xt,ﬁt,f/;, Zt) (u—1) <0, Yu € U, Pdt—a.e., (6)

holds for some admissible u(-) where (X, Y, Z) are the
associated forward and backward processes, H (t, o Y, Zt) 18

concave and h(-) is convez then u(-) is optimal control strategy
to control problem (1)-(3).
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Idea of the derivation of the variational inequality (5) when U is
convex:
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Necessary Maximum principle: idea

Idea of the derivation of the variational inequality (5) when U is
convex:

For an optimal control v*(-) and some fixed u € U define
perturbed controls u”(-) = u*(-) + p(u — u*(-)), p € (0,1).
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Necessary Maximum principle: idea

Idea of the derivation of the variational inequality (5) when U is
convex:

For an optimal control v*(-) and some fixed u € U define
perturbed controls u”(-) = u*(-) + p(u — u*(-)), p € (0,1).

Then by optimality of u*(-) we have that

0 < J(W’()) = J(u(-)
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Necessary Maximum principle: idea

Idea of the derivation of the variational inequality (5) when U is
convex:

For an optimal control v*(-) and some fixed u € U define
perturbed controls u”(-) = u*(-) + p(u — u*(-)), p € (0,1).

Then by optimality of u*(-) we have that

—_

0 < J(ul() = J(u"() & 0 < —(J(u"(-)) — J(u"(-))),

hs
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Necessary Maximum principle: idea

Idea of the derivation of the variational inequality (5) when U is
convex:

For an optimal control v*(-) and some fixed u € U define
perturbed controls u”(-) = u*(-) + p(u — u*(-)), p € (0,1).

Then by optimality of u*(-) we have that

—_

0 < J(ul() = J(u"() & 0 < —(J(u"(-)) — J(u"(-))),

hs

and send p — 0.
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Necessary Maximum principle: idea

Idea of the derivation of the variational inequality (5) when U is
convex:

For an optimal control v*(-) and some fixed u € U define
perturbed controls u”(-) = u*(-) + p(u — u*(-)), p € (0,1).

Then by optimality of u*(-) we have that

—_

0 < J(ul() = J(u"() & 0 < —(J(u"(-)) — J(u"(-))),

hs

and send p — 04. The variational inequality is obtained by
expanding the difference on the r.h.s.
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e For a given £ > 0, an admissible control u°(-) is called
e-optimal if
J(u(:)) =V <e.

\
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e For a given £ > 0, an admissible control u°(-) is called
e-optimal if
J(u(:)) =V <e.

o A family of admissible controls {u®(-)}.., parameterized
by € > 0 is called near-optimal if

J(W () -V <0(),

A\
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e For a given £ > 0, an admissible control u°(-) is called
e-optimal if
J W () -V <e.

o A family of admissible controls {u®(-)}.., parameterized
by € > 0 is called near-optimal if
J (W () =V <0(e),

holds for sufficiently small ¢ and O(:) is a function of &
satisfying lim. o, O (¢) = 0.

A\
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e For a given £ > 0, an admissible control u°(-) is called
e-optimal if
J W () -V <e.

o A family of admissible controls {u®(-)}.., parameterized
by € > 0 is called near-optimal if
J (W () =V <0(e),

holds for sufficiently small ¢ and O(:) is a function of &
satisfying lim. o, O (¢) = 0.

o If O (¢) = Ce? for some A > 0 independent of the constant
C then u*(-) is called near-optimal control of order \.

A\
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Necessary near-optimal maximum principle, Zhou 1998

Theorem

Let U be convex, H differentiable in wu.

< -
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Necessary near-optimal maximum principle, Zhou 1998

Theorem

Let U be convexr, H differentiable in u. Then for any X € [0, %)
there exists a constant C = C(\) > 0 such that for any e > 0
and any e—optimal control u®(-) it holds that

< -
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Necessary near-optimal maximum principle, Zhou 1998

Theorem

Let U be convexr, H differentiable in u. Then for any X € [0, %)
there exists a constant C = C(\) > 0 such that for any e > 0
and any e—optimal control u®(-) it holds that

T
IE/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —Ce™,
0

< -
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Necessary near-optimal maximum principle, Zhou 1998

Theorem

Let U be convexr, H differentiable in u. Then for any X € [0, %)
there exists a constant C = C(\) > 0 such that for any e > 0
and any e—optimal control u®(-) it holds that

T
IE/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —Ce™,
0

holds for all w € U.

< -
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Necessary near-optimal maximum principle, Zhou 1998

Theorem

Let U be convexr, H differentiable in u. Then for any X € [0, %)
there exists a constant C = C(\) > 0 such that for any e > 0
and any e—optimal control u®(-) it holds that

T
IE/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —Ce™,
0

holds for all w € U.

In other words, u°(-) near-maximizes the function
H (t,X7,-, Y7, Z5) over U in an integral sense with order Ce?.
‘v‘w 7
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Sufficient near-optimal maximum principle, Zhou 1998

Theorem

Conversely, if the variational inequality

T
E/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —e¢,
0

< -
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Sufficient near-optimal maximum principle, Zhou 1998

Theorem

Conversely, if the variational inequality
T
E/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —e¢,
0

holds for any € > 0 and some admissible family (u®(-))e>0,

< -
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Sufficient near-optimal maximum principle, Zhou 1998

Theorem

Conversely, if the variational inequality
T
E/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —e¢,
0

holds for any € > 0 and some admissible family (u®(-))e>0,
H(t,-,-, Y7, Z;) is concave and h(-) is convex

< -

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimalit}

Sufficient near-optimal maximum principle, Zhou 1998

Theorem

Conversely, if the variational inequality
T
E/ (VoH) (t, X5, us, YE, Z5) (u — uf) dt > —e¢,
0

holds for any € > 0 and some admissible family (u®(-))e>0,
H(t,-,-,YF, Z5) is concave and h(-) is convex then (uc(-))e>0 is
near-optimal control of order

1
3
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What is on the poster?

On the poster, a result by M.Hafayed, P.V. and S.Abbas is
presented. We consider the state equation of the form

d(t) = f (t,z(t), u(t)) dt + o (t, 2(t), u(t)) dW (t)
+ Jo e (t,x(t-),u(t),0) N (df, dt),

—dy(t) = [g 9t :n(t) y(t), 2(t),re (0) ( ) p(dO) dt — z(t)dW (t)
= Jore ()N (do,dt); x(0) =, y(T) = ¢ (x(T)),

with the functional to be minimized

T ) = B[] o € (s (t),y(t), 2(0) 72 (6) ult)) p (d6) e
T h (D) £ )], /;A-
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Let U be convex, H differentiable in u.

< -
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Let U be convez, H differentiable in u. Then for any X € [0, 1)
there exists a positive constant C = C (A, u(©),T) such that for
any € > 0 and any e—optimal control u(-) it holds that

< -
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Let U be convez, H differentiable in u. Then for any X € [0, 1)
there exists a positive constant C = C (A, u(©),T) such that for
any € > 0 and any e—optimal control u(-) it holds that

T
E/O (VuH) (6, A5 () uf (), U5 () ) (u — us(t))dt > —Ce™,
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Let U be convez, H differentiable in u. Then for any X € [0, 1)
there exists a positive constant C = C (A, u(©),T) such that for
any € > 0 and any e—optimal control u(-) it holds that

T
E/O (VuH) (6, A5 () uf (), U5 () ) (u — us(t))dt > —Ce™,

holds for allu € U.
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Let U be convez, H differentiable in u. Then for any X € [0, 1)
there exists a positive constant C = C (A, u(©),T) such that for
any € > 0 and any e—optimal control u(-) it holds that

T
E/o (VuH)' (8, A7 (), u(8), U5 () (u — u(1))dt > ~Ce?,

holds for all w € U.

Here, H is the Hamiltonian of the problem,

A5 (0) = (2(2), 57 (), 25(2), 75 (0)) and

Us (0) = (p,q;, k5, Ri (0)) are the solutions to state and adjoint
equations respectively, corresponding to u®(-). / \//\

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality

What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Conversely, if the variational inequality

T
E/o (VuH) (A7 (), w(8), 95 () ) (u —us(t))dt > ~Ce?,

< -
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Conversely, if the variational inequality
i
E/ (Vo H) (t, A (1), us(t), g () )(u —uf(t))dt > —Ce?,
0

holds for any € > 0 and some admissible family (u®(-))e>0,

< -
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Conversely, if the variational inequality
i
E/ (Vo H) (t, A (1), us(t), g () )(u —uf(t))dt > —Ce?,
0

holds for any € > 0 and some admissible family (u®(-))e>0,
H(t,-,-, ¥ () is concave and h(-),~(:) are convex
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Conversely, if the variational inequality
i
E/ (Vo H) (t, A (1), us(t), g () )(u —uf(t))dt > —Ce?,
0

holds for any € > 0 and some admissible family (u®(-))e>0,
H(t,-,-, 95 () is concave and h(-),~(:) are convex then
(u®(+))e>0 is near-optimal control of order .
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Thank you for your attention.
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