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Control problem Maximum principle Near-optimality FBSDE

State variable

Let T > 0 be a finite time horizon

and (Xt)t∈[0,T ] be a
controlled Itô diffusion process in Rn given by the SDE

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt, ∀t ∈ (0, T ] (1)

X0 = x,

where u(·) ∈ Uad is U -valued control process (U ⊂ Rk),
Uad is a set of admissible controls.

b and σ are some ”nice enough”functions ensuring existence of
the solution to (1) for all u(·) ∈ Uad.
W is a standard Wiener process on

(
Ω,F , (Ft)t∈[0,T ] ,P

)
, with

(Ft)t∈[0,T ] being his completed canonical filtration.
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controlled Itô diffusion process in Rn given by the SDE

dXt = b(t,Xt, ut)dt+ σ(t,Xt, ut)dWt, ∀t ∈ (0, T ] (1)

X0 = x,

where u(·) ∈ Uad is U -valued control process (U ⊂ Rk),
Uad is a set of admissible controls.

b and σ are some ”nice enough”functions ensuring existence of
the solution to (1) for all u(·) ∈ Uad.
W is a standard Wiener process on

(
Ω,F , (Ft)t∈[0,T ] ,P

)
, with

(Ft)t∈[0,T ] being his completed canonical filtration.

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality FBSDE

Cost function

Further, define for each admissible u(·) the functional

J(u(·)) = E
[ ∫ T

0
`(t,Xt, ut)dt+ h(XT )

]
, (2)

where, again, ` and h are two ”appropriate”functions.
Define the cost function V by

V = inf
u(·)∈Uad

J(u(·)). (3)

Usually, the goal is to find such a strategy u∗(·) ∈ Uad so that

V = J(u∗(·)).

We call u∗(·) optimal control to control problem (1)-(3).

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality FBSDE

Cost function

Further, define for each admissible u(·) the functional

J(u(·)) = E
[ ∫ T

0
`(t,Xt, ut)dt+ h(XT )

]
, (2)

where, again, ` and h are two ”appropriate”functions.

Define the cost function V by

V = inf
u(·)∈Uad

J(u(·)). (3)

Usually, the goal is to find such a strategy u∗(·) ∈ Uad so that

V = J(u∗(·)).

We call u∗(·) optimal control to control problem (1)-(3).

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality FBSDE

Cost function

Further, define for each admissible u(·) the functional

J(u(·)) = E
[ ∫ T

0
`(t,Xt, ut)dt+ h(XT )

]
, (2)

where, again, ` and h are two ”appropriate”functions.
Define the cost function V by

V = inf
u(·)∈Uad

J(u(·)). (3)

Usually, the goal is to find such a strategy u∗(·) ∈ Uad so that

V = J(u∗(·)).

We call u∗(·) optimal control to control problem (1)-(3).

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality FBSDE

Cost function

Further, define for each admissible u(·) the functional

J(u(·)) = E
[ ∫ T

0
`(t,Xt, ut)dt+ h(XT )

]
, (2)

where, again, ` and h are two ”appropriate”functions.
Define the cost function V by

V = inf
u(·)∈Uad

J(u(·)). (3)

Usually, the goal is to find such a strategy u∗(·) ∈ Uad so that

V = J(u∗(·)).

We call u∗(·) optimal control to control problem (1)-(3).

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality FBSDE

Cost function

Further, define for each admissible u(·) the functional

J(u(·)) = E
[ ∫ T

0
`(t,Xt, ut)dt+ h(XT )

]
, (2)

where, again, ` and h are two ”appropriate”functions.
Define the cost function V by

V = inf
u(·)∈Uad

J(u(·)). (3)

Usually, the goal is to find such a strategy u∗(·) ∈ Uad so that

V = J(u∗(·)).

We call u∗(·) optimal control to control problem (1)-(3).

Petr Veverka Near-optimal control of FBSDEJ



Control problem Maximum principle Near-optimality FBSDE

Hamiltonian function

Now, define the Hamiltonian of the problem by

H(t, x, u, y, z) = b′(t, x, u)y + Tr
(
σ′(t, x, u)z

)
− `(t, x, u).

Note that the Hamiltonian can be viewed as generalized
Lagrange function for constrained optimization.

Roughly speaking, the idea of maximum principle is that the
optimal control is a maximal point of the Hamiltonian in some
sense.

This will help to reduce the infinite dimensional optimization
problem to finite dimensional one.
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Adjoint BSDE

Assume further that H and h are differentiable in x and
consider the following Backward SDE

− dYt = ∇xH(t,Xt, ut, Yt, Zt)dt− ZtdWt, ∀t ∈ [0, T )

YT = −∇xh(XT ). (4)

Here, the equation is ”backward”in time (due to the terminal
condition −∇xh(XT )) and
the solution is a couple (Yt, Zt)t∈[0,T ] and these are the
(stochastic) Lagrange multipliers.
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Necessary Maximum principle, Peng 1990, Zhou 1991

The necessary maximum principle says (for b, σ, `, h ”nice
enough”):

Theorem (Necessary Maximum principle)

Let U be convex, H differentiable in u. Then for every control
u∗(·) optimal to problem (1)-(3) there is a couple (Y ∗, Z∗)
solving BSDE (4) such that

(∇uH)′ (t,X∗t , u
∗
t , Y

∗
t , Z

∗
t ) (u− u∗t ) ≤ 0, (5)

holds for all u ∈ U , P⊗ dt− a.e.

In other words, u∗t maximizes the function H (t,X∗t , ·, Y ∗t , Z∗t )
over U .
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Sufficient Maximum principle, Peng 1990, Zhou 1991

Theorem (Sufficient Maximum principle)

Conversely, if the variational inequality

(∇uH)′
(
t, X̂t, ût, Ŷt, Ẑt

)
(u− ût) ≤ 0, ∀u ∈ U,P⊗dt−a.e., (6)

holds for some admissible û(·) where (X̂, Ŷ , Ẑ) are the

associated forward and backward processes, H
(
t, ·, ·, Ŷt, Ẑt

)
is

concave and h(·) is convex then û(·) is optimal control strategy
to control problem (1)-(3).
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Necessary Maximum principle: idea

Idea of the derivation of the variational inequality (5) when U is
convex:

For an optimal control u∗(·) and some fixed u ∈ U define
perturbed controls uρ(·) ≡ u∗(·) + ρ(u− u∗(·)), ρ ∈ (0, 1).

Then by optimality of u∗(·) we have that

0 ≤ J(uρ(·))− J(u∗(·))⇔ 0 ≤ 1

ρ

(
J(uρ(·))− J(u∗(·))

)
,

and send ρ→ 0+. The variational inequality is obtained by
expanding the difference on the r.h.s.
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Definition

For a given ε > 0, an admissible control uε(·) is called
ε-optimal if

J (uε(·))− V ≤ ε.

A family of admissible controls {uε(·)}ε>0 parameterized
by ε > 0 is called near-optimal if

J (uε(·))− V ≤ O (ε) ,

holds for sufficiently small ε and O(·) is a function of ε
satisfying limε→0+ O (ε) = 0.

If O (ε) = Cελ for some λ > 0 independent of the constant
C then uε(·) is called near-optimal control of order λ.
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satisfying limε→0+ O (ε) = 0.

If O (ε) = Cελ for some λ > 0 independent of the constant
C then uε(·) is called near-optimal control of order λ.
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Necessary near-optimal maximum principle, Zhou 1998

Theorem

Let U be convex, H differentiable in u.

Then for any λ ∈ [0, 1
3)

there exists a constant C = C(λ) > 0 such that for any ε > 0
and any ε−optimal control uε(·) it holds that

E
∫ T

0
(∇uH)′ (t,Xε

t , u
ε
t , Y

ε
t , Z

ε
t ) (u− uεt ) dt ≥ −Cελ,

holds for all u ∈ U .

In other words, uε(·) near-maximizes the function
H (t,Xε

t , ·, Y ε
t , Z

ε
t ) over U in an integral sense with order Cελ.
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Sufficient near-optimal maximum principle, Zhou 1998

Theorem

Conversely, if the variational inequality

E
∫ T

0
(∇uH)′ (t,Xε

t , u
ε
t , Y

ε
t , Z

ε
t ) (u− uεt ) dt ≥ −ε,

holds for any ε > 0 and some admissible family (uε(·))ε>0,
H (t, ·, ·, Y ε

t , Z
ε
t ) is concave and h(·) is convex then (uε(·))ε>0 is

near-optimal control of order 1
2 .
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What is on the poster?

On the poster, a result by M.Hafayed, P.V. and S.Abbas is
presented. We consider the state equation of the form



dx(t) = f (t, x(t), u(t)) dt+ σ (t, x(t), u(t)) dW (t)

+
∫

Θ c (t, x(t−), u(t), θ) Ñ (dθ, dt) ,

−dy(t) =
∫

Θ g (t, x(t), y(t), z(t), rt (θ) , u(t))µ (dθ) dt− z(t)dW (t)

−
∫

Θ rt (θ) Ñ (dθ, dt) ; x(0) = ζ, y(T ) = φ (x(T )) ,

with the functional to be minimized

J (u(·)) = E
[∫ T

0

∫
Θ ` (t, x(t), y(t), z(t), rt (θ) , u(t))µ (dθ) dt

+ h (x(T )) + γ (y(0))
]
.
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What is on the poster?

Theorem (Hafayed, Veverka, Abbas, 2014)

Let U be convex, H differentiable in u.

Then for any λ ∈ [0, 1
2)

there exists a positive constant C = C (λ, µ(Θ), T ) such that for
any ε > 0 and any ε−optimal control uε(·) it holds that

E
∫ T

0
(∇uH)′

(
t,Λεt (·) , uε(t),Ψε

t (·)
)
(u− uε(t))dt ≥ −Cελ,

holds for all u ∈ U .

Here, H is the Hamiltonian of the problem,
Λεt (θ) = (xε(t), yε(t), zε(t), rεt (θ)) and
Ψε
t (θ) = (pεt , q

ε
t , k

ε
t , R

ε
t (θ)) are the solutions to state and adjoint

equations respectively, corresponding to uε(·).
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t (·)) is concave and h(·), γ(·) are convex then
(uε(·))ε>0 is near-optimal control of order λ.
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That’s the end, my friend...

Thank you for your attention.
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