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Yi = X ′i β
0 + εi =

∑p
j=1 Xijβ

0
j + εi , i = 1,2, ...,n

Y = Xβ0 + ε
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Crucial task

Identification of regression model

β̂(n) (Y ,X ) → Rp,

but we need also σ̂2
(n) (Y ,X ) → R+

→ to be able to establish significance of explanatory variables,

usually we have σ̂2
(n)

(
Y ,X , β̂(n)

)
→ R+.
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Returning to the roots

First of all, let’s recall the classical estimators

1 the (Ordinary) Least Squares β̂(OLS,n)

and

2 the Maximum Likelihood β̂(ML,n)
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Returning to the roots

How have we developed the estimation of regression model ?
What key steps do we teach in introductory courses ?

1 Deriving β̂(OLS,n), β̂(ML,n) and σ̂2
(OLS,n),

2 establishing the significance of β̂(OLS,n)
` ,

3 evaluating the determination of model,

4 stressing the importance of normality of disturbances,

5 testing the submodels, etc.
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Returning to the roots

How have we built up accompanynig tools ?

1 Testing normality of disturbances (Jarque-Bera, normal plot),

2 deriving an indication of collinearity (index number, Farrar-Glauber),

3 establishing the correlation of disturbances (Durbin-Watson),
4 testing the homoscedasticity (White, Breuch-Pagan),

5 verifying the specification of model (Hausman),

6 studying the stability of model (Chow),

7 testing character of effects (Hausman-Taylor), etc.
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A comparison of classical and robust regression analysis

Have we done an analogy in robust regression ?

NO !

We are in a permanent pursuit for new and new estimators,
new and new principles, new and new point of view.

What about to select one flexible robust estimator and for it to develop
the same diagnostics, we are used to for β̂(OLS,n) or β̂(ML,n)?

But which one?
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Returning to the roots

Let’s recall the clasical estimators once again.

What features of estimators we are (“automatically”) used to ?
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Equivariance of β̂(n)

β̂(Y ,X ) : M(n,p + 1)→ Rp

scale-equivariant : ∀c ∈ R+ β̂(cY ,X ) = cβ̂(Y ,X )

regression-equivariant : ∀b ∈ Rp β̂(Y + Xb,X ) = β̂(Y ,X ) + b

Examples : β̂(OLS,n) = (X ′X )
−1 X ′Y , β̂(L1,n) = arg min

β∈Rp

∑n
i=1 |Yi − X ′i β|,

e. g.
we don’t need recalculate estimate when we change (linearly) the units of data.

Unfortunately, the most popular robust estimators, the M-estimators

β̂(M,ρ,n) = arg min
β∈Rp

n∑
i=1

ρ
(
Yi − X ′i β

)
don’t possess this property. They require studentization of residuals!!
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Bickel, P. J. (1975): One-step Huber estimates in the linear model.
J. Amer. Statist. Assoc. 70, 428–433.

To reach scale- and regression-equivariance of an M-estimator, say

β̂(M,ρ,n) = arg min
β∈Rp

n∑
i=1

ρ

(
Yi − X ′i β
σ̂(n)

)

σ̂(n) has to be scale-equivariant and regression-invariant.
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Estimators of scale of disturbances which are sufficiently robust,
consistent, scale-equivariant and regression-invariant:

Jurečková, J., P. K. Sen (1993): Regression rank scores scale statistics and
studentization in linear models. Proc. of the Fifth Prague Symposium

on Asymptotic Statistics, Physica Verlag, 111-121.

Croux C., P. J. Rousseeuw (1992):
A class of high-breakdown scale estimators based on subranges.

Communications in Statistics - Theory and Methods 21, 1935 - 1951.

Víšek, J. Á. (2010): Robust error-term-scale estimate.
IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference

and Time Series Analysis: Festschrift for Jana Jurečková, Vol. 7(2010), 254 - 267.
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Estimators of scale of disturbances which are sufficiently robust,
consistent, scale-equivariant and regression-invariant:

Jurečková, J., P. K. Sen (1993): Regression rank scores scale statistics and
studentization in linear models. Proc. of the Fifth Prague Symposium

on Asymptotic Statistics, Physica Verlag, 111-121.

Croux C., P. J. Rousseeuw (1992):
A class of high-breakdown scale estimators based on subranges.

Communications in Statistics - Theory and Methods 21, 1935 - 1951.

Víšek, J. Á. (2010): Robust error-term-scale estimate.
IMS Collections. Nonparametrics and Robustness in Modern Statistical Inference

and Time Series Analysis: Festschrift for Jana Jurečková, Vol. 7(2010), 254 - 267.

The common feature of all these estimators -

they are based on (residuals of) a preliminary estimate of regression model

which is already scale- and regression-equivariant.
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Preliminary conclusion

We should prefer (robust) estimators
which are “automatically” scale- and regression-equivarint.

β̂(LMS,n,h) = arg min
β∈Rp

r2
(h)(β)

Rousseeuw, P. J. (1984): Least median of square regression.
Journal of Amer. Statist. Association 79, pp. 871-880.

β̂(LTS,n,h) = arg min
β∈Rp

h∑
i=1

r2
(i)(β)

Hampel, F. R. et al. (1986): Robust Statistics – The Approach Based
on Influence Functions. New York: J.Wiley & Son.
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SENSITIVITY OF ANY HIGH-BREAKDOWN-POINT ESTIMATOR

TO A SMALL CHANGE OF DATA

AN (ACADEMIC) EXPLANATION BY A SHIFT OF “INLIER”
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Model for the majority of data
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We are going to shift up this green circle “ o ”.
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Again model for the majority of data
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In both cases the model is for the majority of data
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Notice: The closer the green circle (“ o ”) is to the y -axe,
the smaller shift causes the “switch” of the model.
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IT WAS THE (ACADEMIC) EXAMPLE - THERE ARE REAL DATA

HETTMANSPERGER, T. P., S. J. SHEATHER (1992):
A CAUTIONARY NOTE ON THE METHOD OF LEAST MEDIAN SQUARES.

The American Statistician 46, 79–83.
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A CAUTIONARY NOTE ON THE METHOD OF LEAST MEDIAN SQUARES.

The American Statistician 46, 79–83.
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Engine Knock Data (n = 16, p = 4, h = 11)

c x1 x2 x3 x4 y
1 13.3 13.9 31 697 84.4
2 13.3 14.1 30 697 84.1
3 13.4 15.2 32 700 88.4
4 12.7 13.8 31 669 84.2...

...
...

...
...

...
14 12.7 16.1 35 649 93.0
15 12.9 15.1 36 721 93.3
16 12.7 15.9 37 696 93.1

x1 is spark timing x2 air/fuel ratio
x3 intake temperature x4 exhaust temperature

y engine knock number

This is the exact value of β̂(LTS,n,h) !

Data Interc. SPARK AIR INTK EXHS.
Correct data (x22 = 14.1) 35.11 -0.028 2.949 0.477 -0.009
Damaged data(x22 = 15.1) -88.7 4.72 1.06 1.57 0.068
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Correct data (x22 = 14.1) 35.11 -0.028 2.949 0.477 -0.009
Damaged data(x22 = 15.1) -88.7 4.72 1.06 1.57 0.068
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The least weighted squares

Residuals ∀β ∈ R → ri (β) = Yi − X ′i β
Order statistics of squared residuals, i. e.

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β)

Definition

Let wi ∈ [0,1], i = 1,2, ...,n. Then

β̂(LWS,n,w) = arg min
β∈Rp

∑n
i=1 wi r2

(i)(β)

will be called the least weighted squares (LWS).

w(1) ≥ w(2) ≥ ... ≥ w(n)
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The least weighted squares

Residuals ∀β ∈ R → ri (β) = Yi − X ′i β
Order statistics of squared residuals, i. e.

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β)

Definition

Let wi ∈ [0,1], i = 1,2, ...,n. Then

β̂(LWS,n,w) = arg min
β∈Rp

∑n
i=1 wi r2

(i)(β)

will be called the least weighted squares (LWS).

The weights are prescribed to the order statistics of squared residuals !!

w(1) ≥ w(2) ≥ ... ≥ w(n)
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The least weighted squares

Residuals ∀β ∈ R → ri (β) = Yi − X ′i β
Order statistics of squared residuals, i. e.

r2
(1)(β) ≤ r2

(2)(β) ≤ ... ≤ r2
(n)(β)

Definition

Let wi ∈ [0,1], i = 1,2, ...,n. Then

β̂(LWS,n,w) = arg min
β∈Rp

∑n
i=1 wi r2

(i)(β)

will be called the least weighted squares (LWS).

Víšek, J. Á. (2000): Regression with high breakdown point.
Robust 2000 (eds. Antoch, J. Dohnal, G.), 324 - 356.

w(1) ≥ w(2) ≥ ... ≥ w(n)
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w(1) ≥ w(2) ≥ ... ≥ w(n)

The least median of squares β̂(LMS,h,n) as well as
the least trimmed squares β̂(LTS,h,n) are special cases of the β̂(LWS,n,w).
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PROS AND CONS OF LWS

Inherited from LTS:
√

n-consistency (even under heteroscedasticity)

Scale- and affine-equivariance
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PROS AND CONS OF LWS

Achieved due to the continuity of weight function:

Breakdown point adaptable to level and character of contamination

Quick and reliable algorithm (implemented in MATLAB)

Modifications for nonstandard situations
(e. g. instrumental variables, total least squares, fixed or random effects)

Low sensitivity to the shift and deletion of observation(s)

More diagnostic tools (D-W, White test, Hausman test, etc.)

Applicability for panel data

“Coping automatically” with heteroscedasticity of data
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PROS AND CONS OF LWS

Still lacking:

Diagnostics for finite sample size
- i. e. significance of explanatory variables, test of submodels, etc.

Determination of model
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Significance of explanatory variable - for the Least Weighted Squares (LWS)

We are going to give an idea of deriving
the significance of individual explanatory variable - two steps:

The first one:

The Least Weighted Squares β̂(LWS,n,w)(Y ,X ) can be
- at any point of a basic probabily space (Ω,A,P) -

written as Ordinary Least Squares β̂(OLS,n,W ,π)(Ỹ , X̃ ).

The second one:

The classical derivation for significance of
individual explanatory variable for OLS β̂(OLS,n)(Y ,X )

can be generalised for β̂(OLS,n,W ,π)(Ỹ , X̃ ).
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Recalling basic framework and problems
The least weighted squares

Simulations

Recalling definition and basic properties
Significance of explanatory variable

Deriving form of β̂(LWS,n)

∀ (ω ∈ Ω) ∃ (π = π(ω) = {π1(ω), π2(ω), ..., πn(ω)}) so that

β̂(LWS,n,w)(ω) = arg min
β∈Rp

n∑
i=1

wi
(
Yπi − X ′πi

β
)2

= arg min
β∈Rp

n∑
i=1

(
w

1
2

i Yπi − w
1
2

i X ′πi
β
)2

= arg min
β∈Rp

n∑
i=1

(
Ỹi − X̃ ′i β

)2
.

Put W̃ = diag
{

w
1
2

1 ,w
1
2

2 , ...,w
1
2

n

}
, Ỹ = W̃Yπ, X̃ = W̃Xπ and ẽ = W̃eπ

and consider the model

Ỹ = X̃β0 + ε̃ with L (ε̃) = N
(

0, σ2W̃ 2
)
.

Then
β̂(LWS,n,w)(ω) = arg min

β∈Rp

{(
Ỹ − X̃β

)′ (
Ỹ − X̃β

)}
=
(

X̃ ′X̃
)−1

X̃ ′Ỹ = β̂(OLS,n,W ,π)(Ỹ , X̃ ).
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Deriving form of β̂(LWS,n,w)

Fix π = {π1, π2, ..., πn} and put

B(π) =
{
ω ∈ Ω : β̂(LWS,n,w)(Y ,X ) = β̂(OLS,n,W ,π)(Ỹ , X̃ )

}

Then: π(1) 6= π(2) =⇒ B(π(1)) ∩ B(π(2)) = ∅ a. s.

⋃
over all π′s

B(π) = Ω

P(B(π)) =
1
n!

• Conditional p-value • Unconditional p-value
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Significance of explanatory variable - classical OLS case

Let’s recall the simplest classical framework for finite-sample diagnostics:

Regression model

Yi = X ′i β
0 + εi , i = 1,2, ...,n or Y = Xβ0 + ε

Conditions :
{(X ′i , εi)

′}∞i=1 i.i.d., FX ,ε(x , v) = FX (x) · Fε(v), Fε(v) = N
(
0, σ2),

Q = IE [X1 · X ′1] is regular.

Significance of `-th explanatory variable Xi` ⇔ H0 : β̂
(OLS,n)
` = 0

Denote c2
`,` =

[
(X ′X )

−1
]
`,`

and s2
n = 1

n−p

∑n
i=1

(
Yi − X ′i β̂

(OLS,n)
)2

.

Test is based on
L

(
β̂
(OLS,n)
` − β0

`

sn · c`,`

)
= L (t`) = tn−p

(Fisher-Cochran theorem)
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Recalling the classical regression for Ỹ , X̃

Let’s recall β̂(OLS,n,W ,π)(Ỹ , X̃ )− β0 =
(

X̃ ′X̃
)−1

X̃ ′Ỹ(
X̃ ′X̃

)−1
X̃ ′X̃

(
X̃ ′X̃

)−1
X̃ ′Ỹ =

(
X̃ ′X̃

)−1
X̃ ′ ̂̃Y =

(
X̃ ′X̃

)−1
X̃ ′ε̃, (1)

• firstly, β̂(OLS,n,W ,π)(Ỹ , X̃ )− β0 is function of ̂̃Y = X̃
(

X̃ ′X̃
)−1

X̃ ′Ỹ ,

• secondly,due to normality of disturbances ε̃,
also β̂(OLS,n,W ,π)(Ỹ , X̃ )− β0 is normally distributed.

Let’s also recall
r̃
(
β̂(OLS,n,W ,π)(Ỹ , X̃ )

)
=

(
II − X̃

(
X̃ ′X̃

)−1
X̃ ′
)
ε̃, (2)

again due to normality of disturbances,
r̃
(
β̂(OLS,n,W ,π)(Ỹ , X̃ )

)
is normally distributed.

Notice the orthogonality of the projection matrices in (1) and (2).
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(
X̃ ′X̃

)−1
X̃ ′ ̂̃Y =

(
X̃ ′X̃

)−1
X̃ ′ε̃, (1)
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β̂(OLS,n,W ,π)(Ỹ , X̃ )

)
is normally distributed.

Notice the orthogonality of the projection matrices in (1) and (2).
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⇒ ̂̃Y ⊥ r̃
(
β̂(OLS,n,W ,π)(Ỹ , X̃ )
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)



Recalling basic framework and problems
The least weighted squares

Simulations

Recalling definition and basic properties
Significance of explanatory variable

Recalling the classical regression for Ỹ , X̃

Recalling that we consider the model

Ỹ = X̃β0 + ε̃ with L (ε̃) = N
(

0, σ2W̃ 2
)
,

we have from

β̂(OLS,n,W ,π)(Ỹ , X̃ )− β0 = X̃
(

X̃ ′X̃
)−1

X̃ ′ε̃,

IE
{
β̂(OLS,n,W ,π)(Ỹ , X̃ )− β0

}
= 0

and
cov

{
−β0} =

(
X̃ ′X̃

)−1
X̃ ′W̃ 2X̃

(
X̃ ′X̃

)−1

= (X ′WX )
−1 ·

n∑
i=1

w2
i · X̃i · X̃ ′i (X ′WX )

−1
.
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Recalling the classical regression for Ỹ , X̃

Denote [
cov

{
β̂(OLS,n,W ,π)(Ỹ , X̃ )− β0

}]
``

=

[
(X ′WX )

−1 ·
n∑

i=1

w2
i · Xi · X ′i (X ′WX )

−1

]
``

=︸︷︷︸
(denote)

dn,`(w ,X ).

Then

L

(
β̂
(OLS,n,W ,π)
` (Ỹ , X̃ )− β0

`

σdn,`(w ,X )

)
= N (0,1).
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Establishing the result

We can show (similarly as in the OLS-regression),

L
(
σ−2r̃ ′

(
β̂(OLS,n,W ,π)(Ỹ , X̃ )

)
· r̃
(
β̂(OLS,n,W ,π)(Ỹ , X̃ )

))
= L

(
σ−2 · RSS

)
= χ2

generalized (n − p)

in the sense that χ2
generalized (n − p) is distribution of the sum of squares of n − p independent

r. v.’s normally distributed with zero mean but variance not equal one, but σ−2 · wi .

We conclude

THEOREM

L
(
β̂(OLS,n,W ,π)(Ỹ ,X̃)−β0

dn,`(w ,X) ·
[∑n

i=1 wi (1−dii )
RSS

] 1
2
)

= tgeneralized (n − p) .
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))
= L

(
σ−2 · RSS

)
= χ2

generalized (n − p)

in the sense that χ2
generalized (n − p) is distribution of the sum of squares of n − p independent

r. v.’s normally distributed with zero mean but variance not equal one, but σ−2 · wi .

We conclude

THEOREM

L
(
β̂(OLS,n,W ,π)(Ỹ ,X̃)−β0
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Function generating the weights

Under low contamination, the intuitively optimal (left)
and really optimal (right) weight function

(in the sense of mean square error of the estimates of regression coefficients).

w` = w
(
`−1

n

)
Contamination : 4% outliers
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But the optimality of the weight function is rather flexible
with respect to the point where decrease starts!

(Numerically established experience.)
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Framework of simulations

1 For fixed n we generated 5000 η’s.

2 The 4875 and 4975 order statistics among thesee 5000 values were
found.

3 We have repeated it 100 times
→ empirical means and the roots of mean square errors

over these 100 repetitions.

4 We have done it for n = 20,30, ...,190.



Recalling basic framework and problems
The least weighted squares

Simulations

Weight function
Framework

Framework of simulations

1 For fixed n we generated 5000 η’s.

2 The 4875 and 4975 order statistics among thesee 5000 values were
found.

3 We have repeated it 100 times
→ empirical means and the roots of mean square errors

over these 100 repetitions.

4 We have done it for n = 20,30, ...,190.



Recalling basic framework and problems
The least weighted squares

Simulations

Weight function
Framework

Framework of simulations

1 For fixed n we generated 5000 η’s.

2 The 4875 and 4975 order statistics among thesee 5000 values were
found.

3 We have repeated it 100 times
→ empirical means and the roots of mean square errors

over these 100 repetitions.

4 We have done it for n = 20,30, ...,190.



Recalling basic framework and problems
The least weighted squares

Simulations

Weight function
Framework

Framework of simulations

1 For fixed n we generated 5000 η’s.

2 The 4875 and 4975 order statistics among thesee 5000 values were
found.

3 We have repeated it 100 times
→ empirical means and the roots of mean square errors

over these 100 repetitions.

4 We have done it for n = 20,30, ...,190.



Recalling basic framework and problems
The least weighted squares

Simulations

Weight function
Framework

TABLE 1
The simulated quantiles for 5%.

n 20 30 40 50 60 70

t̂LWS
0.975(n) 2.148 (0.047) 2.087 (0.040) 2.056 (0.046) 2.027 (0.045) 2.017 (0.046) 2.012 (0.045)

t0.975(n) 2.085 2.043 2.022 2.009 2.000 1.995

n 80 90 100 110 120 130

t̂LWS
0.975(n) 2.008 (0.040) 1.999 (0.041) 1.992 (0.040) 1.991 (0.041) 1.990 (0.040) 1.988 (0.040)

t0.975(n) 1.990 1.987 1.984 1.982 1.980 1.978

n 140 150 160 170 180 190

t̂LWS
0.975(n) 1.986 (0.043) 1.989 (0.041) 1.975 (0.035) 1.974 (0.035) 1.973 (0.035) 1.973 (0.035)

t0.975(n) 1.977 1.976 1.975 1.974 1.974 1.973
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TABLE 2
The simulated quantiles for 1%.

n 20 30 40 50 60 70

t̂LWS
0.995(n) 2.999 (0.100) 2.825 (0.082) 2.766 (0.080) 2.702 (0.085) 2.688 (0.077) 2.678 (0.079)

t0.995(n) 2.845 2.748 2.705 2.678 2.661 2.651

n 80 90 100 110 120 130

t̂LWS
0.995(n) 2.659 (0.067) 2.644 (0.075) 2.633 (0.077) 2.627 (0.063) 2.629 (0.070) 2.626 (0.071)

t0.995(n) 2.640 2.632 2.625 2.619 2.614 2.612

n 140 150 160 170 180 190

t̂LWS
0.995(n) 2.619 (0.072) 2.621 (0.073) 2.609 (0.079) 2.609 (0.070) 2.620 (0.078) 2.602 (0.078)

t0.995(n) 2.611 2.610 2.609 2.608 2.606 2.605

By the way,
0.995-upper quantile of the standard normal distribution is equal to 2.575.
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