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1 Competing risks and incidence

Situation: Certain event (e. g. a failure of a device) can be caused by several
reasons

– there is K (possibly dependent) random variables Tj, j = 1, ..., K,

(we do not consider any censoring)

Denote FK(t1, ..., tK) = P (T1 > t1, ..., TK > tK) their joint survival function.

We observe Z = min(T1, ..., TK) and indicator δ = j if Z = Tj.

In general, from data (Zi, δi), i = 1, . . . , N it is not possible to identify joint
distribution of (Tj),

while the incidence of Tj, i.e. the distributions of (Tj, δ = j) can be estimated,
consistently.
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2 Cumulative Incidence Function

Estimable: distribution of Z = min(T1, ..., TK)

e.g. S(t) = P (Z > t) = FK(t, ..., t) – its survival function

and ”Incidence densities”

f ∗j (t) = P (Z = t, δ = j) = −∂FK(t1, ..., tK)

∂tj
|(t1 = ... = tK = t),

so that also their integrals, ”Cumulative incidence functions”

F ∗
j (t) =

∫ t

0
f ∗j (s) ds = P (Z ≤ t, δ = j).

Notice that lim F ∗
j (t) = P (δ = j) < 1 if t →∞, S(t) = 1− ∑K

j=1 F ∗
j (t).
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A more practical form of incidence function:

Estimable: Cause–specific hazard functions for events j = 1, 2, . . . , K:

h∗j(t) = lim
d→0

P (t ≤ Z < t + d, δ = j |Z ≥ t)

d
,

overall hazard rate for Z = min(T1, ..., TK):

h∗(t) = lim
d→0

P (t ≤ Z < t + d |Z ≥ t)

d
=

K∑

j=1
h∗j(t),

integrals = cumulated hazard rates H∗
j (t), H∗(t),

overall survival function S(t) = P (Z > t) = exp(−H∗(t)).

Then f ∗j (t) = h∗j(t) · S(t)

and cumulative incidence functions are:

F ∗
j (t) = P (Z ≤ t, δ = j) =

∫ t

0
S(s) · h∗j(s) ds.
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3 Non-identifiability

A. Tsiatis (1975) has shown that for arbitrary joint model we can find a model
with independent components having the same incidences,

i.e. we cannot distinguish the models.

Remark: Even if model is parametric and MLE yields consistent estimates,
we don’t know parameters of which model are estimated.

Namely, this ’independent’ model is given by cause-specific hazard functions
h∗j(t).
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Example (Tsiatis 1975)

Consider just K = 2 random variables S, T with exponential marginal and
joint survival functions

F S(s) = e−λs, F T (t) = e−µt, F 2(s, t) = e−λs−µt−θst.

Hence, S(t) = F 2(t, t) = exp(−λt− µt− θt2).

Corresponding cause-specific hazard rates and their integrals are

h∗S(t) = (λ+θt), h∗T (t) = (µ+θt), H∗
S(t) = (λt+

θ

2
t2), H∗

T (t) = (µt+
θ

2
t2),

and S(t) = exp(−H∗
S(t) + H∗

T (t)) is the same as above.

It means that independent random variables with marginal survival functions

GS(s) = e−λs− θ
2s2

, GT (t) = e−µt− θ
2 t2

yield the same competing risk scheme.
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4 Competing risk and copula

In the sequel we shall also consider just 2 competing events, i.e. random
variables S, T and data Zi = min(Si, Ti), δi = 1, 2.

Copula offers a way how to model their joint distribution function:

F2(s, t) = C(FS(s), FT (t)), (1)

where FS, FT are marginal distribution functions of variables S, T .

Zheng and Klein (1995) proved that when the copula is known, the marginal
distributions are estimable consistently from ’competing risk’ data (and
then also joint distribution, from (1)).

They dealt with non-parametric (so that quite general) case.

It is obvious that the “knowledge” of copula is still an unrealistic supposition.

Nevertheless, we can try to use certain sufficiently flexible class of copulas,
for approximation.
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So called Survival copula ties survival functions:

As

F 2(s, t) = 1−FS(s)−FT (t)+F2(s, t) = F S(s)+F T (t)−1+C(FS(s), FT (t)),

then

F 2(s, t) = C(F S(s), F T (t)),

where C is also copula, namely

C(u, v) = u + v − 1 + C(1− u, 1− v).
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5 Competing risks and regression models

let us first return to Tsiatis’ example

and add assumption that both variables follow Cox model with a covariate x:

F S(s) = e−a(x)s, F T (t) = e−b(x)t, F (s, t) = e−a(x)s−b(x)t−θst,

(θ can also depend on x).

Then in ’equivalent’ independent model it should hold that

F S(s) = e−a(x)s−θs2/2, F T (t) = e−b(x)t−θt2/2,

– it is not a form of Cox model, unless a(x) = c1θ(x) = c2b(x).
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Identifiability in Cox model case, Heckman and Honoré (1990):

Let HS(s; x) = H0S(s) · a(x), HT (t; x) = H0T (t) · b(x), H0S(0) = H0T (0) = 0,

F (s, t; x) = C(FS(s; x), F T (t; x)) = C(exp(−H0S(s)·a(x)), exp(−H0T (t) ·b(x))).

Then

f ∗S = −∂F (s, t; x)

∂s
|(s = t) =

= C(1)(exp(−H0S(t)·a(x)), exp(−H0T (t)·b(x)))·exp(−H0S(t)·a(x))·h0S(t)·a(x).

Step 1: Imagine, in neighborhood of each x, lim t → 0,

we can ’estimate’ proportions a(x1)/a(x2), so that a(x) up to a multipl.
constant.

(– it is seen that HS0(t) · a(x) are determined up to a multipl. constant)
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Step 2: Consider now

F (t, t; x) = C(exp(−H0S(t) · a(x)), exp(−H0T (t) · b(x)))

at such t where both H0S(t) = H0T (t) = 1, at different x.

We can ’estimate’ C(exp(−a(x)), exp(−b(x))), so that copula C.

Step 3: We already ’know’ C(u, v), a(x), b(x), it remains to estimate marginal
distributions.

Here we can utilize result of Zheng, Klein (1995) to estimation

F S(s; x) and F T (t; x), at fixed x,

and then baseline marginal distributions F 0S(s) and F 0T (t).
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Remark 1: H+H solve question whether it is possible to identify model, it is
not the procedure of practical estimation.

Estimation should be based e.g. on the ML method.

Remark 2: Copula C does not depend on x, if the Cox model is taken as a
case of ’transformation’ model:

Let r.v. Tx fulfills Cox model with regression function a(x),

hence HT (Tx) = HO(Tx) · a(x) ∼ Exp(1) distribution.

Transformation model then means that Tx rises from a r.v. e0 ∼ Exp(1):

e0 = HO(Tx) · a(x), for each x

and copula C then actually ties two Exp(1) random variables.
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Case of the AFT (Accelerated Failure Time) model

Here marginal survival functions are

F S(s; x) = F 0S(s · a(x)), F T (t; x) = F 0T (t · b(x))

and joint survival function can be expressed via copula

F (s, t; x) = C(F 0S(s · a(x)), F 0T (t · b(x))).

Then

f ∗S = −∂F (s, t; x)

∂s
|(s = t) = C(1)(F 0S(t·a(x)), F 0T (t·b(x)))·f0S(t·a(x))·a(x),

’proof’ of identifiability uses similar steps as in the Cox model case (again
Heckman and Honoré, 1990).
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6 Special cases, Gaussian copula

Let X, Y be standard normal r. v.-s with ρ = ρ(X, Y ), joint density

ϕ2(x, y, ρ) =
1

2π
√

1− ρ2 exp { − 1

2
x′Σ−1x} (2)

where x = (x, y)′ and Σ = covariance matrix [1, ρ; ρ, 1].

Take U = φ(X), V = φ(Y ), we obtain copula

C(u, v) = φ2(φ
−1(u), φ−1(v), ρ). (3)

Naturally, ρ(U, V ) 6= ρ(X, Y )

Spearman’s correlations coincide, ρSP(X,Y ) = ρSP(U, V ) = ρ(U, V ).

Corresponding density is:

c(u, v) =
ϕ2(x, y, ρ)

ϕ(x) · ϕ(y)
,

again with u = φ(x), v = φ(y), ϕ, φ are N(0, 1) density and distr. function.
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Approximation model for distribution of competing variables S, T :

Let C(u, v) of (1) be a gaussian copula (3). Then

F2(s, t) = φ2(φ
−1(FS(s)), φ−1(FT (t)), ρ), (4)

S = F−1
S (φ(X)), T = F−1

T (φ(Y )).

Further, ρSP(S, T ) = ρSP(U, V ),

“initial” ρ = ρ(X,Y ) is the only one parameter describing the dependence of
S and T .

All values ρ(S, T ) can be achieved by convenient choice of ρ(X, Y ).
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7 ML Estimation

When parameter ρ is known, copula (3) is fully defined and it follows that the
distribution of (S, T ) is estimable, consistently (again Zheng, Klein,1995).

On the other hand, when marginal distributions FS, FT are known

then ρ = ρ(X, Y ) is estimable, then the joint distribution F2(s, t) is, too.

Data are (Zi, δi), i = 1, . . . , N , the likelihood function:

L =
N∏

i=1

{−∂

∂s
F 2(s, t)

}I[δi=1]

·
{−∂

∂t
F 2(s, t)

}I[δi=2]

· F 2(s, t)
I[δi=0],

evaluated at s = t = Zi, with

F 2(s, t) = P (S > s, T > t) = 1− FS(s)− FT (t) + F2(s, t)

and F2(s, t) = φ2(x, y, ρ) with x = φ−1(FS(s)), y = φ−1(FT (t)).
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After some computation – integration of 2-dimensional Gauss density ϕ2(x, y, ρ),

L =
N∏

i=1

{
fS(Zi)

[
1− φ1(Yi; ρXi, 1− ρ2)

]}I[δi=1] ·

· {fT (Zi)
[
1− φ1(Xi; ρYi, 1− ρ2)

]}I[δi=2]·{1− FS(Zi)− FT (Zi) + φ2(Xi, Yi, ρ)}I[δi=0] ,
(5)

where φ1(x; µ, σ2) denotes the c.d.f. of N(µ, σ2), evaluated at x,

Xi = φ−1(FS(Zi)), Yi = φ−1(FT (Zi)).

The problem of maximization has to be solved by a search procedure.

Parameter ρ is hidden in φ1 and in φ2. Distributions of S and T are present
both explicitly and implicitly, in Xi, Yi.

Following examples show that both problems (estimate of FS, FT for given
ρ, estimate of ρ for given FS, FT ) are solvable and seems to have unique
solution.
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8 How flexible is gaussian copula?

A reverse problem: Let us consider a 2-variate (continuous type) distribution
of random couple (S, T ), with a c.d.f F2(s, t).

How close we can approach with distribution constructed from a Gauss copula,
having the same marginals FS(s), FT (t) of S, T?

i.e. we construct

F ∗
ρ (s, t) = φ2(φ

−1(FS(s)), φ−1(FT (t)), ρ),

where parameter ρ ∈ [−1, 1] should be optimized in order to achieve minρ

of some distance between F2 and F ∗
ρ .

We shall use sups,t |F2(s, t)− F ∗
ρ (s, t)| – and show here just two examples.
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8.1 Bivariate exponential distribution

One of possible construction of 2-variate exponential distribution
(Marshall and Olkin, 1967):

Let X1, X2, X3 be independent exp. r.v. with parameters λj, j = 1, 2, 3.

Then (S, T ), with S = min(X1, X3) and T = min(X2, X3),
have the following bivariate distribution:

Joint distribution:

P (S > s, T > t) = e−λ1s · e−λ2t · e−λ3max(s,t),

Marginals are

S ∼ Exp(λ1 + λ3), T ∼ Exp(λ2 + λ3), corr(S, T ) =
λ3

λ1 + λ2 + λ3
.
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From such a definition, an interesting feature follows – ”singularity”,

P (S = T ) =
λ3

λ1 + λ2 + λ3
.
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Figure 1: Generated example of 2-variate exponent. data, λ1, λ2, λ3 = 2, 4, 3, N = 1000.
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Comparison

It is clear that such a distribution cannot be fitted precisely by any F ∗
ρ (s, t)

constructed from gaussian copula, nevertheless, we can approach rather close.

In Figure 2, the 1-st subplot displays F2(s, t),

again for the case λ1, λ2, λ3 = 2, 4, 3.

The last subplot shows dependence of sups,t |F2(s, t)− F ∗
ρ (s, t)| on ρ.

It is seen that optimal ρ ∼ 0.53 and maximal difference is ∼ 0.0267.

Subplot 2 shows F ∗
ρ (s, t) and 3-rd subplot differences F2(s, t)−F ∗

ρ (s, t), for
optimal ρ = 0.53.
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8.2 Comparison with Morgenstern’s copula

In this example we just consider a copula of certain form, namely

Ca(u, v) = uv[1 + a(1− u)(1− v)],

with parameter |a| ≤ 1, u, v ∈ [0, 1]2 (see also in Marshall,Olkin, 1967, p.30).

The copula is symmetric, corr(U, V ) = a/3,

a = 0 means independence of U, V .

We shall again try to find ρ yielding the closest gaussian copula

C∗
ρ(u, v) = φ2(φ

−1(u), φ−1(v), ρ),

i.e. minimizing supu,v |Ca(u, v)− C∗
ρ(u, v)| (when parameter a is given).
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Just for illustration, Figure shows 3d and contour plots of density of copula
Ca(u, v), for a = −0.9 (left) and a = 0.5 (right).
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9 Examples

In all examples I fixed: ρ = 0.5 or ρ = −0.7,

S ∼ Weibull (as = 100, bs = 1.2), T ∼ Weibull (at = 130, bt = 3),
C ∼ |Normal(µ = 150, σ = 50)|.
The rate of censoring was among 10 – 20%. Weibull distribution function
was taken in form F (s) = 1− exp (− ( s

a)
b), s > 0.

Example 1 shows how normal variables (X, Y ) transformed to (U, V ) by (3)
and then to (S, T ) by Gauss copula (4),

a) ’empirically’ i.e. with the aid of generated data,

b) numerically.

Numerically computed correlations yield

ρ(U, V ) = 0.432, ρ(S, T ) = 0.376 in the case ρ(X, Y ) = 0.5,

ρ(U, V ) = −0.685, ρ(S, T ) = −0.625 in the case ρ(X, Y ) = −0.7.
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Figure 5: Scatter-plots and histograms of generated representation of X,Y , then transformed
to U, V and S, T , the case with ρ = 0.5, N = 1000.

Figure 6: 3d plots and contours of density functions of joint distributions (X,Y ), (U, V ), (S, T ),
the case with ρ = 0.5.
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Figure 7: Scatter-plots and histograms of generated representation of X,Y , then transformed
to U, V and S, T , the case with ρ = −0.7, N = 1000.

Figure 8: 3d plots and contours of density functions of joint distributions (X,Y ), (U, V ), (S, T ),
the case with ρ = −0.7.
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Example 2: Estimation of ρ when FS, FT are known,

Randomized estimation:

ρ randomly proposed from (−1, 1), randomly accepted along likelihood
proportion (∼Metropolis algorithm).

Figure 5 shows data when ρ = 0.5.

Figure 6 shows 500 last accepted values ρ from 10 000 steps.

Figures 7 and 8 displays the same in the case ρ = −0.7.

In both cases size of data was N = 200.
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Figure 10: Sample of 500 last accepted estimates of ρ, when ρ = 0.5.
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Figure 11: Generated data representing T, S, C and Z = min(T, S, C), with ρ = −0.7.
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Figure 12: Sample of 500 last accepted estimates of ρ, when ρ = −0.7.
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Example 3: It was assumed that ρ was known,

4 parameters of two Weibull distributions of S and T were estimated.

Again, a randomized search was used, via Metropolis–Hastings algorithm.

Figure 9 shows last 500 values from 10000 generated, of all four estimated
parameters as, bs of S, at, bt of T , in the case when ρ = 0.5.

Figure 10 displays the results in the case with known ρ = −0.7.

Again, size of data was N = 200.
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Figure 13: Sample of 500 last accepted estimates of Weibull parameters at, bt, as, bs, when
ρ = 0.5.
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Figure 14: Sample of 500 last accepted estimates of Weibull parameters at, bt, as, bs, when
ρ = −0.7.
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Example 4: Non-parametric estimate of unknown distribution functions FS

and FT assuming that ρ is known,.

– as a mixture of Gauss c.d.f-s.

After some experiments, both mixtures were composed from 7 components,

their centers and variances were adapted during the estimation.

It was again iterative, with acceptance criterion of Metropolis–Hastings
algorithm,

Figures show just the best result, i.e. with maximal achieved value of likeli-
hood, from 10000 iterations.

Now the length of data was N = 500.
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Figure 15: Estimated distribution functions: Initial estimates PLE (stepwise) and smoothed
(dashed), then final estimate (smooth full) and ’true’ distribution function (dotted). FT above,
FS below, the case with ρ = 0.5.
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Figure 16: The same as in Figure 11, the case with ρ = −0.7.
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Example of incidence function: – estimate of cumul. inc. fction

The same type of data as in previous examples was generated.

We display here just the case of ρ = 0.5, N = 200.
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Figure 17: ’True’ distribution functions FS, FT (dashed), Fmin of min(S, T ), its PLE Fest,
estimated cumulative incidence functions IFS, IFT .
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’True’ cumulative incidence functions can be obtained by (numerical) integra-
tion of expressions corresponding to the 1-st and 2-nd part of the likelihood,

dIFS(t) = fS(t)
[
1− φ1(y; ρx, 1− ρ2)

]
, dIFT (t) = fT (t)

[
1− φ1(x; ρy, 1− ρ2)

]
,

where again x = φ−1(FS(t)), y = φ−1(FT (t)).

Figure 14 compares them with their estimates:
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Figure 18: ’True’ and estimated (stepwise) cumulative incidence functions IFS, IFT .
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