Copula modeling for discrete data

Christian Genest & Johanna G. Nešlehová in collaboration with Bruno Rémillard

McGill University and HEC Montréal

ROBUST, September 11, 2016

(ロ)、(型)、(E)、(E)、 E) の(の)

Main question

Suppose $(X_1, Y_1), \ldots, (X_n, Y_n)$ are from a discrete distribution H.

More specifically, assume

 $X, Y \in \{0, 1, \ldots\}.$

Can we still do copula modeling?

Lack of uniqueness of the copula

In the continuous case, there is a unique function $C:[0,1]^2 \rightarrow [0,1]$ such that

$$H(x,y) = C\{F(x), G(y)\}, x, y \in \mathbb{R}.$$

In the discrete case, there are several functions $A:[0,1]^2\to [0,1]$ such that

$$H(x,y) = A\{F(x), G(y)\}, x, y \in \mathbb{R}.$$

This class of functions is denoted \mathcal{A} , but note that not all its members are copulas!

Lack of uniqueness of the copula

In the continuous case, C is the distribution function of the pair (U, V) = (F(X), G(Y)), i.e.,

$$C(u,v) = \Pr(U \leq u, V \leq v), \quad u, v \in (0,1).$$

In the discrete case,

$$D(u, v) = \Pr(U \le u, V \le v), \quad u, v \in (0, 1).$$

is a distribution function too, but it is not a copula!

As a consolation, $D \in \mathcal{A}$.

Many paradoxical results follow...

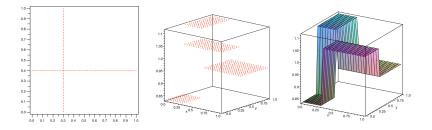
- ✓ As soon as *F* or *G* are discrete, the set C_H of admissible copulas is infinitely large (though its bounds can be identified).
- ✓ Members of C_H can embody completely different types of dependence.
- Measures of association, dependence concepts, and orderings become margin dependent.

Genest & Nešlehová (2007), ASTIN Bulletin.

Saving the connection between copulas and dependence?

- 1. *H* defines a contingency table.
- 2. Spread the mass uniformly in each cell.
- Call the resulting copula C[★] ∈ C_H the bilinear extension copula.

Illustration for Bernoulli variates X and Y:



Our main discovery

 $C^{\mathbf{A}}$ is the best possible candidate if you want to think of the copula associated with a discrete H, because...

 \checkmark $C^{\mathbf{F}}$ is an absolutely continuous copula.

$$\checkmark X \perp Y \Leftrightarrow C^{\mathbf{H}}(u,v) = uv.$$

✓ For any concordance measure, $\kappa(H) = \kappa(C^{ℜ})$.

 \checkmark If (\tilde{X}, \tilde{Y}) is distributed as C^{\maltese} , then

 $\operatorname{DEP}(X, Y) \Leftrightarrow \operatorname{DEP}(\tilde{X}, \tilde{Y}).$

Here, DEP can refer to PQD, LTD, RTI, SI, LRD.

Are copula models for discrete data of interest?

A copula model for H, viz.

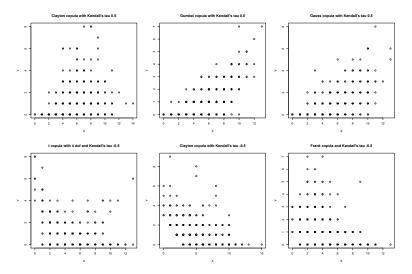
$$H(x,y) = C\{F(x), G(y)\}$$

with
$$F \in (F_{lpha})$$
, $G \in (G_{eta})$ and $C \in (C_{ heta})$

is a perfectly valid construction, even if F and G are discrete.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Yes, they are!



 $X \sim \mathcal{P}(5)$ and $Y \sim \mathcal{G}(0.6)$ with various copulas and positive (top) and negative (bottom) association.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theoretical back-up

✓ *H* often inherits dependence properties from *C* because $DEP(U, V) \Rightarrow DEP(X, Y)$, where $(U, V) \sim C$ and DEP means PQD, LTD, RTI, SI, LRD.

 \checkmark θ can continue to govern association between X and Y, viz.

$$C_{\theta} \prec_{\mathrm{PQD}} C_{\theta'} \quad \Rightarrow \quad H_{\theta} \prec_{\mathrm{PQD}} H_{\theta'}.$$

Can we do inference?

Assume $(X_1, Y_1), \ldots, (X_n, Y_n)$ is an iid sample from

$$H_{\theta}(x, y) = C_{\theta}\{F(x), G(y)\}$$

with F and G discrete.

How can one fit and validate such a model?

The quest for the answer is the subject of our ongoing research.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Naïve suggestion

Draw 10,000 samples $(X_1, Y_1), ..., (X_n, Y_n)$ of size n = 100 from

$$H_{\theta}(x,y) = C_{\theta}\{F(x), G(y)\},\$$

where C_{θ} is a Clayton copula and F, G are discrete distributions.

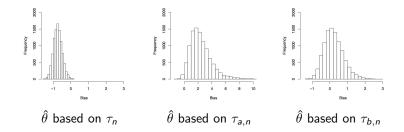
Since
$$au = heta/(heta + 2)$$
, pick $\hat{ au} \in \{ au_n, au_{a,n}, au_{b,n}\}$ and let

$$\hat{ heta} = 2 \, rac{\hat{ au}}{1-\hat{ au}} \, .$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration: Poisson margins

Take $\theta = 2$ and Poisson margins with E(X) = 1 and E(Y) = 2.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

What is going on?

It can be seen that τ_n is an *unbiased* estimator of

$$\tau(H) = \tau(C^{\texttt{H}}).$$

BUT: $C^{\bigstar} \neq C_{\theta}$ for most copula families except at independence.

In general, $\tau_{a,n}$ and $\tau_{b,n}$ are biased estimators of $\tau(C_{\theta})$ because

$$X_i = F^{-1}(U_i)$$
 and $Y_i = G^{-1}(V_i) \Rightarrow (F(X_i), G(Y_i)) \sim C_{\theta}.$

In short, the discretization of (U_i, V_i) is irreversible. \bigcirc

Can't we just randomize?

- 1. Take a sample $(X_1, Y_1), \ldots, (X_n, Y_n)$ from H whose margins are count distributions.
- Add an independent noise to each component of the pair (X_i, Y_i), viz.

$$ilde{X}_i = X_i + U_i - 1, \quad ilde{Y}_i = Y_i + V_i - 1,$$

where U_1, \ldots, U_n and V_1, \ldots, V_n are independent samples from the standard uniform distribution on (0, 1).

3. The randomized sample $(\tilde{X}_1, \tilde{Y}_1), \dots, (\tilde{X}_n, \tilde{Y}_n)$ then stems from a distribution whose margins are continuous.

Two additional estimators

4. Compute $\tau_n(\tilde{X}, \tilde{Y})$, the sample version of Kendall's tau based on the randomized sample

$$(\tilde{X}_1, \tilde{Y}_1), \ldots, (\tilde{X}_n, \tilde{Y}_n).$$

This gives a moment-estimate of θ , viz. $\hat{\theta} = g^{-1}(\bar{\tau}_n)$.

- 5. Alternatively, one can compute the pseudo-likelihood estimate of θ based on the randomized sample.
- 6. To eliminate the uncertainty induced by randomization, repeat the previous steps N times and compute the average of the values of the estimate of θ .

... that do not work either.

Average and st. deviation of six estimates of θ in the Illustration:

	Estimate of $ heta$ based on					
	$\tau_n(U, V)$	$\tau_n(X, Y)$	$\tau_{a,n}(X,Y)$	$\tau_{b,n}(X,Y)$	$ au_n(ilde{X}, ilde{Y})$	$MLE(\tilde{X}, \tilde{Y})$
Av.	2.039	1.262	4.358	2.213	1.269	1.144
S.d.	0.446	0.243	1.495	0.537	0.285	0.779

Randomization is bound to fail, because the copula of (\tilde{X}, \tilde{Y}) is $C^{\mathbf{x}}$. However, remember that

$$C^{\mathbf{H}} \neq C_{\theta}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The empirical bilinear extension copula

 \checkmark Compute the empirical cdf H_n corresponding to the sample

$$(X_1, Y_1), \ldots, (X_n, Y_n).$$

✓ Denote its bilinear extension copula by C_n^{\clubsuit} .

✓
$$C_n^{\mathbf{A}}$$
 is explicit; its density is given by
 $c_n^{\mathbf{A}}(u, v) = n \times \frac{n_{ij}}{n_{i \bullet} n_{\bullet j}}$
for all $u \in (F_n(i-1), F_n(i)]$, $v \in (G_n(j-1), G_n(j)]$, $i, j \in \mathbb{N}$.

✓ Observe that C_n^{\clubsuit} is rank-based.

Wait a minute...

A sample $(X_1, Y_1), \ldots, (X_n, Y_n)$ defines a contingency table.

✓ Pearson's chi-squared statistic for testing independence

$$\chi^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - n_{i\bullet} n_{\bullet j}/n)^{2}}{n_{i\bullet} n_{\bullet j}/n}$$

✓ Spearman's mid-rank coefficient for testing monotone trend

$$\rho_n^* = \frac{12}{n^3} \left\{ \sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S}) \right\}$$

✓ Kendall's coefficient for testing monotone trend

$$\tau_n^* = \frac{2}{n^2} \{ \# (\text{concordant pairs}) - \# (\text{discordant pairs}) \}$$

Surprise!

It can be seen that

$$\chi^{2} = n \int_{0}^{1} \int_{0}^{1} \{c_{n}^{\mathbf{H}}(u, v) - 1\}^{2} \mathrm{d}u \,\mathrm{d}v,$$

$$\rho_{n}^{*} = 12 \int_{0}^{1} \int_{0}^{1} \{C_{n}^{\mathbf{H}}(u, v) - uv\} \mathrm{d}u \,\mathrm{d}v,$$

$$\tau_{n}^{*} = -1 + 4 \int_{0}^{1} \int_{0}^{1} C_{n}^{\mathbf{H}}(u, v) \,\mathrm{d}C_{n}^{\mathbf{H}}(u, v).$$

Here's an idea

In the continuous case, many inferential procedures derive from the limiting behavior of the empirical copula process

$$\mathbb{C}_n=\sqrt{n}\,(\,\mathcal{C}_n-\mathcal{C}\,).$$

In the discrete case, one can investigate the asymptotic behavior of the empirical Maltese copula process

$$\mathbb{C}_n^{\mathbf{H}} = \sqrt{n} \left(C_n^{\mathbf{H}} - C^{\mathbf{H}} \right),$$

hoping that it would be as useful as in the continuous case.

Known margins in the continuous case

When F and G are known and continuous, C can be estimated by the empirical distribution function B_n of the sample

$$(F(X_i), G(Y_i)), \quad 1 \leq i \leq n.$$

It is well-known that in this case,

$$\mathbb{B}_n = \sqrt{n} \left(B_n - C \right)$$

converges weakly in $C[0,1]^2$ to a *C*-Brownian sheet \mathbb{B}_C , i.e., to a centered Gaussian process with covariance function

$$\operatorname{cov}\{\mathbb{B}_{\mathcal{C}}(u,v),\mathbb{B}_{\mathcal{C}}(w,z)\}=\mathcal{C}(u\wedge w,v\wedge z)-\mathcal{C}(u,v)\mathcal{C}(w,z).$$

Known margins in the discrete case

When F and G are known and supported on \mathbb{N} , $C^{\mathbf{X}}$ can be estimated by bilinear interpolation $B_n^{\mathbf{X}}$ of the empirical distribution function of the sample

 $(F(X_i), G(Y_i)), \quad 1 \leq i \leq n.$

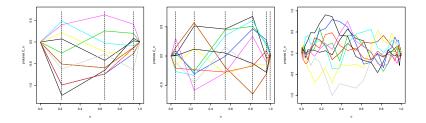
Theorem

As $n \to \infty$, the process $\mathbb{B}_n^{\mathbf{A}} = \sqrt{n} (B_n^{\mathbf{A}} - C^{\mathbf{A}})$ converges weakly in $\mathcal{C}[0,1]^2$ to a centered Gaussian process $\mathbb{B}_C^{\mathbf{A}}$.

Here, $\mathbb{B}^{\mathbf{X}}_{C}$ is no longer a $C^{\mathbf{X}}$ -Brownian sheet, but a "bilinear interpolation" thereof.

Illustration

The limiting process $\mathbb{B}_{C}^{\mathbf{x}}$ is illustrated below in the univariate case when F is binomial with p = 0.4 and N = 3, 10 and 100. Displayed are ten realizations of $\mathbb{B}_{p}^{\mathbf{x}}$ when n = 5000.



Unknown margins in the continuous case

Under suitable regularity conditions, the process

$$\mathbb{C}_n = \sqrt{n} \left(C_n - C \right)$$

converges weakly in $\mathcal{C}[0,1]^2$ to a centered Gaussian process $\mathbb{C},$

$$\mathbb{C}(u,v) = \mathbb{B}_{C}(u,v) - \frac{\partial}{\partial u}C(u,v)\mathbb{B}_{C}(u,1) - \frac{\partial}{\partial v}C(u,v)\mathbb{B}_{C}(1,v).$$

Bad news in the discrete case

Suppose that H is a bivariate Bernoulli distribution with

$$F(0) = p$$
, $G(0) = q$, $H(0,0) = r$,

where $p, q \in (0, 1)$ and r = C(p, q) for some copula C.

It can be established that the finite-dimensional margins of $\mathbb{C}_n^{\mathbf{X}}$ converge in law, although the limit may not be Gaussian.

However, the sequence $\mathbb{C}_n^{\mathcal{H}}$ is not asymptotically equicontinuous in probability unless r = pq.

In other words, \mathbb{C}_n^{\clubsuit} does not converge in $\mathcal{C}[0,1]^2$ unless r = pq. \odot

What went wrong?

To illustrate, consider a similar process in the univariate case.

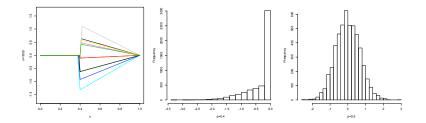
Take F Bernoulli with $F(0) \in (0, 1)$ and let F_n be its empirical counterpart based on a sample of size n from F.

Set F(0) = p and $F_n(0) = p_n$ and consider

$$E_n(u) = egin{cases} u, & u \in [0, p_n] \ rac{(1-u)}{1-p_n} \, p_n, & u \in [p_n, 1] \ \end{pmatrix}, \quad E(u) = egin{cases} u, & u \in [0, p] \ rac{(1-u)}{1-p} \, p, & u \in [p, 1] \ \end{pmatrix}$$

Then $\mathbb{E}_n = \sqrt{n} (E_n - E)$ does not converge in law in $\mathcal{C}[0, 1]$ even though its finite-dimensional margins converge.

Illustration



Ten realizations of the process \mathbb{E}_n for the Bernoulli distribution with p = 0.4 and sample size 1000 (left). Histograms of 5,000 realizations of $\mathbb{E}_n(u)$ when u = 0.4 (middle) and u = 0.5 (right) based on samples of size n = 10,000.

All's well that ends well!

Consider the set

$$\mathcal{O} = igcup_{(k,\ell) \in \mathbb{N}^2}igl(F(k-1),F(k)igr) imesigl(G(\ell-1),G(\ell)igr).$$

Theorem

Let K be an arbitrary compact subset of \mathcal{O} . Then $\mathbb{C}_n^{\mathbf{H}}$ converges weakly on $\mathcal{C}(K)$ as $n \to \infty$ to $\mathbb{C}^{\mathbf{H}}$ given for every $u, v \in \mathcal{O}$ by

$$\mathbb{B}^{\texttt{A}}_{C}(u,v) - \frac{\partial}{\partial u} C^{\texttt{A}}(u,v) \mathbb{B}^{\texttt{A}}_{C}(u,1) - \frac{\partial}{\partial v} C^{\texttt{A}}(u,v) \mathbb{B}^{\texttt{A}}_{C}(1,v),$$

where $\mathbb{B}_{C}^{\mathbf{A}}$ is the weak limit of $\mathbb{B}_{n}^{\mathbf{A}}$.

Example: Spearman's rho

Consider the non-normalized version of Spearman's rho, viz.

$$\rho = \rho(H) = \rho(C^{\mathbf{H}}).$$

Its consistent estimator is given by

$$\rho_n^* = \frac{12}{n^3} \sum_{i=1}^n (R_i - \bar{R})(S_i - \bar{S}) = \rho(C_n^{\mathbf{x}}),$$

where R_i and S_i are the componentwise mid-ranks. Consequently,

$$\sqrt{n}\left\{\rho_n^*-\rho(H)\right\}=12\int_0^1\int_0^1\mathbb{C}_n^{\mathbf{Y}}(u,v)\,\mathrm{d} u\,\mathrm{d} v.$$

It works!

Because $[0,1]^2 \setminus \mathcal{O}$ has Lebesgue measure zero,

$$12\int_0^1\int_0^1\mathbb{C}_n^{\mathbf{F}}(u,v)\,\mathrm{d} u\,\mathrm{d} v=12\int_{\mathcal{O}}\mathbb{C}_n^{\mathbf{F}}(u,v)\,\mathrm{d} u\,\mathrm{d} v.$$

Furthermore, \mathcal{O} can be approximated arbitrarily closely by compact sets. This lies at the heart of the following result:

Theorem

As $n \to \infty$,

$$\sqrt{n} \{\rho_n^* - \rho(H)\} \rightsquigarrow 12 \int_{\mathcal{O}} \mathbb{C}^{\mathbf{H}}(u, v) \,\mathrm{d}u \,\mathrm{d}v.$$

References

C. Genest & J. Nešlehová (2007). A primer on copulas for count data. *The ASTIN Bulletin*, **37**, 475–515.

C. Genest & J.G. Nešlehová & B. Rémillard (2014). On the empirical multilinear copula process for count data. *Bernoulli*, 20, 1344–1371.

C. Genest & J.G. Nešlehová & B. Rémillard (2014). Asymptotics of the empirical multilinear copula process. *Submitted*.

Research funded by

CANADA RESEARCH CHAIRS

Fonds de recherche sur la nature et les technologies Québec 🏘 🕸

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

