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Main question

Suppose (X1,Y1), . . . , (Xn,Yn) are from a discrete distribution H.

More specifically, assume

X ,Y ∈ {0, 1, . . .}.

Can we still do copula modeling?



Lack of uniqueness of the copula

In the continuous case, there is a unique function
C : [0, 1]2 → [0, 1] such that

H(x , y) = C{F (x),G (y)}, x , y ∈ R.

In the discrete case, there are several functions A : [0, 1]2 → [0, 1]
such that

H(x , y) = A{F (x),G (y)}, x , y ∈ R.

This class of functions is denoted A, but note that not all its
members are copulas!



Lack of uniqueness of the copula

In the continuous case, C is the distribution function of the pair
(U,V ) = (F (X ),G (Y )), i.e.,

C (u, v) = Pr(U ≤ u,V ≤ v), u, v ∈ (0, 1).

In the discrete case,

D(u, v) = Pr(U ≤ u,V ≤ v), u, v ∈ (0, 1).

is a distribution function too, but it is not a copula!

As a consolation, D ∈ A.



Many paradoxical results follow...

X As soon as F or G are discrete, the set CH of admissible
copulas is infinitely large (though its bounds can be identified).

X Members of CH can embody completely different types of
dependence.

X Measures of association, dependence concepts, and orderings
become margin dependent.

Genest & Nešlehová (2007), ASTIN Bulletin.



Saving the connection between copulas and dependence?

1. H defines a contingency table.

2. Spread the mass uniformly in each cell.

3. Call the resulting copula Cz ∈ CH the bilinear extension
copula.

Illustration for Bernoulli variates X and Y :



Our main discovery

Cz is the best possible candidate if you want to think of the
copula associated with a discrete H, because...

X Cz is an absolutely continuous copula.

X X ⊥ Y ⇔ Cz(u, v) = uv .

X For any concordance measure, κ(H) = κ(Cz).

X If (X̃ , Ỹ ) is distributed as Cz, then

DEP(X ,Y )⇔ DEP(X̃ , Ỹ ).

Here, DEP can refer to PQD, LTD, RTI, SI, LRD.



Are copula models for discrete data of interest?

A copula model for H, viz.

H(x , y) = C{F (x),G (y)}

with F ∈ (Fα), G ∈ (Gβ) and C ∈ (Cθ)

is a perfectly valid construction, even if F and G are discrete.



Yes, they are!
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X ∼ P(5) and Y ∼ G(0.6) with various copulas and positive (top) and negative (bottom) association.



Theoretical back-up

X H often inherits dependence properties from C because

DEP(U,V )⇒ DEP(X ,Y ),

where (U,V ) ∼ C and DEP means PQD, LTD, RTI, SI, LRD.

X θ can continue to govern association between X and Y , viz.

Cθ ≺PQD Cθ′ ⇒ Hθ ≺PQD Hθ′ .



Can we do inference?

Assume (X1,Y1), . . . , (Xn,Yn) is an iid sample from

Hθ(x , y) = Cθ{F (x),G (y)}

with F and G discrete.

How can one fit and validate such a model?

The quest for the answer is the subject of our ongoing research.



Näıve suggestion

Draw 10,000 samples (X1,Y1), . . . , (Xn,Yn) of size n = 100 from

Hθ(x , y) = Cθ{F (x),G (y)} ,

where Cθ is a Clayton copula and F , G are discrete distributions.

Since τ = θ/(θ + 2), pick τ̂ ∈ {τn, τa,n, τb,n} and let

θ̂ = 2
τ̂

1− τ̂
.



Illustration: Poisson margins

Take θ = 2 and Poisson margins with E(X ) = 1 and E(Y ) = 2.

θ̂ based on τn θ̂ based on τa,n θ̂ based on τb,n



What is going on?

It can be seen that τn is an unbiased estimator of

τ(H) = τ(Cz).

BUT: Cz 6= Cθ for most copula families except at independence.

In general, τa,n and τb,n are biased estimators of τ(Cθ) because

Xi = F−1(Ui ) and Yi = G−1(Vi ) 6⇒ (F (Xi ),G (Yi )) ∼ Cθ.

In short, the discretization of (Ui ,Vi ) is irreversible. /



Can’t we just randomize?

1. Take a sample (X1,Y1), . . . , (Xn,Yn) from H whose margins
are count distributions.

2. Add an independent noise to each component of the pair
(Xi ,Yi ), viz.

X̃i = Xi + Ui − 1, Ỹi = Yi + Vi − 1,

where U1, . . . ,Un and V1, . . . ,Vn are independent samples
from the standard uniform distribution on (0, 1).

3. The randomized sample (X̃1, Ỹ1), . . . , (X̃n, Ỹn) then stems
from a distribution whose margins are continuous.



Two additional estimators

4. Compute τn(X̃ , Ỹ ), the sample version of Kendall’s tau based
on the randomized sample

(X̃1, Ỹ1), . . . , (X̃n, Ỹn).

This gives a moment-estimate of θ, viz. θ̂ = g−1(τ̄n).

5. Alternatively, one can compute the pseudo-likelihood estimate
of θ based on the randomized sample.

6. To eliminate the uncertainty induced by randomization, repeat
the previous steps N times and compute the average of the
values of the estimate of θ.



... that do not work either.

Average and st. deviation of six estimates of θ in the Illustration:

Estimate of θ based on

τn(U, V ) τn(X , Y ) τa,n(X , Y ) τb,n(X , Y ) τn(X̃ , Ỹ ) MLE(X̃ , Ỹ )

Av. 2.039 1.262 4.358 2.213 1.269 1.144
S.d. 0.446 0.243 1.495 0.537 0.285 0.779

Randomization is bound to fail, because the copula of (X̃ , Ỹ ) is
Cz. However, remember that

Cz 6= Cθ.



The empirical bilinear extension copula

X Compute the empirical cdf Hn corresponding to the sample

(X1,Y1), . . . , (Xn,Yn).

X Denote its bilinear extension copula by Czn .

X Czn is explicit; its density is given by

czn (u, v) = n ×
nij

ni•n•j

for all u ∈ (Fn(i − 1),Fn(i)], v ∈ (Gn(j − 1),Gn(j)], i , j ∈ N.

X Observe that Czn is rank-based.



Wait a minute...

A sample (X1,Y1), . . . , (Xn,Yn) defines a contingency table.

X Pearson’s chi-squared statistic for testing independence

χ2 =
I∑

i=1

J∑
j=1

(nij−ni•n•j/n)2

ni•n•j/n

X Spearman’s mid-rank coefficient for testing monotone trend

ρ∗n = 12
n3

{
n∑

i=1
(Ri − R̄)(Si − S̄)

}
X Kendall’s coefficient for testing monotone trend

τ∗n = 2
n2 {#(concordant pairs)−#(discordant pairs)}



Surprise!

It can be seen that

χ2 = n

∫ 1

0

∫ 1

0
{czn (u, v)− 1}2du dv ,

ρ∗n = 12

∫ 1

0

∫ 1

0
{Czn (u, v)− uv}du dv ,

τ∗n = −1 + 4

∫ 1

0

∫ 1

0
Czn (u, v) dCzn (u, v).



Here’s an idea

In the continuous case, many inferential procedures derive from the
limiting behavior of the empirical copula process

Cn =
√
n (Cn − C ).

In the discrete case, one can investigate the asymptotic behavior of
the empirical Maltese copula process

Czn =
√
n (Czn − Cz),

hoping that it would be as useful as in the continuous case.



Known margins in the continuous case

When F and G are known and continuous, C can be estimated by
the empirical distribution function Bn of the sample

(F (Xi ),G (Yi )), 1 ≤ i ≤ n.

It is well-known that in this case,

Bn =
√
n (Bn − C )

converges weakly in C[0, 1]2 to a C -Brownian sheet BC , i.e., to a
centered Gaussian process with covariance function

cov{BC (u, v),BC (w , z)} = C (u ∧ w , v ∧ z)− C (u, v)C (w , z).



Known margins in the discrete case

When F and G are known and supported on N, Cz can be
estimated by bilinear interpolation Bzn of the empirical distribution
function of the sample

(F (Xi ),G (Yi )), 1 ≤ i ≤ n.

Theorem
As n→∞, the process Bzn =

√
n (Bzn − Cz) converges weakly in

C[0, 1]2 to a centered Gaussian process BzC .

Here, BzC is no longer a Cz-Brownian sheet, but a “bilinear
interpolation” thereof.



Illustration

The limiting process BzC is illustrated below in the univariate case
when F is binomial with p = 0.4 and N = 3, 10 and 100.
Displayed are ten realizations of Bzn when n = 5000.
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Unknown margins in the continuous case

Under suitable regularity conditions, the process

Cn =
√
n (Cn − C )

converges weakly in C[0, 1]2 to a centered Gaussian process C,

C(u, v) = BC (u, v)− ∂

∂u
C (u, v)BC (u, 1)− ∂

∂v
C (u, v)BC (1, v).



Bad news in the discrete case

Suppose that H is a bivariate Bernoulli distribution with

F (0) = p, G (0) = q, H(0, 0) = r ,

where p, q ∈ (0, 1) and r = C (p, q) for some copula C .

It can be established that the finite-dimensional margins of Czn
converge in law, although the limit may not be Gaussian.

However, the sequence Czn is not asymptotically equicontinuous in
probability unless r = pq.

In other words, Czn does not converge in C[0, 1]2 unless r = pq. /



What went wrong?

To illustrate, consider a similar process in the univariate case.

Take F Bernoulli with F (0) ∈ (0, 1) and let Fn be its empirical
counterpart based on a sample of size n from F .

Set F (0) = p and Fn(0) = pn and consider

En(u) =

{
u, u ∈ [0, pn]
(1−u)
1−pn pn, u ∈ [pn, 1]

, E (u) =

{
u, u ∈ [0, p]
(1−u)
1−p p, u ∈ [p, 1]

.

Then En =
√
n (En − E ) does not converge in law in C[0, 1] even

though its finite-dimensional margins converge.



Illustration
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Ten realizations of the process En for the Bernoulli distribution with

p = 0.4 and sample size 1000 (left). Histograms of 5, 000 realizations of

En(u) when u = 0.4 (middle) and u = 0.5 (right) based on samples of

size n = 10, 000.



All’s well that ends well!

Consider the set

O =
⋃

(k,`)∈N2

(
F (k − 1),F (k)

)
×
(
G (`− 1),G (`)

)
.

Theorem
Let K be an arbitrary compact subset of O. Then Czn converges
weakly on C(K ) as n→∞ to Cz given for every u, v ∈ O by

BzC (u, v)− ∂

∂u
Cz(u, v)BzC (u, 1)− ∂

∂v
Cz(u, v)BzC (1, v),

where BzC is the weak limit of Bzn .



Example: Spearman’s rho

Consider the non-normalized version of Spearman’s rho, viz.

ρ = ρ(H) = ρ(Cz).

Its consistent estimator is given by

ρ∗n =
12

n3

n∑
i=1

(Ri − R̄)(Si − S̄) = ρ(Czn ),

where Ri and Si are the componentwise mid-ranks. Consequently,

√
n {ρ∗n − ρ(H)} = 12

∫ 1

0

∫ 1

0
Czn (u, v) du dv .



It works!

Because [0, 1]2 \ O has Lebesgue measure zero,

12

∫ 1

0

∫ 1

0
Czn (u, v) du dv = 12

∫
O
Czn (u, v) du dv .

Furthermore, O can be approximated arbitrarily closely by compact
sets. This lies at the heart of the following result:

Theorem
As n→∞,

√
n {ρ∗n − ρ(H)} 12

∫
O
Cz(u, v) du dv .
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