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Section 1. Intuitive approach or mathematical definition?

Professor Jerzy Neyman in his talk “Current Problems of
Mathematical Statistics” (ICM, Amsterdam, 1954) wrote: “In
general, the present stage of development of mathematical
statistics may be compared with that of analysis in the epoch of
Weierstrass.” Although we have many new mathematically correct
results in Statistics, the situation seems to be similar now. There
are some “intuition-made” definitions of objects that have no
precise sense in Statistics. The use of such definitions seems
sometimes very strange. Here I would like to discuss two of such
objects: outliers and heavy tails.

Let us start with heavy tails. At the first glance, the notion seems
to be clear and nice. Really, if X is a random variable (r.v.) then
its tail is defined by the relation

T (x) = TX (x) = IP{|X | > x}, x > 0. (1.1)

Obviously, the definition of the tail T (x) is absolutely correct.



However, what does it mean that the tail is heavy? One of used
definitions is the following. We say r.v. X has heavy (power) tail
with parameters α > 0 and λ > 0 if there exists the limit

lim
x→∞

T (x)xα = λ. (1.2)

Let us look at (1.2) more attentively. If we have two different r.v.s
X and Y such that TX (x) = TY (x) for all x > A, where A is a
positive number, then all parameters α and λ in (1.2) are the same
for both TX and TY that is both X and Y have heavy tail with
parameters α and λ. We say that r.v.s are equivalent if their tails
are identical in a neighborhood of infinity. Then we may talk about
classes of equivalence for all r.v.s. All r.v.s from each equivalence
class have (or do not have) heavy tail with the same parameters.

What does it mean from statistical point of view? It means that
(for non-parametric situation) we can never estimate the
parameters α and/or λ. Really, for each finite set x1, . . . , xn of
observations on r.v. X we can never say what will be the behavior
of T (x) for x > max |x1|, . . . , |xn|.



To have a possibility of such estimation we need either to restrict
ourselves with a small class of r.v.s under consideration, or modify
the notion of heavy tail. Of course, we need mathematically
correct definition which is suitable for statistical study. However,
we shall go back to this problem a little bit later.

Let us consider a notion of outliers now. It is one of the most
strange notions from my view. Wikipedia, the free encyclopedia
defines outliers in the following way: “In statistics, an outlier is an
observation point that is distant from other observations. An
outlier may be due to variability in the measurement or it may
indicate experimental error; the latter are sometimes excluded from
the data.” I think, some points from this definition need essential
clarification. Really, let us consider the following graphs.
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Figure: 1. Distances between ordered statistics for the sample of volume
200 from Pareto distribution (0,2)

On Figure 1 the distance between |X |n,n and |X |n−1,n is greater
that “typical” distance between order statistics in 40-50 times. So,
it seems (intuitively) we have outliers here. Of course, it is in
intuitive agreement with the fact the sample was taken from
Pareto distribution.
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Figure: 2. Distances between logs of ordered statistics for the sample of
volume 200 from Pareto distribution (0,2)

On Figure 2 the distance between |X |n,n and |X |n−1,n is greater
that “typical” distance between order statistics in 30-35 times. It
is smaller that for previous case. However, without comparing this
with Figure 1 we cannot say 30-35 times is not large enough.
Intuitively, we have outliers again. However, the sample now is
from exponential distribution, which is not heavy-tailed.
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Figure: 3. Distances between ArcTan’s of ordered statistics for the
sample of volume 200 from Pareto distribution (0,2)

On Figure 3 we have sample from a distribution with compact
support. It is neither heavy-tailed nor high variability (in terms of
large standard deviation). However, we see that the difference
between |X |n,n and |X |n−1,n is greater that “typical” distance
between order statistics 10-15 times. How can we see it is not
enough to say about outliers?



More generally, how is it possible to discuss the presence of
outliers, if we always can transform arbitrary r.v.s in
corresponding set of bounded random variables without loss
of statistical information?

The answer is simple. Usually, statisticians study a scheme in
which r.v.s are generated. If we like to transform r.v.s it is
necessarily to change the scheme in corresponding way, which may
be not too easy. For example, if we study sums of r.v.s

Sn = X1 + . . .+ Xn

the transformation from Xj to, say, arctanXj will change
summation of Xj to an unclear operation.

This leads us to an idea that the notion of outliers has to be
considered not by itself but in connection with underlying
scheme. If so, we must study different schemes, leading to some
sets of r.v.s, especially to that with heavy-tailed distributions.



Characterizations of r.v.s
I think that such schemes and corresponding distributions of r.v.s
are natural products by Characterization of Probability
distributions. The aim of Characterizations is to describe all
distributions of random variables possessing a desirable property,
which may be taking as a base of probabilistic and/or statistical
model.

Let us start with an example leading to Polya Theorem. Suppose
that we have a gas whose molecules are chaotically moving, and
the space is isotropic and homogeneous. Denote by X1 and X2

projections of the velocity of a molecule on the axis in (x , y) plain.
In view of space property we have the following properties: a) X1

and X2 are independent random variables; b) X1
d
= X2. After

rotation of the coordinate system counter clock wise on the angle
π/4 we obtain, that a projection on new coordinate axes has to be
identically distributed with the old one. That is,

X1
d
= (X1 + X2)/

√
2. Polya Theorem says that in this situation X1

has normal (or degenerate) distribution with zero mean.



From Polya Theorem we obtain Maxwell distribution for velocities
of gas molecules basing on two natural properties of the space as
isotropy and homogeneity only. Are there any models leading in
a natural way to heavy-tailed distributions?

Let us show, that strictly stable distributions may be also described
by a clear physical property. Let us explain this by an example
taken from mobile telephoning: Suppose that we have a base
station. And suppose that there is a Poisson ensemble of points
(Poisson field), the locations of mobile phones. Each phone
produces a random signal Yk . It is known that the signal
depression is in inverse proportion with a power of the distance Gk

from the phone to base station. Therefore, the cumulative signal
coming to base station can be represented as
X = Y1/G 1

a + ...+ Yn/G
a
n + .... This is LePage series, and it

converges to a strictly stable distribution with index α = 1/a.
Obviously, we may change the base station and mobile phones by
electric charges, or by physical masses. In any such case we obtain
stable non-normal distribution of the resulting forth.



Heaviness of tail for strictly stable distribution is defined by the
index of stability α, which may be expressed through signal
depression. The last is a physical characteristic which can be
estimated directly (not through observations of X ).

It is clear, that for this scheme there will be many observations on
X , which seem to be “far” from each other. But is it natural to
call them “outliers”? Do they indicate experimental errors?
Definitely, the answer to the last question is negative. On the
other hand, variability of the measurements here is high, but
natural. I think, we have no reasons to consider such observations
as something special, to what one need pay additional attention.
Of course, we may not ignore such observations.



Toy-model of capital distribution

In physics, under toy-model usually understand a model, which
does not give complete description of a phenomena, but is rather
simple and provides explanation of essential part of the phenomena.
Let us try to construct a toy-model for capital distribution
(Klebanov, Melamed, Rachev (1989)). Assume that there is an
output (business) in which we invest a unit of the capital at the
initial moment t = 0. at the moment t = 1 we get a sum of
capital X1 (the nature of the r.v. X1 depends on the nature of the
output and that of the market). If the whole sum of capital
remains in the business, then to the moment t = 2 the sum of
capital becomes X1 · X2, where r.v. X2 is independent of X1 and
has the same distribution as X1 (provided that conditions of the
output and of the market are invariable). Using the same
arguments further on, we find that to the moment t = n the sum
of capital equals to

∏n
j=1 Xj , and also r.v.s X1, . . . ,Xn are i.i.d.



From the economical sense it is clear that Xj > 0, j = 1, . . . , n.
Now assume that there can happen a change of output or of the
market conditions which makes further investment of capital in the
business impossible. We assume that the time till the appearance
of the unfavorable event is random variable νp, p = 1/IEνp. The
sum of capital to the moment of this event equals to

∏νp
j=1 Xj .

And the mean time to the appearance of the unfavorable event is
IEνp = 1/p. Therefore “mean annual sum of capital” is

Zp =
( νp∏
j=1

Xj

)p
.

The smaller is the value of p > 0 the rarely is the unfavorable
event. If p is small enough, we may approximate the distribution of
Zp by its limit distribution for p → 0. To find this distribution it is
possible to pass from Xj to Yj = logXj , and change the product by
a sum of random number νp of random variables Yj .



If probability generating functions of νp generate a commutative
semigroup, the limit distribution of the sum will coincide with
ν-stable or with ν-degenerate distribution.
1. The most simplest case is that of geometric distribution of νp.
In this situation, the probability of unfavorable event is the same
for each time moment t = k . If there exists positive first moment
of Yj = logXj , then the limit distribution of random sum coincides
with ν-degenerate distribution, and is Exponential distribution.
This means, that limit distribution of Zp is Pareto distribution
F (x) = 1− x−1/γ for x > 1, and F (x) = 0 for x ≤ 1. Here
γ = IE logX1 > 0. This distribution has power tail. For γ ≥ 1 this
distribution has infinite mean. Pareto distribution was introduced
by Wilfredo Pareto to describe the capital distribution, but he used
empirical study only, and had no toy-model. About hundred years
ago this distribution gave a very good agreement with observed
facts. Nowadays, we need a small modification of the distribution.
Let us mention that our toy-model shows, that such distribution of
capitals may be explained just by random effects. This is an
essential argument against Elite Theory, because the definition of
elite becomes not clear.



30 40 50 60 70 80

0.2

0.4

0.6

0.8

1.0

Figure: 4. Plot of Pareto distribution function versus empirical
distribution of the capital of highest 100 billionaires. Forbes dataset.
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Figure: 5. Log-Log-plot of Pareto distribution function versus empirical
distribution of the capital of highest 100 billionaires. Forbes dataset.



The situation in the model of capital distribution is, in some sense,
similar to that in mobile telephoning model. Namely, statistician
will observe large distances between order statistics, but he/she
will have no reasons to consider corresponding observations as
something special. To estimate the parameter of tail heaviness it is
enough to construct an estimator of IE logX . Such estimator is
(1/n)

∑n
j=1 logXj . Very important fact is that r.v. Xj may be just

bounded while the limit Pareto distribution has power (heavy) tail.

Let us note that a very similar model may be obtained through
change of the product of random variables Xj by their random
number minimum. Again, the r.v. Xj may be bounded, but the
limit distribution has heavy tail.

It is also of essential interest that such situation is impossible for
sums of r.v.s. For limit distribution to have heavy tail it is
necessary the summands must have heavy tails too.



Remarkable that for the cases of random products, random
minimums and random sums we have the same equation and the
same solution for different transforms of distribution function.
They are Mellin transform, survival function and characteristic
function correspondingly. I think, it is essential for teaching both
Probability and Statistics. The idea to use different transformation
of distribution function to get characterization and/or limit
theorem is very fruitful, and attempts to omit teaching of, say,
characteristic function seems to be just bad simplification of the
course of Probability.

Let us went back to the notion of outliers. In the definition
given above we are talking on some observations “distant” from
other points. What is the “unit of measurement” for such
distance? There are attempts to measure the distance from an
observation to their mean value in term of sample variance.



Suppose that X1,X2, . . . ,Xn is a sequence of i.i.d. r.v.s. Denote by

x̄n =
1

n

n∑
j=1

Xj , s2n =
1

n

n∑
j=1

(Xj − x̄)2

their empirical mean and empirical variance correspondingly. Let
k > 0 be a fixed number. Namely, let us estimate the following
probability

pn = IP{|X − x̄n|/sn > k}, (1.3)

It is recommended to say that the distribution of X produces many
outliers if the probability (1.3) is high (say, higher than for normal
distribution).



The observations Xj for which the inequality |Xj − x̄n|/sn > k
holds are called outliers. Unfortunately, this approach appears to
be not connected to heavy-tailed distributions (Klebanov,
Volchenkova (2015)).

Theorem
1.1. Suppose that X1,X2, . . . ,Xn is a sequence of i.i.d. r.v.s
belonging to a domain of attraction of strictly stable random
variable with index of stability α ∈ (0, 2). Then

lim
n→∞

pn = 0. (1.4)

From this Theorem it follows that (for sufficiently large n) many
heavy-tailed distributions will not produce any outliers. This is in
contradiction with our wish to have outliers for distributions with
high variance. By the way, the word variability is not defined
precisely, too. It shows, that high variability may denote something
different than high standard deviation. Namely, one can observe
outliers when the density posses a high peak.



Section 2. How to obtain more outliers?
Here we discuss a way of constructing from a distribution another
one having a higher probability to observe outliers. We call this
procedure ”put tail down”.

Let F (x) be a probability distribution function of random variable
X having finite second moment σ2 and such that
F (−x) = 1− F (x) for all x ∈ IR1. Take a parameter p ∈ (0, 1)
and fix it. Define a new function

Fp(x) = (1− p)F (x) + pH(x),

where H(x) = 0 for x < 0, and H(x) = 1 for x > 0. It is clear that
Fp(x) is probability distribution function for any p ∈ (0, 1). Of
course, Fp also has finite second moment σ2p, and
Fp(−x) = 1− Fp(x). However, σ2p = (1− p)σ2, σ2. Let Yp be a
random variable with probability distribution function Fp. Then

IP{|Yp| > k
√

1− pσ} = 2IP{Yp > k
√

1− pσ} =

= 2(1− p)
(
1− F (k

√
1− pσ)

)
.



Denoting F̄ (x) = 1− F (x) rewrite previous equality in the form

IP{|Yp| > k
√

1− pσ} = 2(1− p)F̄ (k
√

1− pσ). (2.1)

For Yp to have more outliers than X it is sufficient that

(1− p)F̄ (k
√

1− pσ) > F̄ (kσ). (2.2)

There are many cases in which inequality (2.2) is true for
sufficiently large values of k . Let us mention two of them.

1. Random variable X has exponential tail. More precisely,

F̄ (x) ∼ Ce−ax , as x →∞,
for some positive constants C and a. In this case, inequality
(2.2) is equivalent for sufficiently large k to

(1− p) > Exp{−a · k · σ · (1−
√

1− p)},
which is obviously true for large k .

2. F has power tail, that is F̄ (x) ∼ C/xα, where α > 2 in view
of existence of finite second moment. Simple calculations
show that (2.2) is equivalent as k →∞ to

(1− p)1−α/2 < 1.



The last inequality is true for α > 2.

Let us note that the function Fp has a jump at zero. However, one
can obtain similar effect without such jump by using a smoothing
procedure, that is by approximating Fp by smooth functions.
”Put tail down” procedure allows us to obtain more outliers in
view of two its elements. First element consists in changing the tail
by smaller, but proportional to previous with coefficient 1− p. The
second element consist in moving a part of mass into origin (or
into a small neighborhood of it), which reduces the variance.

The procedure described above shows us that the presence of
outliers may have no connection with existence of heavy tails of
underlying distribution or with experimental errors.



Section 3. Back to heavy tails. Estimation of tail index

As it has been mentioned above, in Section 1, it is impossible to
estimate tail index in general situation. However, it seems to be
possible to construct upper (or lower) statistical estimators of tail
index inside a special class of probability distributions. But what
class of distributions allows such estimators?

To find such class let us consider a problem which seems (from the
point of applications) to be far from the theory of heavy-tailed
distributions. It appears in Medicine and considers a presence or
absence of “cure.”

The probability of cure, variously referred to as the cure rate or the
surviving fraction, is defined as an asymptotic value of the
improper survival function as time tends to infinity.



Let X denote observed survival time. Statistical inference on cure
rates relies on the fact that any improper survival function
S(t) = IP{X ≥ t} can be represented in the form:

S(t) = a + (1− a)So(t), (3.1)

where a = IP{X =∞} is the probability of cure, and So(t) is
defined as the survival function for the time to failure conditional
upon ultimate failure, i.e.

So(t) = IP{X ≥ t|X <∞}.

Of course,
a = lim

t→∞
S(t).

However, this relation cannot be used to construct any statistical
estimator for the probability of cure. To have such a possibility we
need to restrict the set of survival functions So(t) under
consideration to a class of the functions with known speed (or
known upper boundary of speed) of convergence to zero at
infinity.



One of such classes is the set of distributions having increasing in
average rate function (IFRA). More precisely, a distribution F (x)
concentrated on positive semi-axis belongs to the class IFRA
if and only if the function

−1

x
log(1− F (x))

increases in x ≥ 0 (see R.E. Barlow, F. Proschan Statistical
Theory of Reliability and Life Testing: Probability Models (1975)).

If F belongs to the class IFRA then for any t and x such that
0 < t ≤ x

−1

x
log(1− F (x)) ≥ −1

t
log(1− F (t))

that is
1− F (x) ≤

(
1− F (t)

)x/t
. (3.2)

In other words, if we know the value of F (t) then we have upper
bound for the speed of convergence of 1− F (x) to zero as x →∞.
This speed boundary (3.2) is exponential.



Of course, one can construct statistical estimator for F (t) using
empirical distribution function. This allows one to obtain a lower
bound for cure probability. However, our aim in this talk is not a
study of cure, but the study of heavy tails. Therefore, we omit any
estimators of cure probability, and go back to heavy-tailed
distributions.

To continue such study we need a modification of the hazard rate
notion (see Klebanov and Yakovlev (2007)). Let ϕ(u) be a
nonnegative strictly monotonically decreasing function defined for
all u ≥ 0. Suppose in addition that its first derivative ϕ′ is
continuous and ϕ(0) = −ϕ′(0) = 1. We define the ϕ-hazard rate
r(t) = rS(t) for the survival function S(t) by the following
relations:

ρ(t) = ρS(t) =
d

dt
ϕ−1(S(t)),

r(t) = rS(t) = ρ(et)et . (3.3)

We say, F (t) belongs to the class ϕ-IFRA if and only if the
function rS(t) increases in t > 0, where S(t) = 1− F (t).



Theorem
3.1. Suppose that X is a positive r.v. whose distribution function
F (x) belongs to the class ϕ-IFRA. Then for any u > v > 0 holds

S(u) ≤ ϕ
( log u

log v
ϕ−1(S(v))

)
, (3.4)

where S(u) = 1− F (u).

Let us mention a particular case of Theorem 3.1, when
ϕ(t) = exp−t. In this situation, class ϕ-IFRA coincides with the
set of all distributions whose survival function S(x) are such that
S(ex) belongs to classical class IFRA. The inequality (3.4) gives us

S(u) ≤ ulog S(v)/ log v , u > v > 1.

Changing the restriction “rS(t) increases in t > 0” in the definition
of ϕ-IFRA class by “rS(t) decreases in t > 0” we obtain the
definition of ϕ-DFRA class. For distributions from this class the
inequality (3.4) has to be changed by the opposite.



Concluding Remarks

1. We have seen that heavy-tailed distribution may appear as
natural models in some problems of physics, technique and
social sciences. Many of such models remain outside of this
talk, say, the problems of rating of scientific publications.

2. Statistical inferences for such distributions must be
model-oriented. There are no universal statistical procedures
for the set of all heavy-tailed distributions.

3. The notion of outliers seems to be not defined
mathematically. On intuitive level, outliers may not be
indicators of the presence of large variance in data or that of
experimental errors.

4. Additionally to previous item, the notion of outliers may be
defined in different ways for various model. The presence of
such outliers cannot be considered as something negative in
their nature. Outliers just reflect some specific properties of
the studied process.



Thank you for your
attention!
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