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Paradox: Relaxing and Restricting Shape Qualities

O Change-points

[ relaxing some shape/smoothness/continuity assumptions;

[ additional modeling flexibility in assumed models;

0 Shape-constraints

[ limiting the overall flexibility in assumed models;

[ posing additional shape constrains/restrictions;
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Model: A General Setup

O random sample {(V;, X;); i =1,..., N} from population (2", %);
 we consider a standard regression problem formulated as
Yi=m(X;)+¢e, fori=1,... N,

for independent random error terms ¢; ~ N (0, o?) and some o2 > 0;

d common problem considered under various sets of conditions by
many authors from different statistical perspectives;

1 primary focus on estimation & statistical inference in the model;
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Model: Multi-level Change-points

[ only very mild assumptions for the unknown functional dependence
[ no a-priori parametric shape restrictions;
[d no strict continuity or smoothness properties required;
4 the unknown functional dependence structure decomposition
p—1

m(zx) = mo(x) + gosj(a:), r €Y CR;

O for a reasonably smooth function mg (of the order p € N)
and some background shock processes sq, ..., s,_1;
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Simplification: Piece-wise Linear Continuous Regression

O random sample {(X;,Y;); i =1,..., N}, where X; < X;,1;

Q the underlying model structure

Yi=a; +b;X; +¢;, a;,b €R;

under the continuity condition a; + b; X; = a;+1 + bi+1X;;
sparsity in b;'s as b; # b;+1 only for some few indexes;
optionally under some shape constraints (e.g. monotonisity);
motivated by the paper of Harchaoui and Lévy-Leduc (2010);

(I IR Ay W

the same problem considered by (e.g.) Bosetti et al. (2008); Kim et
al. (2009); Qui et al. (2009); Maciak and Mizera (2016), etc.;
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Utilization: Step by Step

[ estimation of the unknown regression function and its components;
(change-points estimation - the locations and magnitudes)

[ statistical inference about the unknown dependence structure;
(statistical inference with respect to the estimates of parameters)

[ statistical inference about the estimated change-points;
(significance of the change-points and structural breaks occurrences)

[ statistical inference about the assumed shape constraints;
(specifically monotone and isotonic properties are interesting)
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Estimation: LASSO Regularized Shape Constrained Fit

 the estimate for the model can be obtained by solving

Argmin ||Y — XNﬂ”g + AN H'B(—2)H1 ’
BeRY

3 wrt. to additional constraints, e.g. AB(_;) = 0 (non-decreasing);
O for the unknown parameters 8 = (ﬁo,ﬂl,B(T_Q))T € R™ and

———
B-1
1 X3 0 0 1 0 0
1 Xo 0 0 1 1 0
Xy = 1 X3 (X3—Xo) 0 0 A=
S : 0 1 ... 1 0
1 Xy (X3—X2) ... (Xn—Xn_1) 1 ... .1
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LASSO: Various Regularization Approaches

[ classical LASSO minimization problem for N,p € Nand A > 0
(Tibshirani, 1996)

Minimize ||Y = Xn B3 + AvllBl1
B eRP
1 generalized LASSO for N,p e Nand A >0
(Tibshirani and Taylor, 2011)
Minimize ||Y —XnB||3 + An||AB|1
B eRP
d constrained LASSO for N;p e Nand A >0

(James, Paulson and Rusmevichientong, 2012)

Minimize ||Y —XnpB|3 + An||B]1  subject to AB > &
B eR?
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Problems: Standard Estimation Approaches Not Applicable

4 for classical LASSO problem = LARS-LASSO algorithm;
(this is however, not applicable under any additional constraints)

[ no straightforward generalization of the LARS algorithm either;
(only degenerate solutions at the boundaries with no interpretation)

1 same reasoning applies for the coordinate descent algorithm;
(Friedman, Hastie, and Tibshirani, 2010)

[ the full solution paths can not be easily obtained as well;
(iterative procedures for different values of the A\ > 0 parameter)

[d however, still a CONVEX PROBLEM which can be solved:
(Mosek optimization toolbox and the R package Rmosek)
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Example: Constrained vs. Unconstrained Fit
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Example: Constrained vs. Unconstrained Fit
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Inference: Testing Shape Constraints

[ once the vector of parameter estimates B = (/3’0,31, B(T_z))T e RN
is obtained we can try to construct a test for the set of hypothesis

H() : A,B(_l) ~ 0
Hl . _|H0
BUT ...

3 where 8(_;) = (ﬂlaﬁ(T_g))T e RN
O B is a kind of LS estimate;
a ,3(_2) is a LASSO shrunk estimate;
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Inference: Common Problems with Standard Approaches

d many different proposals in the area of post selection inference;

(1 some are quite intuitive some are not;

HOWEVER

4 the main principle is behind the fact that LASSO regularized param-
eters enter the model at random;

O standard regression inference methods (e.g. comparing two nested
models) do not take this fact into account;

[ standard approaches are too much liberal causing the | type error
much larger than the required nominal level,
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Solution: A Polyhedral Lemma

[ consider some test statistic 7}, based on the LASSO regularized
parameter selection at some step k € N.

[ for the given null hypothesis the conditioning on the selection would
take the form Py, (T}, < z|well defined LASSO history) which cor-
rects for too much liberal performance of classical approaches;

1 Polyhedral Lemma
(Lee et al., 2016; Tibshirani et. al, 2016)

Conditioning on the LASSO selection history can be equivalently
expressed using some additional linear constraints in a form of a
polyhedra {y € R"; By > 0};

Mata$ Maciak | Charles University 16



Test: Verifying Shape Restrictions in the Model

[ using the LASSO selection history and conditioning with respect to
the polyheral set defined before...

 considering a general null hypothesis Hy : UT,B(_Q) > 0 against the
alternative H; : UT,B(,2) < 0 for some v € R*2...

O we can define a test statistic 7} as a normally distributed N (1, 0%)
random variable truncated to some interval [a,b] C R...

1 where the interval [a, b] is fully defined by the history conditioning,
respectively using the polyheral set {y € R"; By > 0};

 finally, it can be shown that the distribution of the test statistic 1}
under the null hypothesis Hy is (exactly) uniform, which means

Py, (Tk < a|By > 0) =ac (0, 1)
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Correction: Holm-Bonferroni Testing Approach

a
a

a simple test uniformly more powerful than the Bonferroni correction;
suitable for tests which are not independent or positively dependent;

for a set of null hypothesis Hy,..., H; and the corresponding p-
values p1, ..., pr we order the hypothesis with respect to increasing
p-values p(1) < -+ < pay;

for a given a € (0, 1) find the smallest j € {1,...,k} such that

(0]
PO~ kx1—;

reject the null hypothesis H, ..., H;_1 and do not reject Hj, ..., Hy;
if K = 1= do not reject any of the null hypothesis Hy, ..., Hg;
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Change-points: Testing Significance of Their Occurrence

d an analogous approach can be even more straightforwardly applied
to testing significance of change-points occurring in the model.

[ more easier scenario as one just directly assumes some null hypothe-
sis Hy : 3;, = 0 against some general alternative H; : 3;, #=0;

O having the LASSO estimate le()\(n)) one can directly apply the
approach based on the polyhedral lemma to make conclusions;

[ of a p-value smaller than the given critical value we reject the null
hypothesis = significant occurrence of the change-point;
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Example: Any conclusion after all?
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