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Paradox: Relaxing and Restricting Shape Qualities

o Change-points

o relaxing some shape/smoothness/continuity assumptions;

o additional modeling flexibility in assumed models;

o Shape-constraints

o limiting the overall flexibility in assumed models;

o posing additional shape constrains/restrictions;
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Model: A General Setup

o random sample {(Yi, Xi); i = 1, . . . , N} from population (X ,Y );

o we consider a standard regression problem formulated as

Yi = m(Xi) + εi, for i = 1, . . . , N ,

for independent random error terms εi ∼ N(0, σ2) and some σ2 > 0;

o common problem considered under various sets of conditions by
many authors from different statistical perspectives;

o primary focus on estimation & statistical inference in the model;
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Model: Multi-level Change-points

o only very mild assumptions for the unknown functional dependence

o no a-priori parametric shape restrictions;
o no strict continuity or smoothness properties required;

o the unknown functional dependence structure decomposition

m(x) = m0(x) +
p−1∑
j=0

sj(x), x ∈ D ⊂ R;

o for a reasonably smooth function m0 (of the order p ∈ N)
and some background shock processes s0, . . . , sp−1;
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Simplification: Piece-wise Linear Continuous Regression

o random sample {(Xi, Yi); i = 1, . . . , N}, where Xi < Xi+1;

o the underlying model structure

Yi = ai + biXi + εi, ai, bi ∈ R;

o under the continuity condition ai + biXi = ai+1 + bi+1Xi;
o sparsity in bi’s as bi 6= bi+1 only for some few indexes;
o optionally under some shape constraints (e.g. monotonisity);
o motivated by the paper of Harchaoui and Lévy-Leduc (2010);
o the same problem considered by (e.g.) Bosetti et al. (2008); Kim et

al. (2009); Qui et al. (2009); Maciak and Mizera (2016), etc.;
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Utilization: Step by Step

o estimation of the unknown regression function and its components;
(change-points estimation - the locations and magnitudes)

o statistical inference about the unknown dependence structure;
(statistical inference with respect to the estimates of parameters)

o statistical inference about the estimated change-points;
(significance of the change-points and structural breaks occurrences)

o statistical inference about the assumed shape constraints;
(specifically monotone and isotonic properties are interesting)
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Estimation: LASSO Regularized Shape Constrained Fit

o the estimate for the model can be obtained by solving

Argmin

β ∈ RN

‖Y − XNβ‖2
2 + λN

∥∥∥β(−2)
∥∥∥1 ,

o wrt. to additional constraints, e.g. Aβ(−1) � 0 (non-decreasing);
o for the unknown parameters β = (β0, β1,β

>
(−2)︸ ︷︷ ︸

β(−1)

)> ∈ Rn and

XN =


1 X1 0 . . . 0
1 X2 0 . . . 0
1 X3 (X3 −X2) 0 0
... . . . . . .

... 0
1 XN (X3 −X2) . . . (XN −XN−1)

 A =


1 0 . . . 0
1 1 0 . . .
... . . . . . .

...
1 . . . 1 0
1 . . . . . . 1
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LASSO: Various Regularization Approaches

o classical LASSO minimization problem for N, p ∈ N and λ > 0
(Tibshirani, 1996)

Minimize

β ∈ Rp

‖Y − XNβ‖2
2 + λN‖β‖1

o generalized LASSO for N, p ∈ N and λ > 0
(Tibshirani and Taylor, 2011)

Minimize

β ∈ Rp

‖Y − XNβ‖2
2 + λN‖Aβ‖1

o constrained LASSO for N, p ∈ N and λ > 0
(James, Paulson and Rusmevichientong, 2012)

Minimize

β ∈ Rp

‖Y − XNβ‖2
2 + λN‖β‖1 subject to Aβ � ξ
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Problems: Standard Estimation Approaches Not Applicable

o for classical LASSO problem ⇒ LARS-LASSO algorithm;
(this is however, not applicable under any additional constraints)

o no straightforward generalization of the LARS algorithm either;
(only degenerate solutions at the boundaries with no interpretation)

o same reasoning applies for the coordinate descent algorithm;
(Friedman, Hastie, and Tibshirani, 2010)

o the full solution paths can not be easily obtained as well;
(iterative procedures for different values of the λ > 0 parameter)

o however, still a CONVEX PROBLEM which can be solved;
(Mosek optimization toolbox and the R package Rmosek)
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Example: Constrained vs. Unconstrained Fit

Matúš Maciak | Charles University 12/27



Example: Constrained vs. Unconstrained Fit
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Inference: Testing Shape Constraints

o once the vector of parameter estimates β̂ = (β̂0, β̂1, β̂
>
(−2))

> ∈ RN

is obtained we can try to construct a test for the set of hypothesis

H0 : Aβ(−1) � 0
H1 : ¬H0

BUT ...

o where β(−1) = (β1,β
>
(−2))

> ∈ RN−1;
o β̂1 is a kind of LS estimate;
o β̂(−2) is a LASSO shrunk estimate;
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Inference: Common Problems with Standard Approaches

o many different proposals in the area of post selection inference;
o some are quite intuitive some are not;

HOWEVER

o the main principle is behind the fact that LASSO regularized param-
eters enter the model at random;

o standard regression inference methods (e.g. comparing two nested
models) do not take this fact into account;

o standard approaches are too much liberal causing the I type error
much larger than the required nominal level;
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Solution: A Polyhedral Lemma

o consider some test statistic Tk based on the LASSO regularized
parameter selection at some step k ∈ N.

o for the given null hypothesis the conditioning on the selection would
take the form PH0 (Tk ≤ x|well defined LASSO history) which cor-
rects for too much liberal performance of classical approaches;

o Polyhedral Lemma
(Lee et al., 2016; Tibshirani et. al, 2016)

Conditioning on the LASSO selection history can be equivalently
expressed using some additional linear constraints in a form of a
polyhedra {y ∈ Rn; By ≥ 0};
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Test: Verifying Shape Restrictions in the Model

o using the LASSO selection history and conditioning with respect to
the polyheral set defined before...

o considering a general null hypothesis H0 : v>β(−2) ≥ 0 against the
alternative H1 : v>β(−2) < 0 for some v ∈ Rn−2...

o we can define a test statistic Tk as a normally distributed N(µ, σ2)
random variable truncated to some interval [a, b] ⊂ R...

o where the interval [a, b] is fully defined by the history conditioning,
respectively using the polyheral set {y ∈ Rn; By ≥ 0};

o finally, it can be shown that the distribution of the test statistic Tk

under the null hypothesis H0 is (exactly) uniform, which means

PH0 (Tk ≤ α|By ≥ 0) = α ∈ (0, 1)
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Correction: Holm-Bonferroni Testing Approach

o a simple test uniformly more powerful than the Bonferroni correction;
o suitable for tests which are not independent or positively dependent;

o for a set of null hypothesis H1, . . . ,Hk and the corresponding p-
values p1, . . . , pk we order the hypothesis with respect to increasing
p-values p(1) ≤ · · · ≤ p(k);

o for a given α ∈ (0, 1) find the smallest j ∈ {1, . . . , k} such that

p(j) >
α

k + 1− j

o reject the null hypothesisH1, . . . ,Hj−1 and do not rejectHj , . . . ,Hk;
o if k = 1=⇒ do not reject any of the null hypothesis H1, . . . ,Hk;

Matúš Maciak | Charles University 18/27



Change-points: Testing Significance of Their Occurrence

o an analogous approach can be even more straightforwardly applied
to testing significance of change-points occurring in the model.

o more easier scenario as one just directly assumes some null hypothe-
sis H0 : βjl

= 0 against some general alternative H1 : βjl
6== 0;

o having the LASSO estimate β̂jl
(λ(n)) one can directly apply the

approach based on the polyhedral lemma to make conclusions;

o of a p-value smaller than the given critical value we reject the null
hypothesis ⇒ significant occurrence of the change-point;
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Example: One from the past...
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Example: Thank you all for contributing!
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Example: Any conclusion after all?
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Thank you

Any Questions?
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