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Diferencovatelnost redlnych funkci

Definition

Lt DCR,D#0, f: D— R and x € int (D). We say,

f is differentiable at x (cz. diferencovatelnd v bodg& x) if there
is f' (x) € R such that for all y € D we have

FO)=Ff0)+F )y —x)+ly —x Ry —xf,x),

where limp_ Ry (h; f,x) = 0.

Equivalently, f is differentiable at x iff

limp_o M =f'(x) eR.

If S C int (D), then we say f is differentiable at S (cz.
diferencovatelnd v mnozin& S), if it is differentiable at each

point x € S.
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Jeden argument

Lemma
IfFDCR,D#0andf: D — R is differentiable at x € int (D)
then f is continuous at x.

Lemma
Leta,be R, a< b, f: [a,b] = R be differentiable at (a, b),
right-continuous at a and left-continuous at b. Then,

b
/f’(s)ds — F(b)—f(a).
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Vice argumenti - 0

Definition

LetDCR", D#0, f: D—=R, x€cint(D) and h € R". We
say,

f is differentiable at x in direction h (cz. diferencovatelnd v
bod& x ve sméru h) if there is ' (x; h) € R such that for all
t € R, x+ th € D we have

f(x+th)=Ff(x)+f (x;h)t+|t| R (t;f,x, h),

where lims_,o Ry (s; f, x, h) = 0.
Equivalently, f is differentiable at x in direction h iff
lims_o w =f'(x; h) e R.
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Vice argumenti - 1

Definition

Lete DCR", D#0, f: D—R, x € int (D). For
i€{1,2,...,n}, wesay f possesses a

partial derivative at x w.r.t. x; (cz. parcialni derivace v bod& x
vzhledem k x;) if f is differentiable at x in direction e;., and we
set

of o
a—X’(x) = f'(x;en).

If f possesses a partial derivative at x w.r.t. x; for all
i€{1,2,...,n} we say f possesses a gradient at x (cz.
gradient v bod& x) and we denote

Vit = (o)

i=1
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Vice argumentd - 2

Definition

Let DCR", D#(, f: D— R and x € int (D). We say,

f is differentiable at x (or, possesses total differential at x,
Fréchet differentiable at x) (cz. diferencovatelnd v bodg& x) if f
possesses a gradient Vf (x) € R" and for all y € D we have

f()=f0)+(VF(x),y—x)+ly —x||Ri(y —x:f,x),

where lim,_o Ry (h; f,x) = 0.

If S C int (D), then we say f is differentiable at S (cz.
diferencovatelnd v mnozing S), if it is differentiable at each
point x € S.
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Vice argumenti - 3

Definition

Lt DCR", D#0, f: D— R and x € int (D).

We say, f is continuously differentiable at x (cz. spojité
diferencovatelnd v bod& x), if there is 6 > 0 such that

U (x,6) C D, f is differentiable at U (x,d) and gradient Vf is
continuous at x.

We say, f is continuously differentiable at a neighborhood of x

(cz. spojité diferencovatelnd v okoli bodu x), if there is § > 0
such that U (x,d) C D, f is differentiable at ¢ (x, §) and
gradient V£ is continuous at U (x, 9).
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Vice argumenti - 4

Gradient is necessary for expansion (1).

Lemma
LetDCR", D#0, f: D—R andx € int (D). Let f fulfills
an expansion for all y € D

F) =)+ &y —x)+lly =x[ Ry = x:f,x),

where £ € R" and limp_,o Ry (h; f,x) = 0.
Then f is differentiable at x, £ = Vf (x) and
f'(x; h) = (VT (x),h) for all directions h € R".
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Diferencovatelnost realnych
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Proof On the real line
. : . . Several arguments
Using (1) for a direction h € R" and t € R small enough, we Vector valued functions
Chain rule
have The second derivative
Arguments for
differentiability

f(x+th)=f(x)+ (& th)+|th]| Ry (th; f,x),

Convex function of several
variables

where limp_o Ry (h; f,x) =0.
Consider derivative ratio and let t — O:

f(x+ th) — f (x) It]

JL% t :<€7h>+||h||lLrQ)TRl(thrfaX):<£ah>
Setting h = e;.,, we receive & = Of — (x).

We have verified € is the gradlent of f at x, f is differentiable
at x and directional derivatives possess announced form. O



Vice argumenti - 5

Lemma
IFDCR", D#0 and f : D — R is differentiable at

x € int (D) then f is continuous at x.

Proof.
Continuity of f at x follows immediately (1).
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Diferencovatelnost realnych
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Lemma Onthe s
. everal arguments
Let DCR", D# 0 and f: D — R. Consider x € D and Vecton valned functions
h € R" such that x + th € D for all 0 < t < 1. Define function 5" e
v:[0,]] > R: t€0,1] = f (x + th). e e
(i) f0<t<1, x+theint(D) and f is differentiable at Convex function of severa

onvex f
variables

x + th then ¢ is differentiable at t and
O (t) = (Vif (x+ th), h).

(ii) /f x + th € int (D) and f is differentiable at x + th for all
0 <t <1, ¢ is continuous at 0 from right and ¢ is
continuous at 1 from left then

f(x+h)—f(x):¢(1)_¢(0)=/o (Vof (x + th) , h) dt.



Vektorové funkce - 0

Start with a curve.

Definition

Let DCR,D#0(, f: D—R™and t € int (D). Express the
function as a vector of functions f = (fi, f, ..., fm)T. We say,

> f is differentiable at ¢t if f; is differentiable at t for each
Jj€41,2,...,m}. We denote the derivative by

F(6) = (R (1), B (1), fn(e).
» If S Cint (D), f is differentiable at S if f; is differentiable
at S for each j € {1,2,..., m}.
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Vektorové funkce - 1

And now a general case. We start with a notion of
multidimensional scalar product.

Definition
Let n,me N, x € R" and A € R™™. We define denotation

<Ax> = (Ax,x), (Aox), o (Amx )"

Using matrix notation, we can write <A, x> = A x.
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Vektorové funkce - 2

Definition
Let DCR", D#0, n>2,f: D— R™and x € int (D).
Express the function as a vector of functions
f=(h,h,. .., fm)T. We say,
> f possesses a gradient at x if f; possesses a gradient at x
for each j € {1,2,..., m}. We denote
Vi(x)=(Vh(x),Vh(x),...,Vin(x).
» f is differentiable at x if £ is differentiable at x for each
je{1,2,...,m}.
» If S Cint (D), f is differentiable at S if £; is differentiable
at S for each j € {1,2,...,m}.
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Diferencovatelnost realnych

Ve
Vektorové funkce - 3 ke
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Lemma

LetDCR", D#0, f: D—R™ and x € int (D). Then, f is e
differentiable at x if and only if f possesses a gradient Several arguments
Vf (x) € R™M and for all y € D we have A ——

The second derivative

Arguments for

F) = F () + <7 () =x >+ lly = x| Ry = xi i), 000
where Ry (+; f,x) : R" = R™ and limp_o Ry (h; f,x) = 0. s
The expression is more simple forn=1. Let D C R, D # 0,
f:D—R™andtcint (D). Then, f is differentiable at t if
and only if f possesses a derivative f' (t) € R™ and for all
s € D we have

F)=f(O)+(s—Of () +[s—t|Ri(s—t:f 1),
where Ry (+;f,x) : R — R™ and limp_,0 Ry (h; f,x) = 0.
Proof.

It is a straightforward rewriting of definition. O



Retizkové pravidlo - 0

Differentiability directly implies chain rule (cz. Yetizkové
pravidlo).

Lemma

Let | CR,int(/)#0, DCR", int(D)#£0, g: | —D,
f:D—Randte€int(l) such that g(t) € int (D). If f is
differentiable at g(t) and g is differentiable at t, then f o g is
differentiable at t and

(fog) () = _ gji(g(t))g/(f):<Vf(g(t))7g’(f)>.
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Druha derivace - 0

Also, notion of the second derivative must be explained.

Definition

Lt DCR", D#(, f: D— R and x € int (D). We say, f
possesses

the second partial derivatives at x (cz. ma druhé parcidlni
derivace v x), if f possesses a gradient on a neighborhood of x
and all partial derivatives of gradient at x exists; i.e.

8%] (g—;) (x) exists for all indexes i,j € {1,2,...,n}.

Then, we denote -2-f (x) =2 (8’() (x) for all

aX,'axj' - & dix,
i,j€{1,2,...,n}. Matrix of the second partial derivatives is
n,n
denoted V2f (x) = ( cied (x))
1

Dxi% . and called

Hessian matrix.
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Druha derivace - 1

Definition

Let DCR", D#0, f: D— R and x € int (D). We say,

f is twice differentiable at x (or, Second Peano derivative) (cz.
dvakrat diferencovatelnd v x), if there is a gradient

V£ (x) € R" and a symmetric matrix Hr (x) € R"*" such that
for all y € D we have

Fl) = FOOH(VF00.y —x) + 5y —x He () (y =)

+ly = xIPRa(y — x; f,x),

where limp_o Ra (h; f,x) =0 .

If S C int (D), then we say f is twice differentiable at S (cz.
dvakrat diferencovatelnd v mnozin& S), if it is twice
differentiable at each x € S.
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Druha derivace - 2

Matrix Hr (x) can differ from Hessian matrix. The reasons are
» V1 does not exist in any neighborhood of x,

» Vf exists in a neighborhood of x and V2f (x) does not
exist.

» V£ exists in a neighborhood of x, V2f (x) exist, but,
asymmetric.

Let us note the difference from Hessian is not mentioned in [1].
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Druha derivace - 3

Lemma
LetDCR",D#0(, f: D— R and x € int (D). If f is twice
differentiable at x then matrix Hr (x) is uniquely determined.

Proof.
Since Hr (x) is symmetric, its uniqueness follows an
observation on quadratic forms from linear algebra.
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Druha derivace - 4

Lemma
LetDCR", D#(, f: D—=Rand x € int (D). Iff is
differentiable at a neighborhood of x and V' f is differentiable
at x, then, V*f (x) exists and f is twice differentiable at x with
1 1
He(x) = V() +3 (V2F(x) .
If, moreover, Hessian matrix is symmetric, i.e.

2 2 P
azng (x) = afjng (x) foralli,j € {1,2,...,n}, then
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Druha derivace - 4hint

Proof.

According to our assumptions, there is § > 0 such that
U (x,0) C D and for all y € U (x,0), h € R",
Al <0 —lly — x|| we have

fFly+h) —fy)=(VF(y),h) +IhlRui(hf,y),
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Vf(y)—Vf(x):<(V2f(x))T,y—x>+||yfx|| Ri(y — XiNFX)"

According to Lemma 10

F(x+h) = F(x)— (Vif (x),h) :/01<fo(x+th)—vxf(x),h> dt.

Plugging in expansion of gradient, we are receiving the
statement.



Druha derivace - 5

Lemma
LetDCR",D#£0, f: D—>R, xe€int(D) and h € R".

(i) If f is twice differentiable at x, then

o F(x+th) = £ (x) ~ £(VF (x), h) 1
t—0 t2 2

(ii) Let us denote Dp={t€R : x+theD}. Iffis
differentiable at a neighborhood of x and Vf is
differentiable at x, then, V2f (x) exists and function
¢: Dp—R: teDp— f(x+ th) possesses derivatives

o'(t) = (VF(x+th),h) forallt small enough,
¢"(0) = (h V3 (x)h).

= Z(hHf(x)h).
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Diferencovatelnost realnych

Matematicka analyza - 0 foke
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Existence and continuity of gradient, resp. of Hessian, are
sufficient conditions for differentiability in the sense of e
Definitions 6 and 17. The second derivative

Arguments for
differentiability

Lemma

Let ICR,int(/)#0,DCcR", D#0,g:1—D,f:D—=R o dunction of severa
and t € int (/) such that g(t) € int (D). If gradient of f exists

on a neighborhood of g(t) and is continuous at g(t) and g is

differentiable at t, then f o g is differentiable at t with

" of
i—1 Oxi

(fog) () = (g (1)) &i (t) = (VF(g(t), g (1))



Diferencovatelnost realnych
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Vector valued functions

Using Lemma 21, we derive differentiability of a function.

Chain rule

The second derivative
Lemma G
LetDCR", D#0, f: D—R and x € int (D). If gradient of
f exists on a neighborhood of x and is continuous at x, then f e e off e

is differentiable at x with

Fx+h)=1(x)+(VF(x),h)+ [l R (hf,x),
[Ry (h; fux) | < max{||VFf(x+uh)—VFf(x)]:0<u<1}

if h is sufficiently small.



Matematickd analyza - 2

Lemma

LetDCR", D#0, f: D— R and x € int (D). Then,

f is continuously differentiable at a neighborhood of x if and
only if there is § > 0 such that Vf exists at U (x,0) and is
continuous at U (x, ).

Proof.

A consequence of Lemma 22.
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Matematickd analyza - 3

Lemma

LetDCR", D#®, f: D—R and x € int (D). If Vf, Vf
exist on a neighborhood of x and V2f is continuous at x, then
Hessian V2f (x) is a symmetric matrix and f is twice
differentiable at x with

f(x+h) = f(x)+<Vf(x),h>+%<h,V2f(x)h>+
S IBIP Ra (hi ),
|Rx (h; f,x) | < max {||V?f (x + uh) = V*F (x)|| : 0<u <1}

if h sufficiently small. Moreover, Hr (x) = V2f (x).
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Konvexni funkce - 0

Convexity of a function can be verified by means of functions
of one variable.

Theorem

Let D C R", D # ) be a convex set and f : D — R. Then,
function f is convex if and only if functions @y s : Dy s = R
are convex for all x € D and all s € R", where
Oxs(t)=Ff(x+ts) and Dys={t : x+tseD,t € R}. (Let
us recall set Dy s is always an interval.)
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Diferencovatelnost realnych

Konvexni funkce - 1 o
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Lemma
Let D C R", D # ) be a convex open set and f : D — R.

» If f is differentiable at D and x € D, s € R”, t € Dy 5, we On the real line

Several arguments

haVe Vector valued functions
Chain rule
The second derivative
n of Arguments for
, differentiability
o (t) = E a—(x+ts)s;:<Vf(x+ts),s>.
5
— O
i=1 Convex function of several
variables

» If f is twice differentiable at D and x € D, s € R”",
t € Dy s, we have

i Pxs (B U) —oxs (1) —u(VF(x+1ts),s)

li
u—0 u2

(s,He (x+ts)s).

N~

» [If f is differentiable at D and V f is differentiable at D,
then, V2f exists on D and for x € D, s € R", t € D, 5, we
have



Konvexni funkce - 2

Theorem

Let D C R", D # () be a convex open set and f : D — R be

differentiable at D. Then,

f is convex

-

t€Dys— (VFf(x+ts),s)is
nondecreasing on Dy s for all x € D,
seR".
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Konvexni funkce - 3

Theorem

Let D C R", D # () be a convex open set and f : D = R. If f
is differentiable at D and VY f is differentiable at D, then, V2f
exists on D, f is twice differentiable at D with

He (x) = %V2f(x)+%(v2f(x))T

and

Hr (x) is positively semidefinite for all

f is convex <&
x € D.
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Konvexni funkce - 4

Definition

Let DCR", D # ) be aset and f : D — R be a function. We
say, f possesses at x € D subgradient a € R" (cz.
subgradient), if we have

f(y)—f(x)>(ay—x) forally € D.

Set of all subgradients at x will be called
subdifferential of f at x (cz. subdiferencial) and will be
denoted by Of (x).
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Konvexni funkce - 5

Subgradient and subdifferencial are helpful tools for describing
local minima of a convex function.

Lemma
Let G C R" be a nonempty open convex set, f : G — R be a
convex function and y € G. Hence, the following is equivalent:

1. f is differentiable at y and Of (y) = {Vf (y)}.
2. Of (y) is an one-point set.

3. f possesses a gradient at y.
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Konvexni funkce - 6

Results on separation of convex bodies have consequences for
convex function.

Theorem
Let D C R" be a nonempty convex set and f : D — R be a
convex function. Then, Of (x) # 0 for each x € rint (D).

Equivalent description of a convex function using
non-emptiness of subdifferentials is in power if function
definition region is an open set.

Theorem
Let D C R" be an open convex set and f : D — R. Then, f is
a convex function if and only if Of (x) # 0 for each x € D.
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For a continuous function, the characterization is also in power.

Theorem

Let D C R" be a convex set and f : D — R be a continuous
function. Then, f is a convex function if and only if Of (x) # ()
for each x € rint (D).
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Definition

Let K C R" be a cone. We define polar of K (cz. poldra K)

Ke =

{veR":Vxe K wehave (v,x) <0}.

and bipolar of K (cz. bipoldra K)

K = K°°={weR":VveK°wehave (w,v) <0}.
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Basic properties of polar.

Lemma

If K C R" is cone, then K° is a closed convex cone and
K°° = clo (conv (K)).
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Definition

Let M C R, X € clo(M). We define Tangent Cone to M at x
(or, Cone of Tangents) (cz. te¢ny kuZel k mnoZing€ M v bodé&

X) by

Tm(x) =

seR”

HXkGM,)\k>Ok€N

: st Xk — X, Ak (Xk —}) — S.
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Lemma
IfM C R", X € clo(M), then Ty (X) is a closed cone.

Lemma
IfM C R" is a convex set and x € clo (M), then Ty (X) is a
closed convex cone.

Lemma
Let M C R, x € clo(M) and S C R”, x € int (S). Then,

Tvns (X) = TaoMmyneos) (X) = Tm (X) = Taiomy (X).
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Definition

Let S CR”, X € clo(S). We say, that s € R" is

a Regular Normal to S at x (or, Normal to S at X in the
Regular Sense), (cz. reguldrni norméla k mnozin& S v x) if

Vx €S wehave (s,x —X) <|x=X||R(x —X;s,X),

where R (x — X;s,Xx) — 0 provided x — X and x € S.
Regular Normal cone to S at x (or, Cone of Regular Normals
to S at x) (cz. reguldrni normélovy kuzel)

Ns (X) is a set of all regular normals to S at X.
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Definition

Let S CR", X € clo(S). We say, that s € R" is

a Normal to S at X (or, Normal to S at X in the General Sense;
Normal Vector to S at X), (cz. normdla k mnozin& S v x) if
there are sequences xx € S, s, € Ng (x«) for k € N such that
Xk — }, Sk — S.

Normal cone to S at x (or, Cone of Normals to S at x), (cz.
Normélovy kuZel k mnozing S v bodg& x)

Ns (x) is the set of all normals to S at .
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Perceive defined objects are really cones and normal cone
always contains regular normal cone.

Lemma

IFS C R" and X € clo(S), then Ns (X), Ns (X) are cones and
s (%)  Ns ().

Lemma

Let M C R”, x € clo(M) and S C R”, x € int (S). Then,
Nmns (x) = NeloMynclo(s) (x) = N (x) = Neto(my (%)

and

Nmns (X) = Nclo(M)ﬂclo(S) (X) = Nm (X) = Nclo(M) (X)
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Theorem

IFS C R" and X € clo(S), then Ts (X)° = Ns (X),
Ns (x)° > Ts (x).
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Polar of a normal cone has also certain importance.

Definition

For S C R" and X € clo (S) we define

Regular Tangent cone to S at x (or, Cone of Regular Tangent

Vectors of S at x ) (cz. reguldrni te€ny kuzel k mnoZin& S v

bod& X ) by

for each x, € S, ke N, x, — X,

_foreach A\ >0, ke N, A\ 7 +o0,

there is &k € S, k € N,
such that & — X, Mk (€ — xk) — s.
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At first, consider basic properties of a regular tangent cone.

Theorem

IfSCR" and x € clo(S), then Ts (x) is a closed convex cone.

Lemma
Let M C R", x € clo(M) and S C R”, x € int (S). Then,

Turs () = Teaiomynelo(s) (X) = T (x) = Tao(uy (X)-

Theorem R
IfS CR" and x € clo(S), then Ts(x) C Ts (x).
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KuZele - lokalni uzavienost

Definition

Let S CR", X € clo(S). We say, that set S is

locally closed at x (cz. lokaln& uzav¥ena v x), if there is § > 0
such that V (x,d) NS is a closed set.
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Theorem

Let S CR" and x € clo(S). IfS is locally closed at X, then

Ts(x) =

seR”

For each x, €S, k € N, x, — X,
there are s, € Ts (xk), k € N
such that s, — s.
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Theorem

Let S CR" ax € clo(S). IfS is locally closed at X, then
Ts(x) = Ns (x)°, Ts(

X

)° D Ns ().
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Definition
Let SCR", x€S. Wesay,Sis
regular at x in the Sense of Clarke, (cz. reguldrni ve smyslu

Clarka), if S is locally closed at X and N (X) = N (X).
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Tangent cone, normal cone
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int (Ts (X)) ={s € R"” : 3X > 0 such that X + As € int (S)}, J&
Ns(X)=Ns(X)={s €R" : VxS we have (s,x —x) < 0}

Therefore, convex set S is regular at x in sense of Clarke if and
only if S is locally closed at x.
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