Diferencovatelnost reálných funkcí

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

ROBUST - 12.-16.září 2016, Kurzovní

Diferencovatelnost reálných funkcí

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Several arguments

Vector valued functions

Chain rule
The second derivative

Arguments for

onvex functions

Convex function of several variables

Fangent cone, normal con Ind polar

Charles and

Definition

point $x \in S$.

Let $D \subset \mathbb{R}$, $D \neq \emptyset$, $f: D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. We say, f is <u>differentiable at x</u> (cz. <u>differencovatelná</u> $y \in D$ we have

$$f(y) = f(x) + f'(x)(y - x) + |y - x| R_1(y - x; f, x),$$

where $\lim_{h\to 0} R_1\left(h;f,x\right)=0$. Equivalently, f is differentiable at x iff $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}=f'\left(x\right)\in\mathbb{R}$. If $S\subset\operatorname{int}\left(D\right)$, then we say f is differentiable at S (cz. differencovatelná v množině S), if it is differentiable at each

Petr Lachout

KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Several arguments
Vector valued functions

Chain rule

Arguments for differentiability

onvex functions

Convex function of several variables

Fangent cone, normal cone and polar

Literature

Several arguments

Vector valued functions Chain rule

Arguments for

onvex functions

Convex function of several variables

Tangent cone, normal cone and polar

Literatur

Lemma

If $D \subset \mathbb{R}$, $D \neq \emptyset$ and $f : D \to \mathbb{R}$ is differentiable at $x \in \operatorname{int}(D)$ then f is continuous at x.

Lemma

Let $a, b \in \mathbb{R}$, a < b, $f : [a, b] \to \mathbb{R}$ be differentiable at (a, b), right-continuous at a and left-continuous at b. Then,

$$\int_a^b f'(s) ds = f(b) - f(a).$$

Let
$$D \subset \mathbb{R}^n$$
, $D \neq \emptyset$, $f : D \to \mathbb{R}$, $x \in \text{int}(D)$ and $h \in \mathbb{R}^n$. We say,

f is differentiable at x in direction h (cz. diferencovatelná v bodě x ve směru h) if there is $f'(x;h) \in \mathbb{R}$ such that for all $t \in \mathbb{R}$. $x + th \in D$ we have

$$f(x + th) = f(x) + f'(x; h) t + |t| R_1(t; f, x, h),$$

where $\lim_{s\to 0} R_1(s; f, x, h) = 0$.

Equivalently, f is differentiable at x in direction h iff $\lim_{t\to 0} \frac{f(x+th)-f(x)}{t} = f'(x;h) \in \mathbb{R}.$

Petr Lachout KPMS MFF UK. Praha petr.lachout@mff.cuni.cz

Several arguments

Vector valued functions

Chain rule

Arguments for

Convex function of several

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f: D \to \mathbb{R}$, $x \in \text{int}(D)$. For $i \in \{1, 2, \dots, n\}$, we say f possesses a partial derivative at x w.r.t. x_i (cz. parciální derivace v bodě x vzhledem k x_i) if f is differentiable at x in direction $e_{i:n}$ and we set

$$\frac{\partial f}{\partial x_i}(x) = f'(x; e_{i:n}).$$

If f possesses a partial derivative at x w.r.t. x_i for all $i \in \{1, 2, ..., n\}$ we say f possesses a gradient at x (cz. gradient y bodě x) and we denote

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_i}(x)\right)_{i=1}^n.$$

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Several arguments
Vector valued functions

Chain rule

Arguments for

Convex functions

Convex function of several variables

angent cone, normal cor nd polar

Literature

Definition

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f: D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. We say, f is <u>differentiable at x</u> (or, possesses total differential at x, Fréchet differentiable at x) (cz. diferencovatelná v bodě x) if f possesses a gradient $\nabla f(x) \in \mathbb{R}^n$ and for all $y \in D$ we have

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + ||y - x|| R_1(y - x; f, x),$$

where $\lim_{h\to 0} R_1(h;f,x)=0$. If $S\subset \operatorname{int}(D)$, then we say f is differentiable at S (cz. diferencovatelná v množině S), if it is differentiable at each point $x\in S$.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Several arguments

Vector valued functions Chain rule

Arguments for

onvex functions

Convex function of several variables

Fangent cone, normal cone and polar

iterature

Definition

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f: D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. We say, f is continuously differentiable at x (cz. spojitě diferencovateľná v bodě x), if there is $\delta > 0$ such that $\mathcal{U}(x,\delta) \subset D$, f is differentiable at $\mathcal{U}(x,\delta)$ and gradient ∇f is continuous at x.

We say, f is continuously differentiable at a neighborhood of x (cz. spojitě diferencovatelná v okolí bodu x), if there is $\delta > 0$ such that $\mathcal{U}(x,\delta) \subset D$, f is differentiable at $\mathcal{U}(x,\delta)$ and gradient ∇f is continuous at $\mathcal{U}(x,\delta)$.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Several arguments

Vector valued functions Chain rule

Arguments for

onvex functions

Convex function of several variables

Tangent cone, normal cone and polar

Literature

On the real line

Several arguments

Vector valued functions

Chain rule The second d

Arguments for differentiability

Convex functions

Convex function of several variables

angent cone, normal cone

Literature

Gradient is necessary for expansion (1).

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. Let f fulfills an expansion for all $y \in D$

$$f(y) = f(x) + \langle \xi, y - x \rangle + ||y - x|| R_1(y - x; f, x),$$

where $\xi \in \mathbb{R}^n$ and $\lim_{h\to 0} R_1(h; f, x) = 0$. Then f is differentiable at x, $\xi = \nabla f(x)$ and $f'(x; h) = \langle \nabla f(x), h \rangle$ for all directions $h \in \mathbb{R}^n$.

Several arguments

Vector valued functions Chain rule

Arguments for

Convex function of several

Proof.

Using (1) for a direction $h \in \mathbb{R}^n$ and $t \in \mathbb{R}$ small enough, we have

$$f(x+th) = f(x) + \langle \xi, th \rangle + ||th|| R_1(th; f, x),$$

where $\lim_{h\to 0} R_1(h; f, x) = 0$.

Consider derivative ratio and let $t \to 0$:

$$\lim_{t\to 0}\frac{f\left(x+th\right)-f\left(x\right)}{t}=\left\langle \,\xi,h\,\right\rangle +\left\| h\right\| \lim_{t\to 0}\frac{\left|t\right|}{t}R_{1}\left(th;f,x\right)=\left\langle \,\xi,h\,\right\rangle .$$

Setting $h = e_{i:n}$, we receive $\xi_i = \frac{\partial f}{\partial x_i}(x)$.

We have verified ξ is the gradient of f at x, f is differentiable at x and directional derivatives possess announced form.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Several arguments

Vector valued functions Chain rule

The second

Arguments for

onvex function

Convex function of several variables

Tangent cone, normal cone and polar

Literature

Lemma

If $D \subset \mathbb{R}^n$, $D \neq \emptyset$ and $f : D \to \mathbb{R}$ is differentiable at $x \in \operatorname{int}(D)$ then f is continuous at x.

Proof.

Continuity of f at x follows immediately (1).

Several arguments Vector valued functions

Chain rule

Arguments for

Convex functions Convex function of several

Convex function of several variables

Tangent cone, normal con-

Literature

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$ and $f : D \to \mathbb{R}$. Consider $x \in D$ and $h \in \mathbb{R}^n$ such that $x + th \in D$ for all $0 \le t \le 1$. Define function $\varphi : [0,1] \to \mathbb{R} : t \in [0,1] \to f(x+th)$.

- (i) If 0 < t < 1, $x + th \in \text{int}(D)$ and f is differentiable at x + th then φ is differentiable at t and $\varphi'(t) = \langle \nabla_x f(x + th), h \rangle$.
- (ii) If $x+th\in \operatorname{int}(\mathsf{D})$ and f is differentiable at x+th for all $0< t< 1,\ \varphi$ is continuous at 0 from right and φ is continuous at 1 from left then

$$f(x+h)-f(x)=\varphi(1)-\varphi(0)=\int_0^1 \langle \nabla_x f(x+th), h \rangle dt.$$

Vector valued functions

Chain rule The second de

Arguments for differentiability

Convex functions

Convex function of several

variables

Tangent cone, normal cone

angent cone, normal co nd polar

Literature

Start with a curve.

Definition

Let $D \subset \mathbb{R}$, $D \neq \emptyset$, $f : D \to \mathbb{R}^m$ and $t \in \operatorname{int}(D)$. Express the function as a vector of functions $f = (f_1, f_2, \dots, f_m)^{\top}$. We say,

- ▶ f is <u>differentiable at t</u> if f_j is differentiable at t for each $j \in \{1, 2, ..., m\}$. We denote the derivative by $f'(t) = (f'_1(t), f'_2(t), ..., f'_m(t))^{\top}$.
- ▶ If S \subset int (D), f is <u>differentiable</u> at S if f_j is differentiable at S for each $j \in \{1, 2, ..., m\}$.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line

Vector valued functions

Chain rule

Arguments for

onvex functions

Convex function of several variables

Tangent cone, normal cone and polar

Literature

And now a general case. We start with a notion of multidimensional scalar product.

Definition

Let $n, m \in \mathbb{N}$, $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times m}$. We define denotation

$$\langle A, x \rangle = (\langle A_{\cdot,1}, x \rangle, \langle A_{\cdot,2}, x \rangle, \dots, \langle A_{\cdot,m}, x \rangle)^{\top}.$$

Using matrix notation, we can write $\langle A, x \rangle = A^{\top} x$.

Several arguments
Vector valued functions

Vector valued functions Chain rule

Arguments for

Convex functions

Convex function of several variables

Tangent cone, normal cone

Litoratur

Definition

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $n \geq 2$, $f : D \to \mathbb{R}^m$ and $x \in \operatorname{int}(D)$. Express the function as a vector of functions $f = (f_1, f_2, \dots, f_m)^{\top}$. We say,

- ▶ f possesses a gradient at x if f_j possesses a gradient at x for each $j \in \{1, 2, ..., m\}$. We denote $\nabla f(x) = (\nabla f_1(x), \nabla f_2(x), ..., \nabla f_m(x))$.
- ▶ f is <u>differentiable at x</u> if f_j is differentiable at x for each $j \in \{1, 2, ..., m\}$.
- ▶ If $S \subset \text{int}(D)$, f is <u>differentiable at S</u> if f_j is differentiable at S for each $j \in \{1, 2, ..., m\}$.

Vector valued functions Chain rule

Arguments for

Convex function of several

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}^m$ and $x \in \text{int}(D)$. Then, f is differentiable at x if and only if f possesses a gradient $\nabla f(x) \in \mathbb{R}^{n \times m}$ and for all $y \in D$ we have

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + ||y - x|| R_1(y - x; f, x),$$

where $R_1(\cdot; f, x): \mathbb{R}^n \to \mathbb{R}^m$ and $\lim_{h\to 0} R_1(h; f, x) = 0$. The expression is more simple for n = 1. Let $D \subset \mathbb{R}$, $D \neq \emptyset$, $f: D \to \mathbb{R}^m$ and $t \in \operatorname{int}(D)$. Then, f is differentiable at t if and only if f possesses a derivative $f'(t) \in \mathbb{R}^m$ and for all $s \in D$ we have

$$f(s) = f(t) + (s-t)f'(t) + |s-t|R_1(s-t;f,t),$$

where $R_1(\cdot; f, x) : \mathbb{R} \to \mathbb{R}^m$ and $\lim_{h\to 0} R_1(h; f, x) = 0$.

Proof.

It is a straightforward rewriting of definition.

Several arguments
Vector valued functions

Chain rule
The second derivative

Arguments for differentiability

Convex function of several

Tangent cone, normal cone

.....

Differentiability directly implies <u>chain rule</u> (cz. řetízkové pravidlo).

Lemma

Let $I \subset \mathbb{R}$, $\operatorname{int}(I) \neq \emptyset$, $D \subset \mathbb{R}^n$, $\operatorname{int}(D) \neq \emptyset$, $g : I \to D$, $f : D \to \mathbb{R}$ and $t \in \operatorname{int}(I)$ such that $g(t) \in \operatorname{int}(D)$. If f is differentiable at g(t) and g is differentiable at t, then $f \circ g$ is differentiable at t and

$$(f \circ g)'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(g(t))g'_{i}(t) = \langle \nabla f(g(t)), g'(t) \rangle.$$

The second derivative
Arguments for

Convex functions

Convex function of several

variables

Tangent cone, normal cone and polar

Literature

Also, notion of the second derivative must be explained.

Definition

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$ and $x \in \text{int } (D)$. We say, f possesses

the second partial derivatives at x (cz. má druhé parciální derivace v x), if f possesses a gradient on a neighborhood of x and all partial derivatives of gradient at x exists; i.e. $\frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_i} \right) (x)$ exists for all indexes $i, j \in \{1, 2, \dots, n\}$.

Then, we denote $\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)(x)$ for all $i,j \in \{1,2,\ldots,n\}$. Matrix of the second partial derivatives is denoted $\nabla^2 f(x) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x) \right)_{i=1,j=1}^{n,n}$ and called

Hessian matrix.

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f: D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. We say, f is twice differentiable at x (or, Second Peano derivative) (cz. dvakrát diferencovatelná v x), if there is a gradient $\nabla f(x) \in \mathbb{R}^n$ and a symmetric matrix $H_f(x) \in \mathbb{R}^{n \times n}$ such that for all $y \in D$ we have

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} \langle y - x, H_f(x) (y - x) \rangle + \|y - x\|^2 R_2(y - x; f, x),$$

where $\lim_{h\to 0} R_2(h;f,x) = 0$. If $S \subset \operatorname{int}(D)$, then we say f is twice differentiable at $S \subset \operatorname{int}(D)$, if it is twice differentiable at each $X \in S$.

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions

The second derivative Arguments for

Convex functions

variables
Tangent cone, normal cone

d polar

iterature

Chain rule

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

Several arguments
Vector valued functions
Chain rule

The second derivative Arguments for

Convex functions

Convex function of several variables

Tangent cone, normal cone

. .

Matrix $H_f(x)$ can differ from Hessian matrix. The reasons are

- $\triangleright \nabla f$ does not exist in any neighborhood of x,
- ▶ ∇f exists in a neighborhood of x and $\nabla^2 f(x)$ does not exist.
- ▶ ∇f exists in a neighborhood of x, $\nabla^2 f(x)$ exist, but, asymmetric.

Let us note the difference from Hessian is not mentioned in [1].

Several arguments
Vector valued functions
Chain rule

The second derivative Arguments for

Convex functions
Convex function of several

Tangent cone, normal cone

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$ and $x \in \text{int}(D)$. If f is twice differentiable at x then matrix $H_f(x)$ is uniquely determined.

Proof.

Since $H_f(x)$ is symmetric, its uniqueness follows an observation on quadratic forms from linear algebra.

The second derivative Arguments for

Convex functions

Convex function of several variables

Tangent cone, normal cone and polar

. . .

Chain rule

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f: D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. If f is differentiable at a neighborhood of x and ∇f is differentiable at x, then, $\nabla^2 f(x)$ exists and f is twice differentiable at x with

$$H_f\left(x
ight) \ = \ rac{1}{2}
abla^2 f\left(x
ight) + rac{1}{2} \left(
abla^2 f\left(x
ight)
ight)^{ op}.$$

If, moreover, Hessian matrix is symmetric, i.e.

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x)$$
 for all $i,j \in \{1,2,\ldots,n\}$, then

$$H_f(x) = \nabla^2 f(x)$$
.

The second derivative Arguments for

Convex function of several

Proof.

According to our assumptions, there is $\delta > 0$ such that $\mathcal{U}(x,\delta) \subset \mathsf{D}$ and for all $y \in \mathcal{U}(x,\delta), h \in \mathbb{R}^n$, $||h|| < \delta - ||v - x||$ we have

$$f\left(y+h\right)-f\left(y\right)=\left\langle \left.\nabla f\left(y\right),h\right\rangle +\left\|h\right\|R_{1}\left(h;f,y\right),\right. \\ \left.\nabla f\left(y\right)-\nabla f\left(x\right)=<\left(\left.\nabla^{2} f\left(x\right)\right)^{\top},y-x>+\left\|y-x\right\|R_{1}\left(y-\frac{1}{2}\left(y-\frac{1}{$$

According to Lemma 10

$$f(x+h)-f(x)-\langle \nabla_{x}f(x),h\rangle=\int_{0}^{1}\langle \nabla_{x}f(x+th)-\nabla_{x}f(x),h\rangle dt.$$

Plugging in expansion of gradient, we are receiving the statement.

On the real line
Several arguments
Vector valued functions

Chain rule The second derivative

Arguments for differentiability

Convex function of several variables

angent cone, normal cone

Literatur

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$, $x \in \text{int}(D)$ and $h \in \mathbb{R}^n$.

(i) If f is twice differentiable at x, then

$$\lim_{t\to 0}\frac{f(x+th)-f(x)-t\left\langle \nabla f(x),h\right\rangle}{t^{2}}=\frac{1}{2}\left\langle h,H_{f}(x)h\right\rangle .$$

(ii) Let us denote $D_h = \{t \in \mathbb{R} : x + th \in D\}$. If f is differentiable at a neighborhood of x and ∇f is differentiable at x, then, $\nabla^2 f(x)$ exists and function $\varphi: D_h \to \mathbb{R}: t \in D_h \to f(x + th)$ possesses derivatives

$$\varphi'(t) = \langle \nabla f(x+th), h \rangle$$
 for all t small enough, $\varphi''(0) = \langle h, \nabla^2 f(x) h \rangle$.

Diferencovatelnost reálných funkcí

On the real line
Several arguments
Vector valued functions

Chain rule
The second derivative

Arguments for differentiability

Convex function of several variables

Tangent cone, normal cone and polar

Literature

Existence and continuity of gradient, resp. of Hessian, are sufficient conditions for differentiability in the sense of Definitions 6 and 17.

Lemma

Let $I \subset \mathbb{R}$, $\operatorname{int}(I) \neq \emptyset$, $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $g: I \to D$, $f: D \to \mathbb{R}$ and $t \in \operatorname{int}(I)$ such that $g(t) \in \operatorname{int}(D)$. If gradient of f exists on a neighborhood of g(t) and is continuous at g(t) and g is differentiable at t, then $f \circ g$ is differentiable at t with

$$(f \circ g)'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(g(t))g'_{i}(t) = \langle \nabla f(g(t)), g'(t) \rangle.$$

Several arguments
Vector valued functions

Chain rule
The second derivative

Arguments for differentiability

Convex functions

Convex function of several

variables

Tangent cone, normal cone and polar

Literatur

Using Lemma 21, we derive differentiability of a function.

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. If gradient of f exists on a neighborhood of x and is continuous at x, then f is differentiable at x with

$$\begin{split} f\left(x+h\right) &= f\left(x\right) + \left< \, \nabla f\left(x\right), h \, \right> + \|h\| \, R_1\left(h; f, x\right), \\ |R_1\left(h; f, x\right)| &\leq \max \left\{ \|\nabla f\left(x+uh\right) - \nabla f\left(x\right)\| \, : \, 0 \leq u \leq 1 \right\} \end{split}$$

if h is sufficiently small.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

Several arguments
Vector valued functions
Chain rule

The second deriva Arguments for differentiability

Convex functions

Convex function of several

Tangent cone, normal cone

1.36-0-2-0-2

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. Then, f is continuously differentiable at a neighborhood of x if and only if there is $\delta > 0$ such that ∇f exists at $\mathcal{U}(x, \delta)$ and is continuous at $\mathcal{U}(x, \delta)$.

Proof.

A consequence of Lemma 22.

Lemma

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$, $f : D \to \mathbb{R}$ and $x \in \operatorname{int}(D)$. If ∇f , $\nabla^2 f$ exist on a neighborhood of x and $\nabla^2 f$ is continuous at x, then Hessian $\nabla^2 f(x)$ is a symmetric matrix and f is twice differentiable at x with

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} \langle h, \nabla^{2} f(x) h \rangle + \frac{1}{2} \|h\|^{2} R_{2}(h; f, x),$$

$$|R_{2}(h; f, x)| \leq \max \{ \|\nabla^{2} f(x+uh) - \nabla^{2} f(x)\| : 0 \leq u \leq 1 \}$$

if h sufficiently small. Moreover, $H_f(x) = \nabla^2 f(x)$.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions

Chain rule

Arguments for differentiability

Convex functions

Convex function of several

Tangent cone, normal cone and polar

iterature

Several arguments
Vector valued functions

The second deriva

Chain rule

onvex functions

Convex function of several variables

Tangent cone, normal cone and polar

Literature

Convexity of a function can be verified by means of functions of one variable.

Theorem

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$ be a convex set and $f: D \to \mathbb{R}$. Then, function f is convex if and only if functions $\varphi_{x,s}: D_{x,s} \to \mathbb{R}$ are convex for all $x \in D$ and all $s \in \mathbb{R}^n$, where $\varphi_{x,s}(t) = f(x+ts)$ and $D_{x,s} = \{t: x+ts \in D, t \in \mathbb{R}\}$. (Let us recall set $D_{x,s}$ is always an interval.)

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$ be a convex open set and $f : D \to \mathbb{R}$.

▶ If f is differentiable at D and $x \in D$, $s \in \mathbb{R}^n$, $t \in D_{x,s}$, we have

$$\varphi'_{x,s}(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x+ts) s_{i} = \langle \nabla f(x+ts), s \rangle.$$

▶ If f is twice differentiable at D and $x \in D$, $s \in \mathbb{R}^n$, $t \in D_{x,s}$, we have

$$\lim_{u\to 0} \frac{\varphi_{x,s}(t+u) - \varphi_{x,s}(t) - u \langle \nabla f(x+ts), s \rangle}{u^2} =$$

$$= \frac{1}{2} \langle s, H_f(x+ts) s \rangle.$$

▶ If f is differentiable at D and ∇f is differentiable at D, then, $\nabla^2 f$ exists on D and for $x \in D$, $s \in \mathbb{R}^n$, $t \in D_{x,s}$, we have

Diferencovatelnost reálných funkcí

Several arguments
Vector valued functions
Chain rule
The second derivative
Arguments for

Convex functions

Convex function of several variables

Tangent cone, normal con and polar

Literature

Chain rule
The second derivative

Arguments for differentiability

Convex function of several

variables

nd polar

Literatur

Theorem

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$ be a convex open set and $f: D \to \mathbb{R}$ be differentiable at D. Then,

 $\begin{array}{ll} & t \in \mathsf{D}_{\mathsf{x},\mathsf{s}} \mapsto \langle \, \nabla \, f \, \big(\mathsf{x} + \mathsf{ts} \big) \,, \mathsf{s} \, \rangle \, \, \mathsf{is} \\ \mathsf{f} \, \, \mathsf{is} \, \, \mathsf{convex} & \Leftrightarrow & \mathsf{nondecreasing} \, \, \mathsf{on} \, \, \mathsf{D}_{\mathsf{x},\mathsf{s}} \, \, \mathsf{for} \, \, \mathsf{all} \, \, \mathsf{x} \in \mathsf{D}, \\ & \mathsf{s} \in \mathbb{R}^n. \end{array}$

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line
Several arguments
Vector valued functions
Chain rule

Arguments for

Convex functions

Convex function of several

variables

Tangent cone, normal cone and polar

Literature

Theorem

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$ be a convex open set and $f: D \to \mathbb{R}$. If f is differentiable at D and ∇f is differentiable at D, then, $\nabla^2 f$ exists on D, f is twice differentiable at D with

$$H_f(x) = \frac{1}{2} \nabla^2 f(x) + \frac{1}{2} (\nabla^2 f(x))^{\top}$$

and

f is convex \Leftrightarrow $H_f(x)$ is positively semidefinite for all $x \in D$.

The second deriv

Convex function of several

variables

Tangent cone, normal cone and polar

Literature

Definition

Let $D \subset \mathbb{R}^n$, $D \neq \emptyset$ be a set and $f: D \to \mathbb{R}$ be a function. We say, f possesses at $x \in D$ subgradient $a \in \mathbb{R}^n$ (cz. subgradient), if we have

$$f(y) - f(x) \ge \langle a, y - x \rangle$$
 for all $y \in D$.

Set of all subgradients at x will be called subdifferential of f at x (cz. subdifferenciál) and will be denoted by $\partial f(x)$.

On the real line Several arguments

Vector valued functions Chain rule

Arguments for differentiability

Convex functions of several

variables

Tangent cone, normal cone and polar

Literature

Subgradient and subdifferencial are helpful tools for describing local minima of a convex function.

Lemma

Let $\mathcal{G} \subset \mathbb{R}^n$ be a nonempty open convex set, $f: \mathcal{G} \to \mathbb{R}$ be a convex function and $y \in \mathcal{G}$. Hence, the following is equivalent:

- 1. f is differentiable at y and $\partial f(y) = {\nabla f(y)}.$
- 2. $\partial f(y)$ is an one-point set.
- 3. f possesses a gradient at y.

Several arguments
Vector valued functions

Chain rule The second deriv Arguments for

Convex functions

Convex function of several

Convex function of several variables

Tangent cone, normal cone and polar

Literature

Results on separation of convex bodies have consequences for convex function.

Theorem

Let $D \subset \mathbb{R}^n$ be a nonempty convex set and $f : D \to \mathbb{R}$ be a convex function. Then, $\partial f(x) \neq \emptyset$ for each $x \in \text{rint}(D)$.

Equivalent description of a convex function using non-emptiness of subdifferentials is in power if function definition region is an open set.

Theorem

Let $D \subset \mathbb{R}^n$ be an open convex set and $f : D \to \mathbb{R}$. Then, f is a convex function if and only if $\partial f(x) \neq \emptyset$ for each $x \in D$.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions

Chain rule The second derivative

Arguments for differentiability

Convex functions of several

variables

Tangent cone, normal cone and polar

Literature

For a continuous function, the characterization is also in power.

Theorem

Let $D \subset \mathbb{R}^n$ be a convex set and $f: D \to \mathbb{R}$ be a continuous function. Then, f is a convex function if and only if $\partial f(x) \neq \emptyset$ for each $x \in \mathrm{rint}(D)$.

Petr Lachout KPMS MFF UK, Praha petr.lachout@mff.cuni.cz

Diferencovatelnost reálných funkcí

Several arguments
Vector valued functions
Chain rule

The second derival

Convex functions

Convex function of several variables

Tangent cone, normal cone and polar

. .

Definition

Let $K \subset \mathbb{R}^n$ be a cone. We define polar of K (cz. polára K)

$$\mathcal{K}^o = \{ v \in \mathbb{R}^n : \forall x \in \mathcal{K} \text{ we have } \langle v, x \rangle \leq 0 \}.$$

and bipolar of K (cz. bipolára K)

$$K^{oo} = K^{oo} = \{ w \in \mathbb{R}^n : \forall v \in K^o \text{ we have } \langle w, v \rangle \leq 0 \}.$$

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions Chain rule

The second derivative Arguments for

onvex functions

Convex function of several variables

Tangent cone, normal cone and polar

.

Basic properties of polar.

Lemma

If $K \subset \mathbb{R}^n$ is cone, then K^o is a closed convex cone and $K^{oo} = \operatorname{clo}\left(\operatorname{conv}\left(K\right)\right)$.

Arguments for differentiability

Convex functions

Convex function of several

variables

Tangent cone, normal cone

Tangent cone, normal cone and polar

Literatur

Definition

Let $M \subset \mathbb{R}^n$, $\widetilde{x} \in \operatorname{clo}(M)$. We define Tangent Cone to M at \widetilde{x} (or, Cone of Tangents) (cz. tečný kužel k množině M v bodě \widetilde{x}) by

$$T_{\mathsf{M}}\left(\widetilde{x}
ight) \ = \ \left\{s \in \mathbb{R}^{n} \, : \, egin{array}{l} \exists \ x_{k} \in \mathsf{M}, \lambda_{k} > 0 \ k \in \mathbb{N} \\ \mathrm{s.t.} \ x_{k}
ightarrow \widetilde{x}, \ \lambda_{k} \left(x_{k} - \widetilde{x}
ight)
ightarrow s. \end{array}
ight\}.$$

The second deriva

Chain rule

Convex functions

Convex function of several variables

Tangent cone, normal cone and polar

Literatur

Lemma

If $M \subset \mathbb{R}^n$, $\widetilde{x} \in \operatorname{clo}(M)$, then $T_M(\widetilde{x})$ is a closed cone.

Lemma

If $M \subset \mathbb{R}^n$ is a convex set and $\widetilde{x} \in \operatorname{clo}(M)$, then $T_M(\widetilde{x})$ is a closed convex cone.

Lemma

Let $M \subset \mathbb{R}^n$, $x \in \operatorname{clo}(M)$ and $S \subset \mathbb{R}^n$, $x \in \operatorname{int}(S)$. Then, $T_{M \cap S}(x) = T_{\operatorname{clo}(M) \cap \operatorname{clo}(S)}(x) = T_{M}(x) = T_{\operatorname{clo}(M)}(x)$.

The second derivation Arguments for

Convex functions

Convex function of several

variables

Tangent cone, normal cone and polar

Literatur

Definition

Let $S \subset \mathbb{R}^n$, $\widetilde{x} \in \operatorname{clo}(S)$. We say, that $s \in \mathbb{R}^n$ is a Regular Normal to S at \widetilde{x} (or, Normal to S at \widetilde{x} in the Regular Sense), (cz. regulární normála k množině S v \widetilde{x}) if

$$\forall x \in S \text{ we have } \langle s, x - \widetilde{x} \rangle \leq ||x - \widetilde{x}|| R(x - \widetilde{x}; s, \widetilde{x}),$$

where $R(x - \widetilde{x}; s, \widetilde{x}) \to 0$ provided $x \to \widetilde{x}$ and $x \in S$. Regular Normal cone to S at \widetilde{x} (or, Cone of Regular Normals to S at \widetilde{x}) (cz. regulární normálový kužel) $\widehat{N}_S(\widetilde{x})$ is a set of all regular normals to S at \widetilde{x} .

Arguments for differentiability

Convex function of several variables

Tangent cone, normal cone and polar

136444

Definition

Let $S \subset \mathbb{R}^n$, $\widetilde{x} \in \operatorname{clo}(S)$. We say, that $s \in \mathbb{R}^n$ is a Normal to S at \widetilde{x} (or, Normal to S at \widetilde{x} in the General Sense; Normal Vector to S at \widetilde{x}), (cz. normála k množině S v \widetilde{x}) if there are sequences $x_k \in S$, $s_k \in \widehat{N}_S(x_k)$ for $k \in \mathbb{N}$ such that $x_k \to \widetilde{x}$, $s_k \to s$.

Normal cone to S at \widetilde{x} (or, Cone of Normals to S at \widetilde{x}), (cz. Normálový kužel k množině S v bodě \widetilde{x})

 $N_{S}(\widetilde{x})$ is the set of all normals to S at \widetilde{x} .

Several arguments
Vector valued functions

The second deriva

Chain rule

Convex functions

variables

Tangent cone, normal cone and polar

Literature

Perceive defined objects are really cones and normal cone always contains regular normal cone.

Lemma

If $S \subset \mathbb{R}^n$ and $\widetilde{x} \in \operatorname{clo}(S)$, then $\widehat{N}_S(\widetilde{x})$, $N_S(\widetilde{x})$ are cones and $\widehat{N}_S(\widetilde{x}) \subset N_S(\widetilde{x})$.

Lemma

Let $M \subset \mathbb{R}^n$, $x \in \text{clo}(M)$ and $S \subset \mathbb{R}^n$, $x \in \text{int}(S)$. Then, $\widehat{N}_{M \cap S}(x) = \widehat{N}_{\text{clo}(M) \cap \text{clo}(S)}(x) = \widehat{N}_{M}(x) = \widehat{N}_{\text{clo}(M)}(x)$ and $N_{M \cap S}(x) = N_{\text{clo}(M) \cap \text{clo}(S)}(x) = N_{M}(x) = N_{\text{clo}(M)}(x)$.

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued function Chain rule The second derivative Arguments for

onvex function

Convex function of several variables

Tangent cone, normal cone and polar

Contract Contract

Theorem

If $S \subset \mathbb{R}^n$ and $\widetilde{x} \in clo(S)$, then $T_S(\widetilde{x})^o = \widehat{N}_S(\widetilde{x})$, $\widehat{N}_S(\widetilde{x})^o \supset T_S(\widetilde{x})$.

Several arguments Vector valued functions Chain rule

Arguments for differentiability

Convex function of several variables

Tangent cone, normal cone and polar

1 Section

Polar of a normal cone has also certain importance.

Definition

For $S \subset \mathbb{R}^n$ and $\widetilde{x} \in \operatorname{clo}(S)$ we define Regular Tangent cone to S at \widetilde{x} (or, Cone of Regular Tangent Vectors of S at \widetilde{x}) (cz. regulární tečný kužel k množině S v bodě \widetilde{x}) by

$$\widehat{T}_{S}(\widetilde{x}) = \begin{cases} \text{for each } x_{k} \in S, \ k \in \mathbb{N}, \ x_{k} \to \widetilde{x}, \\ \text{for each } \lambda_{k} > 0, \ k \in \mathbb{N}, \ \lambda_{k} \nearrow +\infty, \\ \text{there is } \xi_{k} \in S, \ k \in \mathbb{N}, \\ \text{such that } \xi_{k} \to \widetilde{x}, \ \lambda_{k} \left(\xi_{k} - x_{k}\right) \to s. \end{cases} \end{cases}.$$

Chain rule The second derivative Arguments for

Convex functions

Convex function of several

variables

Tangent cone, normal cone and polar

iterature

At first, consider basic properties of a regular tangent cone.

Theorem

If $S \subset \mathbb{R}^n$ and $\widetilde{x} \in \operatorname{clo}(S)$, then $\widehat{T}_S(\widetilde{x})$ is a closed convex cone.

Lemma

Let $M \subset \mathbb{R}^n$, $x \in \operatorname{clo}(M)$ and $S \subset \mathbb{R}^n$, $x \in \operatorname{int}(S)$. Then, $\widehat{T}_{M \cap S}(x) = \widehat{T}_{\operatorname{clo}(M) \cap \operatorname{clo}(S)}(x) = \widehat{T}_{M}(x) = \widehat{T}_{\operatorname{clo}(M)}(x)$.

Theorem

If $S \subset \mathbb{R}^n$ and $\widetilde{x} \in \text{clo}(S)$, then $\widehat{T}_S(\widetilde{x}) \subset T_S(\widetilde{x})$.

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions Chain rule The second derivative Arguments for

Convex functions

Convex function of several

variables

Tangent cone, normal cone and polar

Literature

Definition

Let $S \subset \mathbb{R}^n$, $\widetilde{x} \in \operatorname{clo}(S)$. We say, that set S is locally closed at \widetilde{x} (cz. lokálně uzavřená v \widetilde{x}), if there is $\delta > 0$ such that $\mathcal{V}(\widetilde{x},\delta) \cap S$ is a closed set.

Several arguments
Vector valued functions
Chain rule

The second derivat

Convex function

Convex function of several variables

Tangent cone, normal cone and polar

...

Theorem

Let $S \subset \mathbb{R}^n$ and $\widetilde{x} \in \operatorname{clo}(S)$. If S is locally closed at \widetilde{x} , then

$$\widehat{T}_{S}(\widetilde{x}) = \begin{cases} s \in \mathbb{R}^{n} : \text{ there are } s_{k} \in \mathbb{N}, \ k \in \mathbb{N}, \ k \in \mathbb{N} \\ \text{such that } s_{k} \to s. \end{cases}$$

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions Chain rule The second derivative

Arguments for differentiability

Convex function of several

Tangent cone, normal cone and polar

40.00

Theorem

Let $S \subset \mathbb{R}^n$ a $\widetilde{x} \in \operatorname{clo}(S)$. If S is locally closed at \widetilde{x} , then $\widehat{T}_S(\widetilde{x}) = N_S(\widetilde{x})^o$, $\widehat{T}_S(\widetilde{x})^o \supset N_S(\widetilde{x})$.

Diferencovatelnost reálných funkcí

On the real line Several arguments Vector valued functions Chain rule The second derivative Arguments for

Convex functions

Convex function of several

Tangent cone, normal cone and polar

Literature

Definition

Let $S \subset \mathbb{R}^n$, $\widetilde{x} \in S$. We say, S is regular at \widetilde{x} in the Sense of Clarke, (cz. regulární ve smyslu

Clarka), if S is locally closed at \tilde{x} and $N_{S}(\tilde{x}) = \hat{N}_{S}(\tilde{x})$.

Vector valued functions Chain rule

Arguments for

Convex function of several

Tangent cone, normal cone

Lemma

Let $S \subset \mathbb{R}^n$ be convex. $\widetilde{x} \in S$. Then.

$$T_{\mathsf{S}}(\widetilde{x}) = \operatorname{clo}\left(\left\{s \in \mathbb{R}^n : \exists \, \lambda > 0 \text{ such that } \widetilde{x} + \lambda s \in \mathsf{S}\right\}\right),$$
 Convex function of several control o

Therefore, convex set S is regular at \tilde{x} in sense of Clarke if and only if S is locally closed at \tilde{x} .

Several arguments
Vector valued functions
Chain rule

The second derivation Arguments for

onvex functions

Convex function of several variables

Fangent cone, normal co ind polar

Literature

- Bazara, M.S.; Sherali, H.D.; Shetty, C.M.: *Nonlinear Programming. Theory and Algorithms*. 2nd edition, Wiley, New York, 1993.
- Rockafellar, T.: *Convex Analysis.*, Springer-Verlag, Berlin, 1975.
- Rockafellar, T.; Wets, R. J.-B.: *Variational Analysis*. Springer-Verlag, Berlin, 1998.