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O U T L I N E:

1. Motivation: football match score models with dependent components,

2. Competing risks scheme, observed data, problem of model identifiability,

3. Use of copula to express multivariate distribution,

4. Model of exponential distributions with Barnett copula,

5. Application: Time to 1-st goal in a football match, discussion

(data from 2014-15 season of the Synot League).
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1 Motivation

A basic probability model for final score of a football (soccer) match

(Maher, 1982): Two independent Poisson random variables.

More flexible models – generalizations (inflated models),

time development of model parameters, use of covariates

=> conditional independence, counting process model (Volf, 2009), ..

Another direction of model improvement:

– an explicit form of dependence of both teams scoring distributions.

Karlis and Ntzoufras (2003) – a special case of bivariate Poisson distribution.

McHale and Scarf (2011) – dependence via a copula model,

the copula is used for joint distribution of 2 discrete random variables.
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Results of these models:

In ’bivariate Poisson’ the correlation > 0 (by definition),

McHale and Scarf conclude that ’the correlation is negative and is abso-
lutely larger in more competitive matches’.

Remark: The use of copula in discrete distribution models is not easy tech-
nically (and then computationally), marginal distribution functions are as
a rule expressed by sums of point probabilities, not having a reasonably
closed form.

In the present contribution:

the copula model is used, too, but for continuous distribution of the time
to the first scored goal in a match,

=> we deal with the scheme of competing risks given by two dependent
continuous (exponential) distributions.
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2 Competing risks scheme in survival analysis

Situation: End of observation can be caused by one (1-st) of K causes (events),

– there is K (possibly dependent) random variables (times) Tj, j = 1, .., K,

(plus variable C of random right censoring)

Denote FK(t1, ..., tK) = P (T1 > t1, ..., TK > tK) joint survival function of {Tj}.
We observe Z = min(T1, ..., TK , C)

and indicator δ = j if Z = Tj, δ = 0 if Z = C.
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Estimable: distribution of Z = min(T1, ..., TK)

e.g. S(t) = P (Z > t) = FK(t, ..., t) – its survival function (by KM PLE)

and Cause–specific (”crude”) hazard functions for events j = 1, 2, . . . , K:

h∗j(t) = lim
d→0

P (t ≤ Z < t + d, δ = j |Z ≥ t)

d
,

overall hazard rate for Z = min(T1, ..., TK):

h∗(t) = lim
d→0

P (t ≤ Z < t + d |Z ≥ t)

d
=

K∑

j=1
h∗j(t),

integrals = cumulated hazard rates H∗
j (t), H∗(t), by Nelson-Aalen est.,

and Cumulated incidence functions (consistently - e.g. Lin, 1997):

F ∗
j (t) = P (Z ≤ t, δ = j) =

∫ t

0
S(s) · h∗j(s) ds.

Notice that lim F ∗
j (t) = P (δ = j) < 1 if t →∞, S(t) = 1− ∑K

j=1 F ∗
j (t).

5



Non-identifiability problem:

In general, from data (Zi, δi), i = 1, . . . , N it is not possible to identify neither
marginal nor joint distribution of {Tj}.

A. Tsiatis (1975) has shown that for arbitrary joint model we can find a model
with independent components having the same incidences,

i.e. we cannot distinguish the models.

Namely, this ’independent’ model is given

by cause-specific hazard functions h∗j(t).

On the other hand, if the form of marginal and joint distributions is assumed,
then in many cases the identification of right parameters is possible (e.g.
Basu and Ghosh, 1978, and numerous more recent papers).
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3 Competing risk and copula

In the sequel we shall consider just 2 competing events, i.e. random variables
S, T and data Zi = min(Si, Ti, Ci), δi = 1, 2, 0.

Copula offers a way how to model joint distribution or survival function:

F2(s, t) = C(FS(s), FT (t), θ), (1)

FS, FT are marginal survival functions of S, T, θ is a copula parameter.

“Knowledge” of copula is still an unrealistic supposition. Nevertheless, we can
try to use certain sufficiently flexible class of copulas, for approximation.

It ”remains” to estimate its parameter θ (the same non-identifiability problem).
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Non-identifiability example of Tsiatis (1975):

Consider random variables S, T following the distribution

F S(s) = e−λs, F T (t) = e−µt, F 2(s, t) = e−λs−µt−γst.

Hence, S(t) = F 2(t, t) = exp(−λt− µt− γt2).

Corresponding cause-specific hazard rates and their integrals are

h∗S(t) = (λ+γt), h∗T (t) = (µ+γt), H∗
S(t) = (λt+

γ

2
t2), H∗

T (t) = (µt+
γ

2
t2),

and S∗(t) = exp(−H∗
S(t)−H∗

T (t)) is the same as S(t) above.

It means that independent random variables with marginal survival functions

GS(s) = e−λs−γ
2 s2

, GT (t) = e−µt−γ
2 t2

yield the same competing risk scheme.
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Notice that ’true’ marginals are exponential while ’independent’ are not

=> a chance that, when type of marginals is assumed,

they can be estimated, and γ, too.

Again, several such cases are analyzed already by Basu and Ghosh (1978),
and then by others.

Tsiatis’ example actually uses the Barnett copula

C(u, v) = u · v · exp(−θ · ln u · ln v)

with θ ≥ 0, then ρ(U, V ) ≤ 0, θ = 0 <=> independence.

Tsiatis’ parameter γ = θ · λ · µ.
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Figure 1: Dependence of ρ(U, V ) on parameter θ and ρ(S, T ) or γ, when S ∼
Exp(λ), T ∼ Exp(µ).
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4 APPLICATION

to distribution of times to 1-st goal in football (soccer) match.

DATA: Synot Liga 2014-15, 16 teams, 240 matches,

http://www.sport.cz/fotbal/synot-liga/#vysledky

Question: How dependent are the ’latent’ times to 1-st goal of two teams?

MODEL - based on the standard model used for modeling score of (football)
matches (e.g. Maher, 1982):

Each team (i) has an attack parameter ai and defense parameter bi,

additional parameter h of home team advantage.

Scoring in a match between teams i (=home) and j (away) - two Poisson
processes with intensities ai · bj · h, aj · bi, resp.
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The time to 1-st goal - two competing exponential random variables

Sij ∼ Exp(λij = ai · bj · h) , Tij ∼ Exp(µij = aj · bi).

Dependence expressed via ’Tsiatis’ model with parameter γ.

The model has 34 parameters: ai, bi of 16 teams, and h, γ.

Barnett copula parameter θ = γ/(λijµij) is different for each match,

hence also the correlation differs, depends on the match.
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Final Team Score Points 1-st goal home away
order scored obt. scored obt.

1 Plzen 70:24 72 12 3 11 3
2 Sparta 57:20 67 9 6 9 4
3 Jablonec 58:22 64 12 1 9 6
4 Ml.Boleslav 43:34 46 11 4 5 8
5 Pribram 40:45 43 11 4 5 7
6 Dukla 34:40 41 7 5 3 10
7 Teplice 41:37 38 8 5 7 7
8 Bohemians 35:41 38 6 6 4 11
9 Slovacko 43:46 37 8 7 6 8

10 Jihlava 33:38 36 6 8 7 6
11 Slavia 40:45 34 9 6 7 7
12 Liberec 39:43 33 5 7 6 8
13 Ostrava 23:41 33 7 5 3 10
14 Brno 34:45 33 6 8 2 12
15 Hradec Kr. 26:52 25 6 6 4 11
16 C.Budejovice 29:72 22 6 9 2 11

Table 1: Brief statistics of 2014-15 season of Synot League.
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Figure 2: Histogram of times of 219 first goals. 21 matches were without goals,
i.e. observations were censored at 90-th minute.

Distribution of times to first goals is not far from exponential distribution (?).

ML estimate of the intensity yielded λ̂ = 0.0261, (0.0228, 0.0297),

the mean time to first goal 1/λ̂ ∼ 38 minutes.
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Team α β a b
Plzen 0.9742 (0.4664) -1.8874 (1.7569) 2.6490 0.1515

Sparta 0.3662 (0.6055) -0.9755 (0.8235) 1.4422 0.3770
Jablonec 0.2115 (0.5584) -1.4791 (1.1286) 1.2356 0.2278

Ml.Boleslav 0.8080 (0.5539) -0.2759 (0.6479) 2.2433 0.7589
Pribram -0.0464 (0.6898) -0.7362 (0.7491) 0.9547 0.4789

Dukla -0.2479 (0.8046) -0.0606 (0.5797) 0.7804 0.9412
Teplice 0.0205 (0.6216) -1.5465 (1.2794) 1.0207 0.2130

Bohemians -1.3719 (1.4189) -0.6103 (0.6467) 0.2536 0.5432
Slovacko 0.2151 (0.6469) -0.2541 (0.6111) 1.2400 0.7756
Jihlava -0.2056 (0.7296) -0.8168 (0.7615) 0.8141 0.4419
Slavia 0.3320 (0.5780) -0.7249 (0.7983) 1.3938 0.4843

Liberec -0.5043 (0.8504) -0.3311 (0.6083) 0.6039 0.7181
Ostrava -0.3343 (0.7779) -0.4247 (0.6289) 0.7159 0.6540

Brno -0.6091 (0.9150) 0.0883 (0.5231) 0.5438 1.0923
Hradec Kr. -0.3694 (0.8226) -0.1606 (0.5757) 0.6912 0.8517

C.Budejovice -0.0435 (0.9000) 0.3128 (0.4921) 0.9574 1.3672

Table 2: Results: MLE of parameters αi = ln ai, βi = ln bi (with half-widths
of approximate 95% conf. intervals in brackets), then ai, bi. Parameters are
related to 90 minutes, in order to have reasonable scales (and avoid numerical
problems, too).

Further, δ̂ = 0.6417 (0.2046), ĥ = exp(δ̂) = 1.8997, γ̂ = 0.945 (0.078).

Parameter values are ”relative”, ai · c, bi/c yield the same, for any c > 0.
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5 Discussion of results

Correlation in each match depends on teams parameters (and on h and γ).

Can be computed numerically from corresponding two-dimensional exponen-
tial model.

For instance, in the match Plzen and Sparta

ρ(S, T ) = −0.563,

Bohemians vers. Jihlava (teams with rather poor attack and yet fair defence)

ρ(S, T ) = −0.799.

Interpretation(?):
The smaller correlation, the more is the first goal important.

h = 1.9 indicated that the chance of home team to score first was about
1.9/2.9 = 0.66,

– in reality from 219 first goals 129 were scored by home teams,
129/219 = 0.59.
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Figure 3: Dependence of max log-likelihood on γ, i.e. maximized over all other
parameters when γ is fixed. It shows that the log-likelihood is ”flat”.
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Simulation

of times to first goal for each match, from it we can estimate:

– probabilities of first scoring team

– the first goal time (rather roughly, the model using exponential distribu-
tion has rather large variance).

Illustration: 1000x generated matches Plzen–Sparta, Sparta–Plzen, Jihlava–
Bohemians and Bohemians–Jihlava,

p1, p2, p0 are relative frequencies of scoring the first goal by the home, away
team, or of match without goal.

Match λ µ p1 p2 p0 Mean(T) Std(T)
P–S 1.8975 0.2185 0.787 0.162 0.051 32.2196 27.9710
S–P 0.4151 0.9987 0.337 0.561 0.102 43.5117 33.7654
J–B 0.8402 0.1122 0.632 0.231 0.137 51.1139 36.0780
B–J 0.2129 0.4422 0.327 0.483 0.190 59.3336 41.5438

Table 3: Characteristics of randomly generated results of selected matches. Again, intensities
λ and µ are related to 90 minutes.

In real matches, the first goals were scored by Plzen at min. 12, by Plzen at
min. 52, by Bohemians at min. 32, the last match ended 0:0.
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It is seen that the prediction of the 1-st goal is rather unreliable.

Some global statistics:

1-st goal home away 0:0
reality: 129 90 21∑

p 136 87 17
predicted 201 39 0

agreement 104 15 0

Table 4: Comparison of real and predicted results.

The second row contains sum of probabilities p1, p2, p0, resp., over all matches.

Prediction in row 3 is based on max(p1, p2, p0). The last row contains the
number of cases where the prediction agreed with the reality.

The low prediction reliability is, unfortunately, evident.
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Use of Gauss copula

– in order to check and support the results, we repeated the analysis using the
Gauss copula.

Barnett copula yields only non-positive correlation, Gauss copula is universal.

Team a b Team a b
Plzen 2.4235 0.2695 Slovacko 1.1111 0.8742

Sparta 1.4244 0.4612 Jihlava 0.8771 0.6280
Jablonec 1.3582 0.3193 Slavia 1.2899 0.6387

Ml.Boleslav 1.7917 0.7328 Liberec 0.6587 0.8117
Pribram 1.0402 0.5860 Ostrava 0.6330 0.7384

Dukla 0.6755 0.9844 Brno 0.5048 1.2286
Teplice 1.0727 0.4473 Hradec Kr. 0.6461 0.9620

Bohemians 0.4984 0.7923 C.Budejovice 0.7980 1.3384

Table 5: Estimated parameters ai and bi in model using Gauss copula
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Further, estimated h = 1.7229, ρ = −0.520 = ρ(X,Y )

of involved standard normal X,Y .

It leads to ρ(U, V ) = −0.5027 and ρ(S, T ) = −0.3775,

the same for each match.

All estimates were obtained by numerical procedures, hence I do not give CI-s
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Quite generally, for two exponentially distributed random variables S, T with
parameters µ, λ, connected by a copula, their ρ(S, T ) does not depend on
µ, λ:

ρ(S, T ) = E(S · T ) · µ · λ− 1. Further

E(S · T ) =
∫ ∞
0

∫ ∞
0

s t fST ds dt =
∫ 1

0

∫ 1

0
F−1

S (u) F−1
T (v) c(u, v) du dv =

=
1

µλ

∫ 1

0

∫ 1

0
ln(1− u) ln(1− v) c(u, v) du dv,

after substitution u = FS(s), v = FT (t).

It is seen that µ, λ vanish from the expression for ρ(S, T ).

This concerns also to Barnett copula, however notice that in our approach
µ, λ were a part of copula parameter θ, because we estimated parameter
γ = θ · µ · λ. Therefore, ρ(S, T ) depended on both, we were actually
using a set of Barnet copulas.
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Order 2014-15 a(14) b(14) a(15) b(15) order 2015-16
1 Plzen 2.6490 0.1515 1.8218 0.2592 1
2 Sparta 1.4422 0.3770 1.0447 0.6478 2
3 Jablonec 1.2356 0.2278 0.7470 0.5481 7
4 Ml.Boleslav 2.2433 0.7589 1.5209 0.6408 4
5 Pribram 0.9547 0.4789 0.6197 0.9066 14
6 Dukla 0.7804 0.9412 1.2129 0.5980 10
7 Teplice 1.0207 0.2130 0.8845 0.8982 12
8 Bohemians 0.2536 0.5432 0.8931 0.5389 9
9 Slovacko 1.2400 0.7756 0.3463 1.0957 8

10 Jihlava 0.8141 0.4419 0.7611 0.5699 11
11 Slavia 1.3938 0.4843 1.4646 0.3974 5
12 Liberec 0.6039 0.7181 1.0913 0.5251 3
13 Ostrava 0.7159 0.6540 1.3502 1.1322 16
14 Brno 0.5438 1.0923 0.6325 0.5334 6
15 H.Kr./Olomouc 0.6912 0.8517 0.4542 0.4836 15
16 C.Budej./Zlin 0.9574 1.3672 1.1406 0.9276 13

Table 6: Comparison of results, i.e. estimated parameters and final order of
teams in seasons 2014-15 and 2015-16.
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COMPARISON – continued:

2014-15: δ̂ = 0.6417 (0.2046), ĥ = exp(δ̂) = 1.8997, γ̂ = 0.945 (0.078).

2015-16: δ̂ = 0.4837 (0.1966), ĥ = exp(δ̂) = 1.6221, γ̂ = 1.450 (0.117).

Our main interest is the correlation,

– influenced by teams parameters and h, γ.

For instance, now

for Sparta vers. Plzen ρ = −0.602 (-0.569 in 2014/14),

for Bohemians vers. Jihlava ρ = −0.676 (-0.800 in 2014/15),

– the first-goal intensity of the Bohemians has increased considerably.
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6 Conclusion

- We have studied the dependence of random variables – latent times of scoring
the first goal in football matches, with the aid of the competing risk model.

- Achieved results lead to conclusion that the correlation is, as a rule, nega-
tive, and is absolutely larger in more competitive matches (compare with
McHale and Scarf, 2011).

- The approach can be extended to the analysis of times to next goals, further
generalization can consider different copula parameters for certain groups
of matches and/or teams.

- Further, in a more general models the intensities can also depend on other
factors and on match development (see also Volf, 2009 for an overview of
models).
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