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The problem
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The stochastic Cauchy problem

dXt = AXt dt+ Φ dBt t ∈ [0, T ]

X0 = x

U, V ... real, separable Hilbert spaces
A : Dom(A) ⊂ V → V ... generates a C0-semigroup of operators on V
B = (Bt, t ∈ [0, T ]) ... infinite-dimensional noise in U
Φ ∈ L(U, V ) ... diffusion term
x ∈ V ... initial condition
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Typical Examples

Stochastic heat equation:

∂tu = ∆u+ η on [0, T ]×O
u(0, ·) = f on O
u|[0,T ]×∂O = 0

Stochastic wave equation:

∂2ttu = ∆u+ η on [0, T ]×O
u(0, ·) = f1 on O
∂tu(0, ·) = f2 on O
u|[0,T ]×∂O = 0

O ⊂ Rd ... bounded domain with smooth boundary
f, f1, f2 ... given functions
η ... space-time noise process
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Mild solution

Stochastic evolution equation (SEE):

dXt = AXt dt+ Φ dBt t ∈ [0, T ]

X0 = x

Mild solution:

Xt = S(t)x+

∫ t

0

S(t− r)Φ dBt t ∈ [0, T ]

We need to be able

I give meaning to the convolution integral
I prove that X = (Xt, t ∈ [0, T ]) has measurable sample paths
I prove that X has continuous sample paths

But how to define the integral when B is neither a semimartingale, nor a
Gaussian process?
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Volterra processes

K ... so-called regular Volterra kernel (see poster for the definition)

Definition
A stochastic process b = (bt, t ∈ [0, T ]) is called a Volterra process if

(i) b is centered with b0 = 0
(ii) b is ε-Hölder continuous for every ε ∈ (0, δ) for some δ > 0
(iii) the covariance of b is

R(s, t) =

∫ s∧t

0

K(s, r)K(t, r)dr, s, t ∈ [0, T ].

Examples:

I fractional Brownian motion of H > 1
2

I Rosenblatt process
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The poster
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Where to find the poster
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How to read the poster

Motivation
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Let	 be	a	bounded	domain	with	smooth	boundary.	The	stochastic	heat	
equation	is	formally	written	as	

where	 is	a	given	function.	 The	noise	process	 is	Volterra	in	time	and
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 not
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Thank you for your 10 minutes and please, stop by!
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