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State space model

H : separable Hilbert space.

e Underlying dynamical system:
x0) o A (m(0)7 p(O)) X0 ¢ £(H)

x (&) — (X(t—l)) +v® vt o N <0, Q(t))
V : H — H measurable

e Noisy observations:

v — ux®) L w ) wt) o A, (07 R(t)>
H : H — G bunded, linear

e In real world applications: H = R", G = R,
e Theory: H = ¢2



Data assimilation

e Sequential process.

e Using a observation Y(t) = ¢(t) update a forecast (prior) estimate
X().f to produce an analysis (posterior) estimate X (1)@,

e Data assimilation = filtration problem.
o XIS~ XOy(E-1) = 4(t-1)  y(1) = ()
o X(ha ~ xM))y(t) = o)  y(1) = y@1)

Simplifications

For t € N fixed:

o ul ~ N (mf, Pf> measure induced by X/ = X (®).f,
o X% = X(t)aa’

eH=1soY =Y =X+ W



Bayes' update

Analysis (posterior) distribution

@ -1 ex 1 — z|? F (z c
7 (B)—C(y)/B p( 5 1Y \Rl)dﬂ (z) < c(y) >0,

where

)= [ exp (5 Iy — o) duf (@),

|z|2R_1 — 2*R7 12 if dim(H) < oo,
SR = (RTY22,R7Y22)  if 2 € RV2(H),
R~ 00 if z¢ RY2(H),

RY2(#) = range(RY?).



Problem

When
Trace(R) < oo,

RY2(H) is Cameron-Martin space of a measure ug ~ N (0, R).

dim(H) < oo = uR (Rl/z(H)) =1
dim(H) = oo = g (R72(H)) =0

Therefore, if measures uf and pR are equivalent,
1
c) = [ ep (5 ly—al21) du! (@) < uf (RV2(0)) =0

Vy € ‘H.



Theorem

If dim(#) = oo, operators P/ and R commute, i.e., PR — RP/ =0,
then

1
c(y) = /H exp (—5 ly — xlﬁ_l) dp (z) >0 VyeH

& r=inf{r;} >0
r = infiri}

where r;, © € N, are eigenvalues of R.

Additionally,
e Trace(R) =3>2°;m < oo = c(y) =0Vy e H,
or=0 = c(y)=0Vy € ACH, and A is dense.

When Trace(R) = >>2°;r; = 00 :

e Nw(0,R) is not a o-additive,

e Nw(0,R) is defined only on cylindrical sets,

e data noise W is only a week random variable (white noise, etc.).



Conclusions

When a forecast (prior) distribution is Gaussian and an observation
operator is linear:

e dim(#) < co = no problem with the Bayes' update,
e dim(7) = co and Trace(R) < oo = the Bayes' formula is useless,

e dim(#) = oo and R bounded from below =- the Bayes' update is well
defined,

e white noise is good.
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Thank youl!



