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State space model

H : separable Hilbert space.

• Underlying dynamical system:

X(0) ∼ N
(
m(0),P(0)

)
, X(0) ∈ L(H)

X(t) = Ψ
(
X(t−1)

)
+ V (t), V (t) ∼ N

(
0,Q(t)

)
Ψ : H → H measurable

• Noisy observations:

Y (t) = HX(t) +W (t), W (t) ∼ Nw
(

0,R(t)
)

H : H → G bunded, linear

• In real world applications: H = Rn, G = Rm.
• Theory: H = `2



Data assimilation

• Sequential process.

• Using a observation Y (t) = y(t) update a forecast (prior) estimate

X(t),f to produce an analysis (posterior) estimate X(t),a.

• Data assimilation ≈ filtration problem.

• X(t),f ≈ X(t)|Y (t−1) = y(t−1), . . . , Y (1) = y(1)

• X(t),a ≈ X(t)|Y (t) = y(t), . . . , Y (1) = y(1)

Simplifications

For t ∈ N fixed:

• µf ∼ N
(
mf ,Pf

)
measure induced by Xf = X(t),f ,

• Xa = X(t),a,

• H = I, so Y = Y (t) = X +W.



Bayes’ update

Analysis (posterior) distribution

µa (B) =
1

c (y)

∫
B

exp
(
−

1

2
|y − x|2R−1

)
dµf (x)⇔ c(y) > 0,

where

c(y) =
∫
H

exp
(
−

1

2
|y − x|2R−1

)
dµf (x) ,

|z|2R−1 = z∗R−1z if dim(H) <∞,

|z|2R−1 =


〈

R−1/2z,R−1/2z
〉

if z ∈ R1/2 (H) ,

∞ if z < R1/2 (H) ,

R
1/2 (H) = range(R

1/2).



Problem

When

Trace(R) <∞,

R1/2(H) is Cameron-Martin space of a measure µR ∼ N (0,R).

dim(H) <∞⇒ µR

(
R

1/2(H)
)

= 1

dim(H) =∞⇒ µR

(
R

1/2(H)
)

= 0

Therefore, if measures µf and µR are equivalent,

c (y) =
∫
H

exp
(
−

1

2
|y − x|2R−1

)
dµf (x) ≤ µf

(
R

1/2(H)
)

= 0

∀y ∈ H.



Theorem

If dim(H) =∞, operators Pf and R commute, i.e., PfR− RPf = 0,
then

c (y) =
∫
H

exp
(
−

1

2
|y − x|2R−1

)
dµf (x) > 0 ∀y ∈ H

⇔ r = inf
i∈N
{ri} > 0

where ri, i ∈ N, are eigenvalues of R.

Additionally,
• Trace(R) =

∑∞
i=1 ri <∞ ⇒ c(y) = 0 ∀y ∈ H,

• r = 0 ⇒ c(y) = 0 ∀y ∈ A ⊂ H, and A is dense.

When Trace(R) =
∑∞
i=1 ri =∞ :

• Nw(0,R) is not a σ-additive,
• Nw(0,R) is defined only on cylindrical sets,
• data noise W is only a week random variable (white noise, etc.).



Conclusions

When a forecast (prior) distribution is Gaussian and an observation

operator is linear:

• dim(H) <∞ ⇒ no problem with the Bayes’ update,

• dim(H) =∞ and Trace(R) <∞ ⇒ the Bayes’ formula is useless,

• dim(H) =∞ and R bounded from below ⇒ the Bayes’ update is well

defined,

• white noise is good.
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Thank you!


