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Motivation

I To know whether a change has happened in some
unknown time is a task that is not only interesting, but also
desirable for many scientific fields, e.g., in econometrics,
biology, or climatology

I Statistical hypothesis testing is used for this detection
purpose

I Sequences of dependent observations are naturally ordered
in time

I Our approach to detect the unknown change lies in usage of
so-called ratio type test statistics
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Main objectives and aims

I Changes in the mean structures are studied, while random
deviations from the mean structure are assumed to posses
common unknown variance

I Using ratio type test statistics of the form

max maxNum
maxDenom

Num and Denom are functionals of residuals’ partial sums
I An advantage of the ratio type test statistics is no need to

estimate variability of the underlying stochastic model
Ź dependent random errors
Ź even iid case under alternative

I A reasonable alternative to classical (non-ratio) statistics,
when it is difficult to find a suitable variance estimate

I Proposed by Horváth et al. (2008)
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Abrupt change in mean

I The location model for observations Y1, . . . ,Yn with at most
one abrupt change in mean

Yk “ µ` δ Itk ą τu ` εk , k “ 1, . . . , n,

where µ, δ ” δn and τ ” τn are unknown parameters
I τ is called the change point
I ε1, . . . , εn, we denote the random errors (possibly dependent)
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k “ 1 k “ τ k “ n

µ

δ
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The null and the alternative

I Test the null hypothesis that no change occurred

H0 : τ “ n

I The alternative that change occurred at some unknown
time-point τ

H1 : τ ă n, δ ‰ 0

I Ideas described in Horváth et al. (2008), Hušková (2007),
and Hušková and Marušiaková (2012)
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Ratio type test statistic based on M-residuals

Rnpψ, γ, ϕq “ max
nγďkďn´nγ

ˆ

n ´ k
k

˙ϕ

max
1ďiďk

ˇ

ˇ

ˇ

ři
j“1 ψpYj ´ pµ1kpψqq

ˇ

ˇ

ˇ

max
kďiďn´1

ˇ

ˇ

ˇ

řn
j“i`1 ψpYj ´ pµ2kpψqq

ˇ

ˇ

ˇ

I 0 ă γ ă 1{2 and ϕ P R are given constants
I Considering different score functions ψ, we may construct

similar statistics, but more robust against outliers and more
suitable for heavy-tailed distributions

I pµ1kpψq is an M-estimate of parameter µ based on Y1, . . . ,Yk
and pµ2kpψq is an M-estimate of µ based on Yk`1, . . . ,Yn

I ψL2pxq “ x and ϕ “ 0 studied in Horváth et al. (2008)
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Assumptions on the score function and errors

I Assumption 1: tεiuiPN form a strictly stationary α-mixing
sequence with a distribution function F , that is symmetric
around zero and for some χ ą 0, χ1 ą 0 there exists
a constant C1pχ, χ

1q ą 0 such that

8
ÿ

h“0
ph ` 1qχ{2αphqχ1{p2`χ`χ1q ď C1pχ, χ

1q

where αpkq, k “ 0, 1, . . . are the α-mixing coefficients
I Assumption 2: The score function ψ is a non-decreasing

and antisymmetric function
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Assumptions on the score function and errors

I Assumption 3:
ż

|ψpxq|2`χ`χ1dF pxq ă 8

and for |tj | ď C3pχ, χ
1q, j “ 1, 2:

ż

|ψpx`t2q´ψpx`t1q|2`χ`χ
1dF pxq ď C2pχ, χ

1q|t2´t1|η

where 1 ď η ď 2` χ` χ1, χ ą 0, χ1 ą 0
I Assumption 4: λptq “ ´

ş

ψpe ´ tqdF peq, t P R satisfies
λp0q “ 0, λ1p0q ą 0 and that λ1p¨q is Lipschitz in the
neighborhood of 0

I Assumption 5: Long-run variance

0 ă σ2pψq “ Eψ2pε1q ` 2
8
ÿ

i“1
Eψpε1qψpεi`1q ă 8
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Remarks on assumptions

I Assumption 1 is satisfied for example for ARMA processes
with continuously distributed stationary innovations and
bounded variance (Doukhan, 1994)

I The conditions regarding ψ reduce to moment restrictions for
ψL2pxq “ x (L2-method)

I For ψL1pxq “ sgnpxq (L1-method), the conditions reduce to
F being a symmetric distribution and having continuous
density f in a neighborhood of 0 with f p0q ą 0

I We may consider the derivative of the Huber loss function

ψHpxq “ x It|x | ď Ku ` K sgnpxq It|x | ą Ku

for some K ą 0
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Under the null

Theorem
Assumptions 1–5 and hypothesis H0 hold. Then,

Rnpψ, γ, ϕq
D

ÝÝÝÑ
nÑ8

ˆ

1´ γ
γ

˙|ϕ´1{2| sup
0ďtď1

|Bptq|

sup
0ďtď1

|B1ptq| ,

where tBptq, 0 ď t ď 1u and tB1ptq, 0 ď t ď 1u are independent
Brownian bridges.

I The null hypothesis is rejected for large values of
Rnpψ, γ, ϕq

I Explicit form of the limit distribution is not known
I To obtain critical values: either a simulation from the limit

distribution or resampling methods may be used
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Under the alternative

Theorem
Assumptions 1–5 and alternative H1 hold. If τ ” τn “ rnζs for
some ζ : γ ă ζ ă 1´ γ and

?
n|δ| ”

?
n|δn| Ñ 8, then

Rnpψ, γ, ϕq
P

ÝÝÝÑ
nÑ8

8.

I Test statistic explodes over all bounds under the alternative
I Consistency ñ the asymptotic distribution from Theorem

“Under the null” can be used to construct the test
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Resampling

I To avoid a simulation of the asymptotic distribution of the
test statistic

I Circular moving block bootstrap with replacement
I Overlapping blocks of consequent observations are formed

from the original observations
I The first few consequent observations from the original

sequence are appended after the last observation
I For a sequence of length n, we always have n possible blocks

of subsequent observations to choose from, cf. Kirch (2006)
I L – number of blocks, K – block length
I Bootstrap version of Rnpψ, γ, ϕq is defined as R˚

L,K pψ, γ, ϕq
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Validity of the bootstrap procedure

Theorem
Under some assumptions, as LÑ8,

P
“

R˚
L,K pψ, γ, ϕq ď y |Y1, . . . ,Yn

‰

P
ÝÑ P

»

–

ˆ

1´ γ
γ

˙|ϕ´1{2| sup
0ďtď1

|Bptq|

sup
0ďtď1

|B1ptq| ď y

fi

fl .

I R˚
L,K pψ, γ, ϕq provides asymptotically correct critical

values for the test based on Rnpψ, γ, ϕq, when observations
follow either the null or alternative
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Simulation scenarios

I Performance of the test based on test statistic Rnpψ, γ, ϕq
with ψL2pxq “ x and ψL1pxq “ sgnpxq

I Comparison of the circular moving block bootstrap and the
simulation from the limit distribution

I Size-power plots (Kirch, 2006)
I The ideal situation under the null hypothesis is depicted by

the straight dotted line
I Under the alternative, the desired situation would be

a steep function with values close to 1
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Simulation scenarios (cont.)

I 10000 independent samples generated to compute asymptotic
critical values

I When bootstrapping, for each sample 1000 bootstrap samples
used to compute bootstrap critical values

I 1000 repetitions in simulations of rejection rates
I n “ 200, τ “ n{2, γ “ 0.1, ϕ “ 0, and δ “ 1
I Errors are AR(1) with coefficients 0.3 (red) and 0.5 (green),

or iid (blue)
I Innovations are Np0, 1q and t5
I Rejection rates based on asymptotic critical values

. . . dashed line, based on block bootstrap with block length
K “ 5 . . . solid line
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Figure: Null hypothesis, n “ 200.
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Simulation results under H0

I Comparing to the critical values obtained by simulations from
the asymptotic distribution, the critical values obtained by
bootstrapping are more accurate, especially for the AR(1)
sequences

I When comparing the accuracy of α-errors for different choices
of the score function ψ, the L1 method seems to perform
better than the L2 method

I With the choice of ψL2 , the simulated rejection rates under H0
are higher than the corresponding theoretical α-levels for
larger values of the autoregression coefficient, while for
the L1 method they remain much more stable
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Figure: Alternative, n “ 200.
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Simulation findings under H1

I L1-method’s power of the test slightly decreases
I Comparing the case of Np0, 1q innovations with the case of

t5 innovations, the rejection rates for the L1 version of the
test statistic tend to be slightly higher for the t5 distribution,
while they remain more or less the same for the L2 version

I Not demonstrated here:
Ź As expected, the accuracy of the critical values tends to be

better for larger n
Ź γ “ 0.2 seems to provide more accurate critical values than

γ “ 0.1, but the test power is larger in the latter case
Ź With larger abrupt change, the power of the test increases
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Figure: Empirical (adjusted) size-power plots, n “ 200.
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Adjusted α-errors

I The empirical size-power plots display the empirical size of
the test (i.e., 1´sensitivity) on the x -axis versus the empirical
power of the test (i.e., specificity) on the y -axis

I The ideal shape of the curve is as steep as possible
I The empirical size-power plots demonstrate that the

bootstrap ratio type test statistic R˚
L,K pψ, γ, ϕq gives

approximately the same (only slightly smaller) empirical
powers for the adjusted empirical sizes comparing to the
original test statistic Rnpψ, γ, ϕq

I This is due to two opposing facts: R˚
L,K pψ, γ, ϕq keeps the

significance level of the test better, but Rnpψ, γ, ϕq gives
higher power of the test
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Summary

I Abrupt change in mean model for sequences of time ordered
observations, where the mean can change at unknown
time point

I Testing procedures rely on maximum ratio type statistics
I The main advantage is that they provide an alternative to

non-ratio type statistics in situations, in which variance
estimation is problematic or cumbersome

I Asymptotic behavior of the test statistic is derived under the
null hypothesis as well as under alternatives

I To calculate critical values, one can use simulations and
resampling methods

I Validity of the block bootstrap procedure is shown
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Thank you !

pestova@cs.cas.cz
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