ROBUST 2018

25.1.2018

Robust Principal Component Analysis

Tomáš Masák Joint work with Christian Kümmerle and Felix Krahmer

Standard PCA

Standard PCA

Standard PCA with outliers

Standard PCA

Standard PCA with outliers

Standard PCA

Standard PCA with outliers

Robust PCA:

Application: video surveillance

Robust PCA:

Application: video surveillance

Robust Principal Component Analysis

Robust PCA:

Application: video surveillance

=

Ε +observed background foreground noise

+

Problem: Given matrix $\mathbf{X} \in \mathbb{R}^{n_1 \times n_2}$, find a low-rank matrix \mathbf{L}_{\star} and a sparse matrix \mathbf{S}_{\star} such that

$$\begin{array}{rcl} \mathbf{X} &=& \mathbf{L}_{\star} &+& \mathbf{S}_{\star} \\ \text{df:} & n_1 n_2 &\geq& (n_1+n_2)r &+& s \end{array}$$

where $r = \operatorname{rank} \mathbf{L}_{\star}$ and $s = \|(\mathbf{S}_{\star})_{\operatorname{vec}}\|_{0}$

Is the problem solveable?

Problem: Given matrix $\mathbf{X} \in \mathbb{R}^{n_1 \times n_2}$, find a low-rank matrix \mathbf{L}_{\star} and a sparse matrix \mathbf{S}_{\star} such that

$$\begin{array}{rcl} \mathbf{X} &=& \mathbf{L}_{\star} &+& \mathbf{S}_{\star} \\ \text{df:} & n_1 n_2 &\geq& (n_1+n_2)r &+& s \end{array}$$

where $r = \operatorname{rank} \mathbf{L}_{\star}$ and $s = \|(\mathbf{S}_{\star})_{\operatorname{vec}}\|_{0}$

Is the problem solveable?

Natural optimization formulation:

$$\begin{array}{lll} (\widehat{\textbf{L}},\widehat{\textbf{S}}) &:= & \underset{\textbf{L},\textbf{S}}{\operatorname{arg\,min}} & \operatorname{rank} \textbf{L} + \lambda \| \textbf{S}_{\mathsf{vec}} \|_0 \\ & \text{s.t.} & \textbf{X} = \textbf{L} + \textbf{S} \end{array}$$

It is NP-hard.

Problem: Given matrix $\mathbf{X} \in \mathbb{R}^{n_1 \times n_2}$, find a low-rank matrix \mathbf{L}_{\star} and a sparse matrix \mathbf{S}_{\star} such that

$$\begin{array}{rcl} \mathbf{X} &=& \mathbf{L}_{\star} &+& \mathbf{S}_{\star} \\ \text{df:} & n_1 n_2 &\geq& (n_1+n_2)r &+& s \end{array}$$

where $r = \operatorname{rank} \mathbf{L}_{\star}$ and $s = \|(\mathbf{S}_{\star})_{\operatorname{vec}}\|_{0}$

Is the problem solveable?

Natural optimization formulation:

$$\begin{array}{ll} (\widehat{\textbf{L}}, \widehat{\textbf{S}}) & := & \underset{\textbf{L}, \textbf{S}}{\operatorname{arg\,min}} & \operatorname{rank} \textbf{L} + \lambda \| \textbf{S}_{\mathsf{vec}} \|_0 \\ & \underset{\textbf{S}. \textbf{t}.}{\mathsf{X}} = \textbf{L} + \textbf{S} \end{array}$$

It is NP-hard.

The seminal paper of Candés et al. (2011) showed that (given certain assumptions) the separation is possible via a convex program

$$\begin{array}{lll} (\widehat{\mathbf{L}}, \widehat{\mathbf{S}}) & := & \underset{\mathbf{L}, \mathbf{S}}{\operatorname{arg\,min}} & \operatorname{rank} \|\mathbf{L}\|_* + \lambda \|\mathbf{S}_{\operatorname{vec}}\|_1 \\ & \underset{\mathbf{S}, \mathbf{L}}{\operatorname{st}} & \mathbf{X} = \mathbf{L} + \mathbf{S} \end{array}$$

Issues with the convex approach:

- relatively slow
- mediocre performance (especially in practical applications, where the assumptions are typically broken)

Issues with the convex approach:

- relatively slow
- mediocre performance (especially in practical applications, where the assumptions are typically broken)
- \Rightarrow new algorithms emerged in the past few years, most of them non-convex

We also propose a non-convex algorithm...

Derivation of the algorithm in a nutshell:

- 1. Smooth the **non-convex objective** to become **differentiable**.
- 2. Express the derivative in a special form.
- 3. Solve the system of **non-linear equations** arising from the first order optimality conditions via a **fixed point scheme**.

The resulting algorithm is an instance of Iteratively Reweighted Least Squares (IRLS) method.

Derivation of the algorithm in a nutshell:

- 1. Smooth the non-convex objective to become differentiable.
- 2. Express the derivative in a special form.
- 3. Solve the system of **non-linear equations** arising from the first order optimality conditions via a **fixed point scheme**.

The resulting algorithm is an instance of Iteratively Reweighted Least Squares (IRLS) method.

Where is the novelty?

- special form of the derivative \rightarrow a local quadratic convergence rate
- a competitive performance

Our algorithm is not

- 1. fastest the algorithm of Yi et al. (2016) attains the time complexity of the standard PCA and thus is hard to beat
- statistically most accurate the algorithm of Oh et al. (2016) is hard to beat
- 3. numerically most accurate

Our algorithm is not

- 1. fastest the algorithm of Yi et al. (2016) attains the time complexity of the standard PCA and thus is hard to beat
- statistically most accurate the algorithm of Oh et al. (2016) is hard to beat
- 3. numerically most accurate actually, it is

Take $\mathbf{X} = \mathbf{A}\mathbf{B}^{\top}$ with $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{200 \times r}$ and replace s random entries by random corruptions. Algorithm succeeds if $\|\widehat{\mathbf{L}} - \mathbf{A}\mathbf{B}^{\top}\|_{\mathcal{F}} / \|\mathbf{A}\mathbf{B}^{\top}\|_{\mathcal{F}} < 0.01$.

Take $\mathbf{X} = \mathbf{A}\mathbf{B}^{\top}$ with $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{200 \times r}$ and replace s random entries by random corruptions. Algorithm succeeds if $\|\widehat{\mathbf{L}} - \mathbf{A}\mathbf{B}^{\top}\|_{\mathcal{F}} / \|\mathbf{A}\mathbf{B}^{\top}\|_{\mathcal{F}} < 0.01$.

Take $\mathbf{X} = \mathbf{A}\mathbf{B}^{\top}$ with $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{200 \times r}$ and replace s random entries by random corruptions. Algorithm succeeds if $\|\widehat{\mathbf{L}} - \mathbf{A}\mathbf{B}^{\top}\|_{\mathcal{F}} / \|\mathbf{A}\mathbf{B}^{\top}\|_{\mathcal{F}} < 0.01$.

Take $\mathbf{X} = \mathbf{A}\mathbf{B}^{\top}$ with $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{200 \times r}$ and replace s random entries by random corruptions. Algorithm succeeds if $\|\widehat{\mathbf{L}} - \mathbf{A}\mathbf{B}^{\top}\|_{F} / \|\mathbf{A}\mathbf{B}^{\top}\|_{F} < 0.01$.

Tomáš Masák Robust Principal Component Analysis

2.3

0.4

386

0.4

8

6

4

2 Λ

8

6

4

2 0

- A new algorithm for Robust PCA proposed.
 - the only competitive algorithm among the IRLS class
 - the only algortihm with super-linear convergence rate
 - the only algorithm uniformly outperforming the convex approach (disclaimer: subjective)
- The local quadratic convergence rate proved.

- Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. *Journal of the ACM (JACM)*, 58(3), 11.
- Oh, T. H., Matsushita, Y., Kweon, I., & Wipf, D. (2016). A pseudo-bayesian algorithm for robust PCA. In *Advances in Neural Information Processing Systems* (pp. 1390-1398).
- Yi, X., Park, D., Chen, Y., & Caramanis, C. (2016). Fast algorithms for robust PCA via gradient descent. In *Advances in neural information processing systems* (pp. 4152-4160).