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Robust PCA

Robust PCA:
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Robust PCA

Problem: Given matrix X ∈Rn1×n2 , find a low-rank matrix L? and a sparse
matrix S? such that

X = L? + S?

df: n1n2 ≥ (n1 +n2)r + s

where r = rankL? and s = ‖(S?)vec‖0

Is the problem solveable?

Natural optimization formulation:

(L̂, Ŝ) := argmin
L,S

rankL+λ‖Svec‖0

s.t. X = L+S

It is NP-hard.

The seminal paper of Candés et al. (2011) showed that (given certain assumptions)
the separation is possible via a convex program

(L̂, Ŝ) := argmin
L,S

rank‖L‖∗+λ‖Svec‖1

s.t. X = L+S
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Robust PCA

Issues with the convex approach:

relatively slow

mediocre performance (especially in practical applications, where the
assumptions are typically broken)

⇒ new algorithms emerged in the past few years, most of them non-convex

We also propose a non-convex algorithm...
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Proposed algorithm

Derivation of the algorithm in a nutshell:

1. Smooth the non-convex objective to become differentiable.

2. Express the derivative in a special form.

3. Solve the system of non-linear equations arising from the first order
optimality conditions via a fixed point scheme.

The resulting algorithm is an instance of Iteratively Reweighted Least Squares
(IRLS) method.

Where is the novelty?

– special form of the derivative→ a local quadratic convergence rate
– a competitive performance
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Proposed algorithm

Our algorithm is not

1. fastest – the algorithm of Yi et al. (2016) attains the time complexity of
the standard PCA and thus is hard to beat

2. statistically most accurate – the algorithm of Oh et al. (2016) is hard to
beat

3. numerically most accurate

– actually, it is
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Small Comparison

Take X = AB> with A,B ∈R200×r and replace s random entries by random
corruptions. Algorithm succeeds if ‖L̂−AB>‖F/‖AB>‖F < 0.01.
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Conclusions

A new algorithm for Robust PCA proposed.

– the only competitive algorithm among the IRLS class

– the only algortihm with super-linear convergence rate

– the only algorithm uniformly outperforming the convex approach (disclaimer:
subjective)

The local quadratic convergence rate proved.
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