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Robust PCA
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Robust PCA

Problem: Given matrix X € R™*"2 find a low-rank matrix L, and a sparse
matrix S, such that

X - L* + S*
df: mna > (m+m)r + s

where r = rankL, and s = ||(S«)vecllo

Is the problem solveable?
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Problem: Given matrix X € R™*"2 find a low-rank matrix L, and a sparse
matrix S, such that

X - L* + S*
df: mna > (m+m)r + s

where r = rankL, and s = || (S« )vecl|o
Is the problem solveable?
Natural optimization formulation:
(L,S) = ar%min rank L + A ||Svec||o

)

s.t. X=L+S

It is NP-hard.
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Robust PCA

Problem: Given matrix X € R"*"2_ find a low-rank matrix L, and a sparse
matrix S, such that

X - L* + S*
df: mna > (m+m)r + s

where r = rankL, and s = || (S« )vecl|o
Is the problem solveable?
Natural optimization formulation:
(L,S) = ar%min rank L + A ||Svec||o

)

s.t. X=L+S

It is NP-hard.

The seminal paper of Candés et al. (2011) showed that (given certain assumptions)
the separation is possible via a convex program

(L,S) := argmin rank||L|s+ A | Svecl1
LS
s.t. X=L+S
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Robust PCA

Issues with the convex approach:
@ relatively slow

@ mediocre performance (especially in practical applications, where the
assumptions are typically broken)
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Robust PCA

Issues with the convex approach:
@ relatively slow

@ mediocre performance (especially in practical applications, where the
assumptions are typically broken)

= new algorithms emerged in the past few years, most of them non-convex

We also propose a non-convex algorithm...
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Proposed algorithm

Derivation of the algorithm in a nutshell:
1. Smooth the non-convex objective to become differentiable.
2. Express the derivative in a special form.

3. Solve the system of non-linear equations arising from the first order
optimality conditions via a fixed point scheme.

The resulting algorithm is an instance of Iteratively Reweighted Least Squares
(IRLS) method.
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Proposed algorithm

Derivation of the algorithm in a nutshell:
1. Smooth the non-convex objective to become differentiable.
2. Express the derivative in a special form.

3. Solve the system of non-linear equations arising from the first order
optimality conditions via a fixed point scheme.

The resulting algorithm is an instance of Iteratively Reweighted Least Squares
(IRLS) method.

Where is the novelty?

— special form of the derivative — a local quadratic convergence rate
— a competitive performance
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Proposed algorithm

Our algorithm is not

1. fastest — the algorithm of Yi et al. (2016) attains the time complexity of
the standard PCA and thus is hard to beat

2. statistically most accurate — the algorithm of Oh et al. (2016) is hard to
beat

3. numerically most accurate
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Proposed algorithm

Our algorithm is not

1. fastest — the algorithm of Yi et al. (2016) attains the time complexity of
the standard PCA and thus is hard to beat

2. statistically most accurate — the algorithm of Oh et al. (2016) is hard to
beat

3. numerically most accurate — actually, it is
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Small Comparison

Take X = AB' with A, B € R?%°%" and replace s random entries by random
corruptions. Algorithm succeeds if |[L — AB'||/||/ABT || < 0.01.
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Small Comparison

Take X = AB' with A, B € R?%°%" and replace s random entries by random
corruptions. Algorithm succeeds if |[L — AB'||/||/ABT || < 0.01.
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Small Comparison

Take X = AB' with A, B € R?%°%" and replace s random entries by random
corruptions. Algorithm succeeds if |[L — AB'||/||/ABT || < 0.01.
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Small Comparison

Take X = AB' with A, B € R?%°%" and replace s random entries by random
corruptions. Algorithm succeeds if |[L — AB'||/||/ABT || < 0.01.
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Conclusions

@ A new algorithm for Robust PCA proposed.
— the only competitive algorithm among the IRLS class
— the only algortihm with super-linear convergence rate

— the only algorithm uniformly outperforming the convex approach (disclaimer:
subjective)

@ The local quadratic convergence rate proved.
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